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Inequalities for pg'"-dual mixed volumes

Chang-Jian Zhao and Mihaly Bencze

Abstract

In the paper, our main aim is to generalize the ¢" dual volume to
L, space, and introduce pq‘"-dual mized volume by calculating the first
order variation of ¢™® dual volumes. We establish the Lpo-Minkowski
inequality for pg*®-dual mixed volumes and L,,-Brunn-Minkowski in-
equality for the ¢**-dual volumes, respectively. The new inequalities in
special case yield some new dual inequalities for the ¢*®-dual volumes.

1 Introduction
The ¢'" dual volume was defined by for ¢ # 0 (see e.g. [1])

ult) = (2 [ ot u)qduw))l/q, (1)

where K is a convex body (compact, convex subsets with nonempty interior)
that contain the origin in their interiors, p is a Borel measure on S"~! and
p(K,u) is the radial function of K. The radial function of convex body K is
defined by (see e.g. [2])

p(K,u) =max{c>0:cu€ K},

for uw € S7—1L.

Key Words: Log-volume, ¢*" dual volume, ¢*"-dual mixed volume, pg**-dual mixed

volume.
2010 Mathematics Subject Classification: Primary 46E30; Secondary 52A40.

Received: 14.08.2022
Accepted: 20.12.2022

191



INEQUALITIES FOR pg**-DUAL MIXED VOLUMES 192

Recall that 114(K) is monotone nondecreasing and continuous in g. Define
the log-volume of K with respect to p by po(K) = limg_, 14 (K). Obviously,
the log-volume p(K) of K with respect to p is the following (see also [3]):

10(K) = exp <;| /S  logp(K, u)du(u)) . (1.2)

The log-volume u(K) of a convex body K with respect to u plays a very
important role in solving the Gauss image problem.

In the paper, our main aim is to generalize the ¢'" dual volume to L,
space, and introduce the pg'"-dual mixed volume of convex bodies (contain
the origin in their interiors) K and L, by calculating the first order variation
of of the ¢*" dual volumes with respect to the L,-harmonic radial addition, is
denoted by i, 4(K, L), is defined by

it ) =" [ (A rau). )

where p > 1 and g # 0. Obviously, when K = L, the pg*'-dual mixed volume
tip.q(K, L) becomes the ¢'"" dual volume p,(K). When ¢ — 0 and K = L, the
pqtP-dual mixed volume tp.q(K, L) becomes the log-volume fo(K). Further,
we establish the following L,,-Minkowski, and Bunn-Minkowski inequalities
for the pg*P-dual mixed volumes.

The L,,-Minkowski inequality for pqtP-dual mixed volumes If K and
L are convex bodies that contain the origin in their interiors, ¢ # 0 and p > 1,
then for g > 0

th

(K L) 2 pg(K) 5 1g (L) 5 (1.4)
When 1 is a spherical Lebesgue measure of S, equality holds if and only if
K and L are dilates.
The inequality is reversed for ¢ < 0.
The L,,-Brunn-Minkowski inequality for ¢ dual volumes If K and L
are convex bodies that contain the origin in their interiors, ¢ # 0, € > 0 and
p>1, then for ¢ >0

pa(KFpe - L) ™7 > g(K) ™5 + - (L) 5. (1.5)

When 1 is a spherical Lebesque measure of S™~1, equality holds if and only
if K and L are dilates, and where —T-p is the Ly-harmonic radial addition (see
Section 2).

The inequality is reversed for ¢ < 0.
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2 Notations and Preliminaries

A body in the n-dimensional Euclidean space R™ is a compact set equal to
the closure of its interior. For a compact set K C R™, we denote by V(K) the
(n-dimensional) Lebesgue measure of K, called the volume of K. The unit
ball in R™ and its surface are denoted by B and S™!, respectively. Let K"
denote the class of nonempty compact convex subsets containing the origin in
their interiors in R™. The radial function sssociated with a compact subset K
of R™, which is star-shaped with respect to the origin and contains the origin,
is p(K,-) : S"71 — [0,00). If p(K,-) is positive and continuous, K will be
called a star body. Let 8™ denote the set of star bodies about the origin in
R™. Two star bodies K and L are dilates if p(K,u)/p(L,u) is independent of
u € S"71. For K, L € 8", the radial Hausdorff metric is given by (see e.g. [4])

2.1 Ly,-harmonic radial addition
The L,-harmonic radial addition was defined by Lutwak [5]: If K, L are star
bodies, the L,y-harmonic radial addition, defined by

(KT yLyw) ™ = p(K, @) + p(L,a) 7, (2.1)

for p > 1 and = € R". The L,-harmonic radial addition of convex bodies was
first studied by Firey [6]. The operation of the L,-harmonic radial addition
and Ly,-dual Minkowski, Brunn-Minkwski inequalities are the basic concept
and inequalities in the L,-dual Brunn-Minkowski theory.

2.2 L,-dual mixed volume

The dual mixed volume V_1 (K, L) of star bodies K and L is defined by ([5])

iiﬂKJJ:1M1VUO_w“K$aLX (2.2)

e—0+ €

where F is the harmonic addition. The following is a integral representation
for the dual mixed volume V_; (K, L):

- 1

Vi (K,L)= - /Snil p(K,u)" ™ p(L,u) " dS (u). (2.3)

The dual Minkowski inequality for the dual mixed volume states that

V_i(K,L)" > V(K)""'V(L)" !, (2.4)
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with equality if and only if K and L are dilates. (see ([7]))
The dual Brunn-Minkowski inequality for the harmonic addition (due to
Firey [6]) states that

V(KFL)™Y" > V(K)™ Y+ v(L)~ V", (2.5)

with equality if and only if K and L are dilates.
The L,-dual mixed volume V_,(K, L) of K and L is defined by ([5])

Vo, (K, L) = -2 lim V(Epe L) - VIE) (2.6)

N e—0t IS

where K, L € 8" and p > 1.
The following is an integral representation for the L,-dual mixed volume:
For K,L € 8" and p > 1,

~ 1

Vo2 = [ o)™ o) S (). (2.7)

L,-dual Minkowski and Brunn-Minkowski inequalities were established by
Lutwak [5]: If K,L € 8" and p > 1, then

V_p(K,L)" > V(K)"*PV(L)™?, (2.8)
with equality if and only if K and L are dilates, and
V(K+,L)~"" > V(K)™P/" + V(L)~*/™, (2.9)

with equality if and only if K and L are dilates.

2.3 L,-mixed harmonic quermassintegral

From (2.1), it is easy to see that if K, L € 8", 0 <i < n and p > 1, then
Wi(K¥pe-L)—W;(L) 1
b WilKTye L) - W)

== Ku)" "Po(L.u)"Pd )
n —1e—=0+ € n /Sn—l p(K.u) p(Lu) Su)
(2.10)

Let K,L € 8", 0<1¢<nandp > 1, the mixed p-harmonic quermassintegral
of star K and L, denoted by W_,, ;(K, L), defined by (see [8])

— 1 ,
WK L) =~ / p(K,u)" P p(L,u)PdS(u).  (2.11)

Sn—1
Obviously, when K = L, the p-harmonic quermassintegral W_pyi(K ,L) be-
comes the dual quermassintegral W;(K'). The Minkowski and Brunn-Minkowski
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inequalities for the mixed p-harmonic quermassintegral are following (see [9]):
IfK,Le8" 0<i<nandp>1,then

Wi (K, L)"™" > W, (K)"~"PW,(L)~", (2.12)

with equality if and only if K and L are dilates. If K, L € 8™, 0 < ¢ < n and
p > 1, then

Wi(K$,L) /=0 > Wi(K) /(=) 4 W, (L)~»/ (=), (2.13)

with equality if and only if K and L are dilates.

3 Inequalities for p¢'"-dual mixed volumes

In this section, in order to derive the L,,-Minkowski inequality for the pqth-
dual mixed volumes and L,,-Brunn-Minkowski inequality for the ¢*"-dual vol-
umes, we need to the following definition and lemmas.

Definition 3.1 (The pg'"-dual mixed volumes) For K,L € X", ¢ # 0 and
p > 1, the pg'"-dual mixed volume of K and L, is denoted by p, (K, L), is
defined by

i) =2 [ (A ). )

When p = 1, the pg*®-dual mixed volume p,, ,(K, L) becomes the ¢! dual
mixed volume p, (K, L), and for ¢ # 0
prg(K)' 9

Hallo 1) = =0

[ R ) ).

When ¢ — 0, the pg*"-dual mixed volume tp.q(K, L) becomes the L, log-
volume i, o(K), and for p > 1

 olK) WOV
toolBo L) == /om(p(L)) dulu).

When p = 1, the L, log-volume p, o(K) becomes the log-volume pio(K).
Lemma 3.1 If K,L € 8" and p > 1, then (see e.g. [10])

Kt L - K (3.2)

as e — 0T,
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Lemma 3.2 If K, L€ X" qg#0 andp > 1, then

(e )| =~ [ (S . 33)

Proof From the hypotheses and by using Lemma 3.1, it is easy to observe that
i prg(K¥pe - L) — pig(K)

e—0 e
~ 1/ 1
= 1 lim (.[Sn—l p(K—l—p&‘ ' Lvu)qdu(u)) ‘- (fSnfl P(K7 U)qdﬂ(u)) Ja
~ uVaeso e
1 Va1 K¥pe- L) — p(K,u)l
o ([ )y [ PR AR
q|u| q gn—1 =0 Jgn-1 €

_ 1 (K)lfq/ lim (p(Kvu)ip +€p(L’u)*p)*q/ZD _p(K7u)qd‘u(u)
S

=—u
qlpl™

a0 [ () ey

n—1€—0 3

===
plul™ p(L)
O
Lemma 3.3 If K, L€ X", qg#0 andp > 1, then
, K) — pg(K+pe - AL
bipg(F, L) = p lim HalB) = talKve - AL) (3.4)
e—0 £

Proof This yields immediately from the Definition 3.1 and Lemma 3.1. [
Lemma 3.4 If K,L € 8" and p > 1, then for A € O(n) (see e.g. [10])

A(K¥pe- L) = AKFpe - AL. (3.5)
Lemma 3.5 If K, L € X", q+#0 and p > 1, then for A € O(n),
pp qg(AK, AL) = pp (K, L). (3.6)

Proof From (3.4) and (3.5), we have
tq(AK) — g A[(‘T';DE -AL)

tpq(AK,AL) = p;l_r}% -
i HaAK) — g (AGK Ty - )
e—0 £
e—0 e

= MP7Q(K7L)>
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where 11 is a spherical Lebesgue measure of S™"1. (Il

Lemma 3.6 Let K,Le X", ¢>0andp>1.

(1) If K and L are dilates, then K and K+ ,e - L are dilates.

(2) If K and K¥,¢- L are dilates, then K and L are dilates.

Proof Suppose exist a constant § > 0 such that L = §K, for ¢ > 0 and
p > 1, we have

p(KFpe- L) = [L+e67P]7VP . p(K, u).
On the other hand, the exist unique constant 17 > 0 such that
p(nK,u) = [1 4+ ed7P]~YP. p(K,u),
where 7 satisfies that
n=[1+e6"P7VP. p(K, u).

This shows that (1 — \)K +,¢- L =nkK.
For p > 1, suppose exist a constant § > 0 such that K+,e- L = §K. Then

(Cza) -7

This shows that K and L are homothetic. O

Theorem 3.1 (The L,,-Minkowski inequality for pg'"-dual volumes) If
K, LeX"™ q#0 andp > 1, then for g >0

pa (K, L) > g (K) 5" g (L) 5. (3.7)

When p is a spherical Lebesque measure of S"~1, equality holds if and only if
K and L are dilates. The inequality is reversed for q < 0.
Proof From (1.1), (3.1) and by using Hélder inequality for p > 0

(N
i) = P [ (2O gty tata)

Nq(K)liq

= T/Snfl(p(K)q)T(p(L)q)Tpdu(u)

(L

Pl ) )

Mq(K)TMq(L)7 .

]
alt
i~}

Qs
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When 1 is a spherical Lebesgue measure of S» 1, from the equality of Holder’s
inequality, it yields the equality holds if and only if K and L are dilates.
Obviously, the inequality is reversed for ¢ < 0. |

Theorem 3.2 (The L,,-Brunn-Minkowski inequality for ¢ dual volumes)
IfK,LeX", q#0,c>0 andp>1, then for ¢ >0

2

Hq(K‘T'pf'L)_g Eﬂq(K)_%‘F&?'#q(L)_ (3.8)

When 11 is a spherical Lebesgue measure of S, equality holds if and only if
K and L are dilates.

The inequality is reversed for g < 0.
Proof From (2.1), (3.1) and (3.7) , for p > 0, ¢ > 0 and any M € X"

g (M, KFpe - L) = 102 [ p(M)PH (p(K) P + ep(L)~7) dp(u)

= tali— <f5n (2498 p()tdpu(u) + ¢ fys (pp“‘f)))pp(M)qczu(u)>

= ppg(M, K) + € pp4(M, L)

™

> g (M) g ()75 4 & g (M) 55 iy (1)~ (3.9)

Putting M = K+,e- L in (3.9), and as p, (M, K+, -¢- L) = py(K+pe - L),
(3.8) easily follows.

From the equality of (3.7), it follows that the equality in (3.8) holds if and
only if K:f—pe - L and K, and K—T—pe - L and L are dilates, respectively. On
the other hand, from the equality of Theorem 3.1, this yields that when p is
a spherical Lebesgue measure of S"~1, the equality in (3.8) holds if and only
if K and L are dilates. Obviously. this inequality is reversed for ¢ < 0. O

The following inequalities are special cases of (3.7) and (3.8), respectively.
Corollay 3.1 (The L,-Minkowski inequality for ¢*'-dual volumes) If K, L €
K™ and q # 0, then g > 0

a+1

at1 _1

pq(K, L) 2 pig(K) " pug(L) s (3.10)
When 1 is a spherical Lebesgue measure of S™~ Y, equality holds if and only if
K and L are dilates. The inequality is reversed for ¢ < 0.

Corollary 3.2 (The L,-Brunn-Minkowski inequality for ¢* dual volumes) If
K, LeX"™ q#0 and e > 0, then for ¢ >0

1

pg(KFe-L)" > pg(K) v +e- pg(L)~

Q=

(3.11)
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When p is a spherical Lebesque measure of S"~1, equality holds if and only if
K and L are dilates. The inequality is reversed for q < 0.
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