sciendo
Ssciendo

Inequalities for $p q^{\text {th }}$-dual mixed volumes

Chang-Jian Zhao and Mihály Bencze

Abstract

In the paper, our main aim is to generalize the $q^{\text {th }}$ dual volume to L_{p} space, and introduce $p q^{\text {th }}$-dual mixed volume by calculating the first order variation of $q^{\text {th }}$ dual volumes. We establish the $L_{p q}$-Minkowski inequality for $p q^{\text {th }}$-dual mixed volumes and $L_{p q}$-Brunn-Minkowski inequality for the $q^{\text {th }}$-dual volumes, respectively. The new inequalities in special case yield some new dual inequalities for the $q^{\text {th }}$-dual volumes.

1 Introduction

The $q^{\text {th }}$ dual volume was defined by for $q \neq 0$ (see e.g. [1])

$$
\begin{equation*}
\mu_{q}(K)=\left(\frac{1}{|\mu|} \int_{S^{n-1}} \rho(K, u)^{q} d \mu(u)\right)^{1 / q} \tag{1.1}
\end{equation*}
$$

where K is a convex body (compact, convex subsets with nonempty interior) that contain the origin in their interiors, μ is a Borel measure on S^{n-1} and $\rho(K, u)$ is the radial function of K. The radial function of convex body K is defined by (see e.g. [2])

$$
\rho(K, u)=\max \{c \geq 0: c u \in K\}
$$

for $u \in S^{n-1}$.
Key Words: Log-volume, $q^{\text {th }}$ dual volume, $q^{\text {th }}$-dual mixed volume, $p q^{\text {th }}$-dual mixed volume.

2010 Mathematics Subject Classification: Primary 46E30; Secondary 52A40.
Received: 14.08.2022
Accepted: 20.12.2022

Recall that $\mu_{q}(K)$ is monotone nondecreasing and continuous in q. Define the log-volume of K with respect to μ by $\mu_{0}(K)=\lim _{q \rightarrow 0} \mu_{q}(K)$. Obviously, the log-volume $\mu(K)$ of K with respect to μ is the following (see also [3]):

$$
\begin{equation*}
\mu_{0}(K)=\exp \left(\frac{1}{|\mu|} \int_{S^{n-1}} \log \rho(K, u) d \mu(u)\right) \tag{1.2}
\end{equation*}
$$

The log-volume $\mu(K)$ of a convex body K with respect to μ plays a very important role in solving the Gauss image problem.

In the paper, our main aim is to generalize the $q^{\text {th }}$ dual volume to L_{p} space, and introduce the $p q^{\text {th }}$-dual mixed volume of convex bodies (contain the origin in their interiors) K and L, by calculating the first order variation of of the $q^{\text {th }}$ dual volumes with respect to the L_{p}-harmonic radial addition, is denoted by $\mu_{p, q}(K, L)$, is defined by

$$
\begin{equation*}
\mu_{p, q}(K, L)=\frac{\mu_{q}(K)^{1-q}}{|\mu|} \int_{S^{n-1}}\left(\frac{\rho(K)}{\rho(L)}\right)^{p} \rho(K)^{q} d \mu(u) \tag{1.3}
\end{equation*}
$$

where $p \geq 1$ and $q \neq 0$. Obviously, when $K=L$, the $p q^{\text {th }}$-dual mixed volume $\mu_{p, q}(K, L)$ becomes the $q^{\text {th }}$ dual volume $\mu_{q}(K)$. When $q \rightarrow 0$ and $K=L$, the $p q^{\text {th }}$-dual mixed volume $\mu_{p, q}(K, L)$ becomes the log-volume $\mu_{0}(K)$. Further, we establish the following $L_{p q}$-Minkowski, and Bunn-Minkowski inequalities for the $p q^{\text {th }}$-dual mixed volumes.
The $L_{p q}$-Minkowski inequality for $p q^{\text {th }}$-dual mixed volumes If K and L are convex bodies that contain the origin in their interiors, $q \neq 0$ and $p \geq 1$, then for $q>0$

$$
\begin{equation*}
\mu_{p, q}(K, L) \geq \mu_{q}(K)^{\frac{p+q}{q}} \mu_{q}(L)^{-\frac{p}{q}} . \tag{1.4}
\end{equation*}
$$

When μ is a spherical Lebesgue measure of S^{n-1}, equality holds if and only if K and L are dilates.

The inequality is reversed for $q<0$.
The $L_{p q}$-Brunn-Minkowski inequality for $q^{\text {th }}$ dual volumes If K and L are convex bodies that contain the origin in their interiors, $q \neq 0, \varepsilon>0$ and $p \geq 1$, then for $q>0$

$$
\begin{equation*}
\mu_{q}\left(K \widehat{+}_{p} \varepsilon \cdot L\right)^{-\frac{p}{q}} \geq \mu_{q}(K)^{-\frac{p}{q}}+\varepsilon \cdot \mu_{q}(L)^{-\frac{p}{q}} \tag{1.5}
\end{equation*}
$$

When μ is a spherical Lebesgue measure of S^{n-1}, equality holds if and only if K and L are dilates, and where $\widehat{+}_{p}$ is the L_{p}-harmonic radial addition (see Section 2).

The inequality is reversed for $q<0$.

2 Notations and Preliminaries

A body in the n-dimensional Euclidean space \mathbb{R}^{n} is a compact set equal to the closure of its interior. For a compact set $K \subset \mathbb{R}^{n}$, we denote by $V(K)$ the (n-dimensional) Lebesgue measure of K, called the volume of K. The unit ball in \mathbb{R}^{n} and its surface are denoted by B and S^{n-1}, respectively. Let \mathcal{K}^{n} denote the class of nonempty compact convex subsets containing the origin in their interiors in \mathbb{R}^{n}. The radial function sssociated with a compact subset K of \mathbb{R}^{n}, which is star-shaped with respect to the origin and contains the origin, is $\rho(K, \cdot): S^{n-1} \rightarrow[0, \infty)$. If $\rho(K, \cdot)$ is positive and continuous, K will be called a star body. Let \mathcal{S}^{n} denote the set of star bodies about the origin in \mathbb{R}^{n}. Two star bodies K and L are dilates if $\rho(K, u) / \rho(L, u)$ is independent of $u \in S^{n-1}$. For $K, L \in \mathfrak{S}^{n}$, the radial Hausdorff metric is given by (see e.g. [4])

$$
\tilde{\delta}(K, L)=|\rho(K, u)-\rho(L, u)|_{\infty}
$$

2.1 L_{p}-harmonic radial addition

The L_{p}-harmonic radial addition was defined by Lutwak [5]: If K, L are star bodies, the L_{p}-harmonic radial addition, defined by

$$
\begin{equation*}
\rho\left(K \widehat{+}_{p} L, x\right)^{-p}=\rho(K, x)^{-p}+\rho(L, x)^{-p} \tag{2.1}
\end{equation*}
$$

for $p \geq 1$ and $x \in \mathbb{R}^{n}$. The L_{p}-harmonic radial addition of convex bodies was first studied by Firey [6]. The operation of the L_{p}-harmonic radial addition and L_{p}-dual Minkowski, Brunn-Minkwski inequalities are the basic concept and inequalities in the L_{p}-dual Brunn-Minkowski theory.

$2.2 \quad L_{p}$-dual mixed volume

The dual mixed volume $\widetilde{V}_{-1}(K, L)$ of star bodies K and L is defined by ([5])

$$
\begin{equation*}
\tilde{V}_{-1}(K, L)=\lim _{\varepsilon \rightarrow 0^{+}} \frac{V(K)-V(K \widehat{+} \varepsilon \cdot L)}{\varepsilon} \tag{2.2}
\end{equation*}
$$

where $\widehat{+}$ is the harmonic addition. The following is a integral representation for the dual mixed volume $\widetilde{V}_{-1}(K, L)$:

$$
\begin{equation*}
\widetilde{V}_{-1}(K, L)=\frac{1}{n} \int_{S^{n-1}} \rho(K, u)^{n+1} \rho(L, u)^{-1} d S(u) \tag{2.3}
\end{equation*}
$$

The dual Minkowski inequality for the dual mixed volume states that

$$
\begin{equation*}
\widetilde{V}_{-1}(K, L)^{n} \geq V(K)^{n+1} V(L)^{-1} \tag{2.4}
\end{equation*}
$$

with equality if and only if K and L are dilates. (see ([7]))
The dual Brunn-Minkowski inequality for the harmonic addition (due to Firey [6]) states that

$$
\begin{equation*}
V(K \widehat{+} L)^{-1 / n} \geq V(K)^{-1 / n}+V(L)^{-1 / n} \tag{2.5}
\end{equation*}
$$

with equality if and only if K and L are dilates.
The L_{p}-dual mixed volume $\widetilde{V}_{-p}(K, L)$ of K and L is defined by ([5])

$$
\begin{equation*}
\widetilde{V}_{-p}(K, L)=-\frac{p}{n} \lim _{\varepsilon \rightarrow 0^{+}} \frac{V\left(K \widehat{+}_{p} \varepsilon \cdot L\right)-V(K)}{\varepsilon} \tag{2.6}
\end{equation*}
$$

where $K, L \in \mathfrak{S}^{n}$ and $p \geq 1$.
The following is an integral representation for the L_{p}-dual mixed volume: For $K, L \in \mathfrak{S}^{n}$ and $p \geq 1$,

$$
\begin{equation*}
\widetilde{V}_{-p}(K, L)=\frac{1}{n} \int_{S^{n-1}} \rho(K, u)^{n+p} \rho(L, u)^{-p} d S(u) \tag{2.7}
\end{equation*}
$$

L_{p}-dual Minkowski and Brunn-Minkowski inequalities were established by Lutwak [5]: If $K, L \in \mathcal{S}^{n}$ and $p \geq 1$, then

$$
\begin{equation*}
\widetilde{V}_{-p}(K, L)^{n} \geq V(K)^{n+p} V(L)^{-p} \tag{2.8}
\end{equation*}
$$

with equality if and only if K and L are dilates, and

$$
\begin{equation*}
V\left(K \widehat{+}_{p} L\right)^{-p / n} \geq V(K)^{-p / n}+V(L)^{-p / n} \tag{2.9}
\end{equation*}
$$

with equality if and only if K and L are dilates.

2.3 $\quad L_{p}$-mixed harmonic quermassintegral

From (2.1), it is easy to see that if $K, L \in \mathcal{S}^{n}, 0 \leq i<n$ and $p \geq 1$, then

$$
\begin{equation*}
-\frac{p}{n-i} \lim _{\varepsilon \rightarrow 0^{+}} \frac{\widetilde{W}_{i}\left(K \hat{+}_{p} \varepsilon \cdot L\right)-\widetilde{W}_{i}(L)}{\varepsilon}=\frac{1}{n} \int_{S^{n-1}} \rho(K . u)^{n-i+p} \rho(L . u)^{-p} d S(u) . \tag{2.10}
\end{equation*}
$$

Let $K, L \in \mathcal{S}^{n}, 0 \leq i<n$ and $p \geq 1$, the mixed p-harmonic quermassintegral of star K and L, denoted by $W_{-p, i}(K, L)$, defined by (see [8])

$$
\begin{equation*}
\widetilde{W}_{-p, i}(K, L)=\frac{1}{n} \int_{S^{n-1}} \rho(K, u)^{n-i+p} \rho(L, u)^{-p} d S(u) \tag{2.11}
\end{equation*}
$$

Obviously, when $K=L$, the p-harmonic quermassintegral $\widetilde{W}_{-p, i}(K, L)$ becomes the dual quermassintegral $\widetilde{W}_{i}(K)$. The Minkowski and Brunn-Minkowski
inequalities for the mixed p-harmonic quermassintegral are following (see [9]): If $K, L \in \mathcal{S}^{n}, 0 \leq i<n$ and $p \geq 1$, then

$$
\begin{equation*}
\widetilde{W}_{-p, i}(K, L)^{n-i} \geq \widetilde{W}_{i}(K)^{n-i+p} \widetilde{W}_{i}(L)^{-p} \tag{2.12}
\end{equation*}
$$

with equality if and only if K and L are dilates. If $K, L \in \mathcal{S}^{n}, 0 \leq i<n$ and $p \geq 1$, then

$$
\begin{equation*}
\widetilde{W}_{i}\left(K \widehat{+}_{p} L\right)^{-p /(n-i)} \geq \widetilde{W}_{i}(K)^{-p /(n-i)}+\widetilde{W}_{i}(L)^{-p /(n-i)} \tag{2.13}
\end{equation*}
$$

with equality if and only if K and L are dilates.

3 Inequalities for $p q^{\text {th }}$-dual mixed volumes

In this section, in order to derive the $L_{p q}$-Minkowski inequality for the $p q^{\text {th }}-$ dual mixed volumes and $L_{p q}$-Brunn-Minkowski inequality for the $q^{\text {th }}$-dual volumes, we need to the following definition and lemmas.

Definition 3.1 (The $p q^{\text {th }}$-dual mixed volumes) For $K, L \in \mathcal{K}^{n}, q \neq 0$ and $p \geq 1$, the $p q^{\text {th }}$-dual mixed volume of K and L, is denoted by $\mu_{p, q}(K, L)$, is defined by

$$
\begin{equation*}
\mu_{p, q}(K, L)=\frac{\mu_{q}(K)^{1-q}}{|\mu|} \int_{S^{n-1}}\left(\frac{\rho(K)}{\rho(L)}\right)^{p} \rho(K)^{q} d \mu(u) \tag{3.1}
\end{equation*}
$$

When $p=1$, the $p q^{\text {th }}$-dual mixed volume $\mu_{p, q}(K, L)$ becomes the $q^{\text {th }}$ dual mixed volume $\mu_{q}(K, L)$, and for $q \neq 0$

$$
\mu_{q}(K, L)=\frac{\mu_{q}(K)^{1-q}}{|\mu|} \int_{S^{n-1}} \rho(K)^{q+1} \rho(L)^{-1} d \mu(u)
$$

When $q \rightarrow 0$, the $p q^{\text {th }}$-dual mixed volume $\mu_{p, q}(K, L)$ becomes the $L_{p} \log$ volume $\mu_{p, 0}(K)$, and for $p \geq 1$

$$
\mu_{p, 0}(K, L)=\frac{\mu_{0}(K)}{|\mu|} \int_{S^{n-1}}\left(\frac{\rho(K)}{\rho(L)}\right)^{p} d \mu(u)
$$

When $p=1$, the L_{p} log-volume $\mu_{p, 0}(K)$ becomes the log-volume $\mu_{0}(K)$.
Lemma 3.1 If $K, L \in \mathcal{S}^{n}$ and $p \geq 1$, then (see e.g. [10])

$$
\begin{equation*}
K \widehat{+}_{p} \varepsilon \cdot L \rightarrow K \tag{3.2}
\end{equation*}
$$

as $\varepsilon \rightarrow 0^{+}$.

Lemma 3.2 If $K, L \in \mathcal{K}^{n}, q \neq 0$ and $p \geq 1$, then

$$
\begin{equation*}
\left.d \mu_{q}\left(K \widehat{+}_{p} \varepsilon \cdot L\right)\right|_{\varepsilon=0}=-\frac{\mu_{p}(K)^{1-q}}{p|\mu|} \int_{S^{n-1}}\left(\frac{\rho(K)}{\rho(L)}\right)^{p} \rho(K)^{q} d \mu(u) \tag{3.3}
\end{equation*}
$$

Proof From the hypotheses and by using Lemma 3.1, it is easy to observe that

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0} \frac{\mu_{q}\left(K \widehat{+}_{p} \varepsilon \cdot L\right)-\mu_{q}(K)}{\varepsilon} \\
& =\frac{1}{|\mu|^{1 / q}} \lim _{\varepsilon \rightarrow 0} \frac{\left(\int_{S^{n-1}} \rho\left(K \widehat{+}_{p} \varepsilon \cdot L, u\right)^{q} d \mu(u)\right)^{1 / q}-\left(\int_{S^{n-1}} \rho(K, u)^{q} d \mu(u)\right)^{1 / q}}{\varepsilon} \\
& =\frac{1}{q|\mu|^{1 / q}}\left(\int_{S^{n-1}} \rho(K, u)^{q} d \mu(u)\right)^{1 / q-1} \lim _{\varepsilon \rightarrow 0} \int_{S^{n-1}} \frac{\rho\left(K \widehat{+}_{p} \varepsilon \cdot L, u\right)^{q}-\rho(K, u)^{q}}{\varepsilon} d \mu(u) \\
& =\frac{1}{q|\mu|} \mu_{q}(K)^{1-q} \int_{S^{n-1}} \lim _{\varepsilon \rightarrow 0} \frac{\left(\rho(K, u)^{-p}+\varepsilon \rho(L, u)^{-p}\right)^{-q / p}-\rho(K, u)^{q}}{\varepsilon} d \mu(u) \\
& =-\frac{1}{p|\mu|} \mu_{q}(K)^{1-q} \int_{S^{n-1}}\left(\frac{\rho(K)}{\rho(L)}\right)^{p} \rho(K)^{q} d \mu(u) .
\end{aligned}
$$

Lemma 3.3 If $K, L \in \mathcal{K}^{n}, q \neq 0$ and $p \geq 1$, then

$$
\begin{equation*}
\mu_{p, q}(K, L)=p \lim _{\varepsilon \rightarrow 0} \frac{\mu_{q}(K)-\mu_{q}\left(K \widehat{+}_{p} \varepsilon \cdot A L\right)}{\varepsilon} \tag{3.4}
\end{equation*}
$$

Proof This yields immediately from the Definition 3.1 and Lemma 3.1.
Lemma 3.4 If $K, L \in \mathcal{S}^{n}$ and $p \geq 1$, then for $A \in O(n)$ (see e.g. [10])

$$
\begin{equation*}
A\left(K \widehat{+}_{p} \varepsilon \cdot L\right)=A K \widehat{+}_{p} \varepsilon \cdot A L \tag{3.5}
\end{equation*}
$$

Lemma 3.5 If $K, L \in \mathcal{K}^{n}, q \neq 0$ and $p \geq 1$, then for $A \in O(n)$,

$$
\begin{equation*}
\mu_{p, q}(A K, A L)=\mu_{p, q}(K, L) \tag{3.6}
\end{equation*}
$$

Proof From (3.4) and (3.5), we have

$$
\begin{aligned}
\mu_{p, q}(A K, A L) & =p \lim _{\varepsilon \rightarrow 0} \frac{\mu_{q}(A K)-\mu_{q}\left(A K \widehat{+_{p}} \varepsilon \cdot A L\right)}{\varepsilon} \\
& =p \lim _{\varepsilon \rightarrow 0} \frac{\mu_{q}(A K)-\mu_{q}\left(A\left(K \widehat{+}_{p} \varepsilon \cdot L\right)\right)}{\varepsilon} \\
& =p \lim _{\varepsilon \rightarrow 0} \frac{\mu_{q}(K)-\mu_{q}\left(K \widehat{+_{p}} \varepsilon \cdot L\right)}{\varepsilon} \\
& =\mu_{p, q}(K, L),
\end{aligned}
$$

where μ is a spherical Lebesgue measure of S^{n-1}.
Lemma 3.6 Let $K, L \in \mathcal{K}^{n}, \varepsilon>0$ and $p \geq 1$.
(1) If K and L are dilates, then K and $K \widehat{+}_{p} \varepsilon \cdot L$ are dilates.
(2) If K and $K \widehat{+}_{p} \varepsilon \cdot L$ are dilates, then K and L are dilates.

Proof Suppose exist a constant $\delta>0$ such that $L=\delta K$, for $\varepsilon>0$ and $p \geq 1$, we have

$$
\rho\left(K \widehat{+}_{p} \varepsilon \cdot L\right)=\left[1+\varepsilon \delta^{-p}\right]^{-1 / p} \cdot \rho(K, u)
$$

On the other hand, the exist unique constant $\eta>0$ such that

$$
\rho(\eta K, u)=\left[1+\varepsilon \delta^{-p}\right]^{-1 / p} \cdot \rho(K, u)
$$

where η satisfies that

$$
\eta=\left[1+\varepsilon \delta^{-p}\right]^{-1 / p} \cdot \rho(K, u)
$$

This shows that $(1-\lambda) K+_{p} \varepsilon \cdot L=\eta K$.
For $p \geq 1$, suppose exist a constant $\delta>0$ such that $K \widehat{+}_{p} \varepsilon \cdot L=\delta K$. Then

$$
\left(\frac{\rho(K, u)}{\rho(L, u)}\right)^{-p}=\frac{\varepsilon}{\delta^{-p}-1}
$$

This shows that K and L are homothetic.
Theorem 3.1 (The $L_{p q}$-Minkowski inequality for $p q^{\text {th }}$-dual volumes) If $K, L \in \mathcal{K}^{n}, q \neq 0$ and $p \geq 1$, then for $q>0$

$$
\begin{equation*}
\mu_{p, q}(K, L) \geq \mu_{q}(K)^{\frac{p+q}{q}} \mu_{q}(L)^{-\frac{p}{q}} \tag{3.7}
\end{equation*}
$$

When μ is a spherical Lebesgue measure of S^{n-1}, equality holds if and only if K and L are dilates. The inequality is reversed for $q<0$.

Proof From (1.1), (3.1) and by using Hölder inequality for $p>0$

$$
\begin{aligned}
\mu_{p, q}(K, L) & =\frac{\mu_{q}(K)^{1-q}}{|\mu|} \int_{S^{n-1}}\left(\frac{\rho(K)}{\rho(L)}\right)^{p} \rho(K)^{q} d \mu(u) \\
& =\frac{\mu_{q}(K)^{1-q}}{|\mu|} \int_{S^{n-1}}\left(\rho(K)^{q}\right)^{\frac{p+q}{q}}\left(\rho(L)^{q}\right)^{\frac{-p}{q}} d \mu(u) \\
& \geq \frac{\mu_{q}(K)^{1-q}}{|\mu|}\left(\int_{S^{n-1}} \rho(K)^{q} d \mu(u)\right)^{\frac{p+q}{q}}\left(\int_{S^{n-1}} \rho(L)^{q} d \mu(u)\right)^{-\frac{p}{q}} \\
& =\mu_{q}(K)^{\frac{p+q}{q}} \mu_{q}(L)^{-\frac{p}{q}}
\end{aligned}
$$

When μ is a spherical Lebesgue measure of S^{n-1}, from the equality of Hölder's inequality, it yields the equality holds if and only if K and L are dilates. Obviously, the inequality is reversed for $q<0$.
Theorem 3.2 (The $L_{p q}$-Brunn-Minkowski inequality for $q^{t h}$ dual volumes) If $K, L \in \mathcal{K}^{n}, q \neq 0, \varepsilon>0$ and $p \geq 1$, then for $q>0$

$$
\begin{equation*}
\mu_{q}\left(K \widehat{+}_{p} \varepsilon \cdot L\right)^{-\frac{p}{q}} \geq \mu_{q}(K)^{-\frac{p}{q}}+\varepsilon \cdot \mu_{q}(L)^{-\frac{p}{q}} \tag{3.8}
\end{equation*}
$$

When μ is a spherical Lebesgue measure of S^{n-1}, equality holds if and only if K and L are dilates.

The inequality is reversed for $q<0$.
Proof From (2.1), (3.1) and (3.7), for $p>0, \varepsilon>0$ and any $M \in \mathcal{K}^{n}$

$$
\begin{gather*}
\mu_{p, q}\left(M, K \hat{+}_{p} \varepsilon \cdot L\right)=\frac{\mu_{q}(K)^{1-q}}{|\mu|} \int_{S^{n-1}} \rho(M)^{p+q}\left(\rho(K)^{-p}+\varepsilon \rho(L)^{-p}\right) d \mu(u) \\
=\frac{\mu_{q}(M)^{1-q}}{|\mu|}\left(\int_{S^{n-1}}\left(\frac{\rho(M)}{\rho(K)}\right)^{p} \rho(K)^{q} d \mu(u)+\varepsilon \cdot \int_{S^{n-1}}\left(\frac{\rho(M)}{\rho(L)}\right)^{p} \rho(M)^{q} d \mu(u)\right) \\
=\mu_{p, q}(M, K)+\varepsilon \cdot \mu_{p, q}(M, L) \\
\geq \mu_{q}(M)^{\frac{p+q}{q}} \mu_{q}(K)^{-\frac{p}{q}}+\varepsilon \cdot \mu_{q}(M)^{\frac{p+q}{q}} \mu_{q}(L)^{-\frac{p}{q}} . \tag{3.9}
\end{gather*}
$$

Putting $M=K \widehat{+}_{p} \varepsilon \cdot L$ in (3.9), and as $\mu_{p, q}\left(M, K \widehat{+}_{p} \varepsilon \cdot \varepsilon \cdot L\right)=\mu_{q}\left(K \widehat{+}_{p} \varepsilon \cdot L\right)$, (3.8) easily follows.

From the equality of (3.7), it follows that the equality in (3.8) holds if and only if $K \widehat{+}_{p} \varepsilon \cdot L$ and K, and $K \widehat{+}_{p} \varepsilon \cdot L$ and L are dilates, respectively. On the other hand, from the equality of Theorem 3.1, this yields that when μ is a spherical Lebesgue measure of S^{n-1}, the equality in (3.8) holds if and only if K and L are dilates. Obviously. this inequality is reversed for $q<0$.

The following inequalities are special cases of (3.7) and (3.8), respectively. Corollay 3.1 (The L_{q}-Minkowski inequality for $q^{\text {th }}$-dual volumes) If $K, L \in$ \mathcal{K}^{n} and $q \neq 0$, then $q>0$

$$
\begin{equation*}
\mu_{q}(K, L) \geq \mu_{q}(K)^{\frac{q+1}{q}} \mu_{q}(L)^{-\frac{1}{q}} \tag{3.10}
\end{equation*}
$$

When μ is a spherical Lebesgue measure of S^{n-1}, equality holds if and only if K and L are dilates. The inequality is reversed for $q<0$.
Corollary 3.2 (The L_{q}-Brunn-Minkowski inequality for $q^{\text {th }}$ dual volumes) If $K, L \in \mathcal{K}^{n}, q \neq 0$ and $\varepsilon>0$, then for $q>0$

$$
\begin{equation*}
\mu_{q}(K \widehat{+} \varepsilon \cdot L)^{-\frac{1}{q}} \geq \mu_{q}(K)^{-\frac{1}{q}}+\varepsilon \cdot \mu_{q}(L)^{-\frac{1}{q}} \tag{3.11}
\end{equation*}
$$

When μ is a spherical Lebesgue measure of S^{n-1}, equality holds if and only if K and L are dilates. The inequality is reversed for $q<0$.

Acknowledgements. The research is supported by the National Natural Science Foundation of China (11371334, 10971205).

References

[1] K. J. Böröczky, E. Lutwak, D. Yang, G. Zhang and Y. Zhao, The Gauss image problem, Comm. Pure Appl. Math., 73 (7) (2020), 1406-1452.
[2] R. J. Gardner, Geometric Tomography, 2nd edn. Encyclopedia of Mathematics and Its Applications, vol. 58. Cambridge University Press, New York, 2006.
[3] D. Lai, H, Jin, The dual BrunnMinkowski inequality for log-volume of star bodies, J. Inequal. Appl., 2021 (2021): 112.
[4] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge University Press, 2014.
[5] E. Lutwak, The Brunn-Minkowski-Firey theory. II. Affine and geominimal surface areas. Adv. Math., 118 (1996), 244-294.
[6] W. J. Firey, Polar means of convex bodies and a dual to the BrunnMinkowski theorem, Canad. J. Math., 13 (1961), 444-453.
[7] E. Lutwak, Centroid bodies and dual mixed volumes, Proc. London Math. Soc., 60 (1990), 365-391.
[8] W. Wang, G. Leng, L_{p}-dual mixed quermassintegrals, Indian J. Pure Appl. Math., 36 (2005), 177-188.
[9] N. S. Trudinger, Isoperimetric inequalities for quermassintegrals, Ann. Inst. Henri Poincaré, 11 (1994), 411-425.
[10] C.-J. Zhao, Orlicz dual affine quermassintegrals, Forum Math., 30 (2018), 929-945.

Chang-Jian ZHAO
Department of Mathematics,
China Jiliang University,
Hangzhou 310018, P. R. China.
Email: chjzhao@163.com chjzhao@cjlu.edu.cn

Mihály BENCZE
Hărmanului street 6, 505600 Săcele-Négyfalu, Braşov, Romania.
Email: benczemihaly@gmail.com

