

Inequalities for pq^{th} -dual mixed volumes

Chang-Jian Zhao and Mihály Bencze

Abstract

In the paper, our main aim is to generalize the q^{th} dual volume to In the paper, our main and is to generalize the q^{-} dual volume to L_p space, and introduce pq^{th} -dual mixed volume by calculating the first order variation of q^{th} dual volumes. We establish the L_{pq} -Minkowski inequality for pq^{th} -dual mixed volumes and L_{pq} -Brunn-Minkowski inequality for the q^{th} -dual volumes, respectively. The new inequalities in special case yield some new dual inequalities for the q^{th} -dual volumes.

Introduction 1

The q^{th} dual volume was defined by for $q \neq 0$ (see e.g. [1])

$$\mu_q(K) = \left(\frac{1}{|\mu|} \int_{S^{n-1}} \rho(K, u)^q d\mu(u)\right)^{1/q},$$
(1.1)

where K is a convex body (compact, convex subsets with nonempty interior) that contain the origin in their interiors, μ is a Borel measure on S^{n-1} and $\rho(K, u)$ is the radial function of K. The radial function of convex body K is defined by (see e.g. [2])

$$\rho(K, u) = \max\{c \ge 0 : cu \in K\},\$$

for $u \in S^{n-1}$.

Key Words: Log-volume, q^{th} dual volume, q^{th} -dual mixed volume, pq^{th} -dual mixed volume. 2010 Mathematics Subject Classification: Primary 46E30; Secondary 52A40.

Received: 14.08.2022

Accepted: 20.12.2022

Recall that $\mu_q(K)$ is monotone nondecreasing and continuous in q. Define the log-volume of K with respect to μ by $\mu_0(K) = \lim_{q \to 0} \mu_q(K)$. Obviously, the log-volume $\mu(K)$ of K with respect to μ is the following (see also [3]):

$$\mu_0(K) = \exp\left(\frac{1}{|\mu|} \int_{S^{n-1}} \log \rho(K, u) d\mu(u)\right).$$
(1.2)

The log-volume $\mu(K)$ of a convex body K with respect to μ plays a very important role in solving the Gauss image problem.

In the paper, our main aim is to generalize the q^{th} dual volume to L_p space, and introduce the pq^{th} -dual mixed volume of convex bodies (contain the origin in their interiors) K and L, by calculating the first order variation of of the q^{th} dual volumes with respect to the L_p -harmonic radial addition, is denoted by $\mu_{p,q}(K, L)$, is defined by

$$\mu_{p,q}(K,L) = \frac{\mu_q(K)^{1-q}}{|\mu|} \int_{S^{n-1}} \left(\frac{\rho(K)}{\rho(L)}\right)^p \rho(K)^q d\mu(u).$$
(1.3)

where $p \geq 1$ and $q \neq 0$. Obviously, when K = L, the pq^{th} -dual mixed volume $\mu_{p,q}(K,L)$ becomes the q^{th} dual volume $\mu_q(K)$. When $q \to 0$ and K = L, the pq^{th} -dual mixed volume $\mu_{p,q}(K,L)$ becomes the log-volume $\mu_0(K)$. Further, we establish the following L_{pq} -Minkowski, and Bunn-Minkowski inequalities for the pq^{th} -dual mixed volumes.

The L_{pq} -Minkowski inequality for pq^{th} -dual mixed volumes If K and L are convex bodies that contain the origin in their interiors, $q \neq 0$ and $p \geq 1$, then for q > 0

$$\mu_{p,q}(K,L) \ge \mu_q(K)^{\frac{p+q}{q}} \mu_q(L)^{-\frac{p}{q}}.$$
(1.4)

When μ is a spherical Lebesgue measure of S^{n-1} , equality holds if and only if K and L are dilates.

The inequality is reversed for q < 0.

The L_{pq} **-Brunn-Minkowski inequality for** q^{th} **dual volumes** If K and L are convex bodies that contain the origin in their interiors, $q \neq 0$, $\varepsilon > 0$ and $p \geq 1$, then for q > 0

$$\mu_q (K \widehat{+}_p \varepsilon \cdot L)^{-\frac{p}{q}} \ge \mu_q (K)^{-\frac{p}{q}} + \varepsilon \cdot \mu_q (L)^{-\frac{p}{q}}.$$
(1.5)

When μ is a spherical Lebesgue measure of S^{n-1} , equality holds if and only if K and L are dilates, and where $\hat{+}_p$ is the L_p -harmonic radial addition (see Section 2).

The inequality is reversed for q < 0.

2 Notations and Preliminaries

A body in the *n*-dimensional Euclidean space \mathbb{R}^n is a compact set equal to the closure of its interior. For a compact set $K \subset \mathbb{R}^n$, we denote by V(K) the (*n*-dimensional) Lebesgue measure of K, called the volume of K. The unit ball in \mathbb{R}^n and its surface are denoted by B and S^{n-1} , respectively. Let \mathcal{K}^n denote the class of nonempty compact convex subsets containing the origin in their interiors in \mathbb{R}^n . The radial function sssociated with a compact subset Kof \mathbb{R}^n , which is star-shaped with respect to the origin and contains the origin, is $\rho(K, \cdot) : S^{n-1} \to [0, \infty)$. If $\rho(K, \cdot)$ is positive and continuous, K will be called a star body. Let S^n denote the set of star bodies about the origin in \mathbb{R}^n . Two star bodies K and L are dilates if $\rho(K, u)/\rho(L, u)$ is independent of $u \in S^{n-1}$. For $K, L \in S^n$, the radial Hausdorff metric is given by (see e.g. [4])

$$\delta(K,L) = |\rho(K,u) - \rho(L,u)|_{\infty}.$$

2.1 L_p -harmonic radial addition

The L_p -harmonic radial addition was defined by Lutwak [5]: If K, L are star bodies, the L_p -harmonic radial addition, defined by

$$\rho(K\hat{+}_pL, x)^{-p} = \rho(K, x)^{-p} + \rho(L, x)^{-p}, \qquad (2.1)$$

for $p \geq 1$ and $x \in \mathbb{R}^n$. The L_p -harmonic radial addition of convex bodies was first studied by Firey [6]. The operation of the L_p -harmonic radial addition and L_p -dual Minkowski, Brunn-Minkwski inequalities are the basic concept and inequalities in the L_p -dual Brunn-Minkowski theory.

2.2 L_p -dual mixed volume

The dual mixed volume $\widetilde{V}_{-1}(K, L)$ of star bodies K and L is defined by ([5])

$$\widetilde{V}_{-1}(K,L) = \lim_{\varepsilon \to 0^+} \frac{V(K) - V(K + \varepsilon \cdot L)}{\varepsilon}, \qquad (2.2)$$

where $\hat{+}$ is the harmonic addition. The following is a integral representation for the dual mixed volume $\widetilde{V}_{-1}(K, L)$:

$$\widetilde{V}_{-1}(K,L) = \frac{1}{n} \int_{S^{n-1}} \rho(K,u)^{n+1} \rho(L,u)^{-1} dS(u).$$
(2.3)

The dual Minkowski inequality for the dual mixed volume states that

$$\widetilde{V}_{-1}(K,L)^n \ge V(K)^{n+1}V(L)^{-1},$$
(2.4)

with equality if and only if K and L are dilates. (see ([7]))

The dual Brunn-Minkowski inequality for the harmonic addition (due to Firey [6]) states that

$$V(K + L)^{-1/n} \ge V(K)^{-1/n} + V(L)^{-1/n},$$
(2.5)

with equality if and only if K and L are dilates.

The L_p -dual mixed volume $V_{-p}(K, L)$ of K and L is defined by ([5])

$$\widetilde{V}_{-p}(K,L) = -\frac{p}{n} \lim_{\varepsilon \to 0^+} \frac{V(K + p\varepsilon \cdot L) - V(K)}{\varepsilon}, \qquad (2.6)$$

where $K, L \in \mathbb{S}^n$ and $p \ge 1$.

The following is an integral representation for the L_p -dual mixed volume: For $K, L \in \mathbb{S}^n$ and $p \ge 1$,

$$\widetilde{V}_{-p}(K,L) = \frac{1}{n} \int_{S^{n-1}} \rho(K,u)^{n+p} \rho(L,u)^{-p} dS(u).$$
(2.7)

 L_p -dual Minkowski and Brunn-Minkowski inequalities were established by Lutwak [5]: If $K, L \in S^n$ and $p \ge 1$, then

$$\widetilde{V}_{-p}(K,L)^n \ge V(K)^{n+p}V(L)^{-p},$$
(2.8)

with equality if and only if K and L are dilates, and

$$V(K\hat{+}_p L)^{-p/n} \ge V(K)^{-p/n} + V(L)^{-p/n},$$
(2.9)

with equality if and only if K and L are dilates.

2.3 L_p -mixed harmonic quermassintegral

From (2.1), it is easy to see that if $K, L \in \mathbb{S}^n$, $0 \le i < n$ and $p \ge 1$, then

$$-\frac{p}{n-i}\lim_{\varepsilon\to 0^+}\frac{\widetilde{W}_i(K\widehat{+}_p\varepsilon\cdot L)-\widetilde{W}_i(L)}{\varepsilon} = \frac{1}{n}\int_{S^{n-1}}\rho(K.u)^{n-i+p}\rho(L.u)^{-p}dS(u).$$
(2.10)

Let $K, L \in \mathbb{S}^n$, $0 \leq i < n$ and $p \geq 1$, the mixed *p*-harmonic quermassintegral of star K and L, denoted by $\widetilde{W}_{-p,i}(K, L)$, defined by (see [8])

$$\widetilde{W}_{-p,i}(K,L) = \frac{1}{n} \int_{S^{n-1}} \rho(K,u)^{n-i+p} \rho(L,u)^{-p} dS(u).$$
(2.11)

Obviously, when K = L, the *p*-harmonic quermassintegral $\widetilde{W}_{-p,i}(K,L)$ becomes the dual quermassintegral $\widetilde{W}_i(K)$. The Minkowski and Brunn-Minkowski inequalities for the mixed *p*-harmonic quermass integral are following (see [9]): If $K, L \in \mathbb{S}^n, 0 \le i < n$ and $p \ge 1$, then

$$\widetilde{W}_{-p,i}(K,L)^{n-i} \ge \widetilde{W}_i(K)^{n-i+p}\widetilde{W}_i(L)^{-p}, \qquad (2.12)$$

with equality if and only if K and L are dilates. If $K, L \in \mathbb{S}^n, 0 \le i < n$ and $p \ge 1$, then

$$\widetilde{W}_i(K\widehat{+}_p L)^{-p/(n-i)} \ge \widetilde{W}_i(K)^{-p/(n-i)} + \widetilde{W}_i(L)^{-p/(n-i)},$$
(2.13)

with equality if and only if K and L are dilates.

3 Inequalities for *pq*th-dual mixed volumes

In this section, in order to derive the L_{pq} -Minkowski inequality for the pq^{th} dual mixed volumes and L_{pq} -Brunn-Minkowski inequality for the q^{th} -dual volumes, we need to the following definition and lemmas.

Definition 3.1 (The pq^{th} -dual mixed volumes) For $K, L \in \mathcal{K}^n, q \neq 0$ and $p \geq 1$, the pq^{th} -dual mixed volume of K and L, is denoted by $\mu_{p,q}(K,L)$, is defined by

$$\mu_{p,q}(K,L) = \frac{\mu_q(K)^{1-q}}{|\mu|} \int_{S^{n-1}} \left(\frac{\rho(K)}{\rho(L)}\right)^p \rho(K)^q d\mu(u).$$
(3.1)

When p = 1, the pq^{th} -dual mixed volume $\mu_{p,q}(K, L)$ becomes the q^{th} dual mixed volume $\mu_q(K, L)$, and for $q \neq 0$

$$\mu_q(K,L) = \frac{\mu_q(K)^{1-q}}{|\mu|} \int_{S^{n-1}} \rho(K)^{q+1} \rho(L)^{-1} d\mu(u).$$

When $q \to 0$, the pq^{th} -dual mixed volume $\mu_{p,q}(K,L)$ becomes the L_p log-volume $\mu_{p,0}(K)$, and for $p \ge 1$

$$\mu_{p,0}(K,L) = \frac{\mu_0(K)}{|\mu|} \int_{S^{n-1}} \left(\frac{\rho(K)}{\rho(L)}\right)^p d\mu(u).$$

When p = 1, the L_p log-volume $\mu_{p,0}(K)$ becomes the log-volume $\mu_0(K)$.

Lemma 3.1 If $K, L \in \mathbb{S}^n$ and $p \ge 1$, then (see e.g. [10])

$$K \widehat{+}_p \varepsilon \cdot L \to K \tag{3.2}$$

as $\varepsilon \to 0^+$.

Lemma 3.2 If $K, L \in \mathcal{K}^n$, $q \neq 0$ and $p \geq 1$, then

$$d\mu_q(K\hat{+}_p\varepsilon\cdot L)\Big|_{\varepsilon=0} = -\frac{\mu_p(K)^{1-q}}{p|\mu|} \int_{S^{n-1}} \left(\frac{\rho(K)}{\rho(L)}\right)^p \rho(K)^q d\mu(u).$$
(3.3)

Proof From the hypotheses and by using Lemma 3.1, it is easy to observe that $\lim_{\varepsilon \to 0} \frac{\mu_q(K \hat{+}_p \varepsilon \cdot L) - \mu_q(K)}{\varepsilon}$

$$= \frac{1}{|\mu|^{1/q}} \lim_{\varepsilon \to 0} \frac{\left(\int_{S^{n-1}} \rho(K\hat{+}_{p}\varepsilon \cdot L, u)^{q} d\mu(u)\right)^{1/q} - \left(\int_{S^{n-1}} \rho(K, u)^{q} d\mu(u)\right)^{1/q}}{\varepsilon}$$

$$= \frac{1}{q|\mu|^{1/q}} \left(\int_{S^{n-1}} \rho(K, u)^{q} d\mu(u)\right)^{1/q-1} \lim_{\varepsilon \to 0} \int_{S^{n-1}} \frac{\rho(K\hat{+}_{p}\varepsilon \cdot L, u)^{q} - \rho(K, u)^{q}}{\varepsilon} d\mu(u)$$

$$= \frac{1}{q|\mu|} \mu_{q}(K)^{1-q} \int_{S^{n-1}} \lim_{\varepsilon \to 0} \frac{(\rho(K, u)^{-p} + \varepsilon \rho(L, u)^{-p})^{-q/p} - \rho(K, u)^{q}}{\varepsilon} d\mu(u)$$

$$= -\frac{1}{p|\mu|} \mu_{q}(K)^{1-q} \int_{S^{n-1}} \left(\frac{\rho(K)}{\rho(L)}\right)^{p} \rho(K)^{q} d\mu(u).$$

Lemma 3.3 If $K, L \in \mathcal{K}^n$, $q \neq 0$ and $p \geq 1$, then

$$\mu_{p,q}(K,L) = p \lim_{\varepsilon \to 0} \frac{\mu_q(K) - \mu_q(K + \varepsilon \cdot AL)}{\varepsilon}.$$
(3.4)

Proof This yields immediately from the Definition 3.1 and Lemma 3.1. \Box

Lemma 3.4 If $K, L \in \mathbb{S}^n$ and $p \ge 1$, then for $A \in O(n)$ (see e.g. [10])

$$A(K\hat{+}_p\varepsilon\cdot L) = AK\hat{+}_p\varepsilon\cdot AL.$$
(3.5)

Lemma 3.5 If $K, L \in \mathcal{K}^n$, $q \neq 0$ and $p \geq 1$, then for $A \in O(n)$,

$$\mu_{p,q}(AK, AL) = \mu_{p,q}(K, L).$$
(3.6)

Proof From (3.4) and (3.5), we have

$$\begin{split} \mu_{p,q}(AK,AL) &= p \lim_{\varepsilon \to 0} \frac{\mu_q(AK) - \mu_q(AK\hat{+}_p \varepsilon \cdot AL)}{\varepsilon} \\ &= p \lim_{\varepsilon \to 0} \frac{\mu_q(AK) - \mu_q(A(K\hat{+}_p \varepsilon \cdot L))}{\varepsilon} \\ &= p \lim_{\varepsilon \to 0} \frac{\mu_q(K) - \mu_q(K\hat{+}_p \varepsilon \cdot L)}{\varepsilon} \\ &= \mu_{p,q}(K,L), \end{split}$$

where μ is a spherical Lebesgue measure of S^{n-1} .

Lemma 3.6 Let $K, L \in \mathcal{K}^n$, $\varepsilon > 0$ and $p \ge 1$.

(1) If K and L are dilates, then K and $K +_p \varepsilon \cdot L$ are dilates.

(2) If K and $K +_p \varepsilon \cdot L$ are dilates, then K and L are dilates.

Proof Suppose exist a constant $\delta > 0$ such that $L = \delta K$, for $\varepsilon > 0$ and $p \ge 1$, we have

$$\rho(K\widehat{+}_p\varepsilon\cdot L) = [1+\varepsilon\delta^{-p}]^{-1/p}\cdot\rho(K,u)$$

On the other hand, the exist unique constant $\eta > 0$ such that

$$\rho(\eta K, u) = [1 + \varepsilon \delta^{-p}]^{-1/p} \cdot \rho(K, u),$$

where η satisfies that

$$\eta = [1 + \varepsilon \delta^{-p}]^{-1/p} \cdot \rho(K, u).$$

This shows that $(1 - \lambda)K +_p \varepsilon \cdot L = \eta K$.

For $p \ge 1$, suppose exist a constant $\delta > 0$ such that $K + e^{\varepsilon} \cdot L = \delta K$. Then

$$\left(\frac{\rho(K,u)}{\rho(L,u)}\right)^{-p} = \frac{\varepsilon}{\delta^{-p}-1}.$$

This shows that K and L are homothetic.

Theorem 3.1 (The L_{pq} -Minkowski inequality for pq^{th} -dual volumes) If $K, L \in \mathcal{K}^n, q \neq 0$ and $p \geq 1$, then for q > 0

$$\mu_{p,q}(K,L) \ge \mu_q(K)^{\frac{p+q}{q}} \mu_q(L)^{-\frac{p}{q}}.$$
(3.7)

When μ is a spherical Lebesgue measure of S^{n-1} , equality holds if and only if K and L are dilates. The inequality is reversed for q < 0.

Proof From (1.1), (3.1) and by using Hölder inequality for p > 0

$$\begin{split} \mu_{p,q}(K,L) &= \frac{\mu_q(K)^{1-q}}{|\mu|} \int_{S^{n-1}} \left(\frac{\rho(K)}{\rho(L)}\right)^p \rho(K)^q d\mu(u) \\ &= \frac{\mu_q(K)^{1-q}}{|\mu|} \int_{S^{n-1}} (\rho(K)^q)^{\frac{p+q}{q}} (\rho(L)^q)^{\frac{-p}{q}} d\mu(u) \\ &\geq \frac{\mu_q(K)^{1-q}}{|\mu|} \left(\int_{S^{n-1}} \rho(K)^q d\mu(u)\right)^{\frac{p+q}{q}} \left(\int_{S^{n-1}} \rho(L)^q d\mu(u)\right)^{-\frac{p}{q}} \\ &= \mu_q(K)^{\frac{p+q}{q}} \mu_q(L)^{-\frac{p}{q}}. \end{split}$$

When μ is a spherical Lebesgue measure of S^{n-1} , from the equality of Hölder's inequality, it yields the equality holds if and only if K and L are dilates. Obviously, the inequality is reversed for q < 0.

Theorem 3.2 (The L_{pq} -Brunn-Minkowski inequality for q^{th} dual volumes) If $K, L \in \mathcal{K}^n, q \neq 0, \varepsilon > 0$ and $p \geq 1$, then for q > 0

$$\mu_q (K \widehat{+}_p \varepsilon \cdot L)^{-\frac{p}{q}} \ge \mu_q (K)^{-\frac{p}{q}} + \varepsilon \cdot \mu_q (L)^{-\frac{p}{q}}.$$
(3.8)

When μ is a spherical Lebesgue measure of S^{n-1} , equality holds if and only if K and L are dilates.

The inequality is reversed for q < 0. Proof From (2.1), (3.1) and (3.7), for p > 0, $\varepsilon > 0$ and any $M \in \mathcal{K}^n$

$$\mu_{p,q}(M, K \widehat{+}_p \varepsilon \cdot L) = \frac{\mu_q(K)^{1-q}}{|\mu|} \int_{S^{n-1}} \rho(M)^{p+q} \left(\rho(K)^{-p} + \varepsilon \rho(L)^{-p}\right) d\mu(u)$$
$$= \frac{\mu_q(M)^{1-q}}{|\mu|} \left(\int_{S^{n-1}} \left(\frac{\rho(M)}{\rho(K)}\right)^p \rho(K)^q d\mu(u) + \varepsilon \cdot \int_{S^{n-1}} \left(\frac{\rho(M)}{\rho(L)}\right)^p \rho(M)^q d\mu(u) \right)$$
$$= \mu_{p,q}(M, K) + \varepsilon \cdot \mu_{p,q}(M, L)$$

$$\geq \mu_q(M)^{\frac{p+q}{q}} \mu_q(K)^{-\frac{p}{q}} + \varepsilon \cdot \mu_q(M)^{\frac{p+q}{q}} \mu_q(L)^{-\frac{p}{q}}.$$
(3.9)

Putting $M = K \widehat{+}_p \varepsilon \cdot L$ in (3.9), and as $\mu_{p,q}(M, K \widehat{+}_p \varepsilon \cdot \varepsilon \cdot L) = \mu_q(K \widehat{+}_p \varepsilon \cdot L)$, (3.8) easily follows.

From the equality of (3.7), it follows that the equality in (3.8) holds if and only if $K +_p \varepsilon \cdot L$ and K, and $K +_p \varepsilon \cdot L$ and L are dilates, respectively. On the other hand, from the equality of Theorem 3.1, this yields that when μ is a spherical Lebesgue measure of S^{n-1} , the equality in (3.8) holds if and only if K and L are dilates. Obviously, this inequality is reversed for q < 0. \Box

The following inequalities are special cases of (3.7) and (3.8), respectively. **Corollay 3.1** (The L_q -Minkowski inequality for q^{th} -dual volumes) If $K, L \in \mathcal{K}^n$ and $q \neq 0$, then q > 0

$$\mu_q(K,L) \ge \mu_q(K)^{\frac{q+1}{q}} \mu_q(L)^{-\frac{1}{q}}.$$
(3.10)

When μ is a spherical Lebesgue measure of S^{n-1} , equality holds if and only if K and L are dilates. The inequality is reversed for q < 0.

Corollary 3.2 (The L_q -Brunn-Minkowski inequality for q^{th} dual volumes) If $K, L \in \mathcal{K}^n, q \neq 0$ and $\varepsilon > 0$, then for q > 0

$$\mu_q (K \widehat{+} \varepsilon \cdot L)^{-\frac{1}{q}} \ge \mu_q (K)^{-\frac{1}{q}} + \varepsilon \cdot \mu_q (L)^{-\frac{1}{q}}.$$
(3.11)

When μ is a spherical Lebesgue measure of S^{n-1} , equality holds if and only if K and L are dilates. The inequality is reversed for q < 0.

Acknowledgements. The research is supported by the National Natural Science Foundation of China (11371334, 10971205).

References

- K. J. Böröczky, E. Lutwak, D. Yang, G. Zhang and Y. Zhao, The Gauss image problem, *Comm. Pure Appl. Math.*, **73** (7) (2020), 1406–1452.
- [2] R. J. Gardner, Geometric Tomography, 2nd edn. Encyclopedia of Mathematics and Its Applications, vol. 58. Cambridge University Press, New York, 2006.
- [3] D. Lai, H, Jin, The dual BrunnMinkowski inequality for log-volume of star bodies, J. Inequal. Appl., 2021 (2021): 112.
- [4] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge University Press, 2014.
- [5] E. Lutwak, The Brunn-Minkowski-Firey theory. II. Affine and geominimal surface areas. Adv. Math., 118 (1996), 244–294.
- [6] W. J. Firey, Polar means of convex bodies and a dual to the Brunn-Minkowski theorem, Canad. J. Math., 13 (1961), 444–453.
- [7] E. Lutwak, Centroid bodies and dual mixed volumes, Proc. London Math. Soc., 60 (1990), 365–391.
- [8] W. Wang, G. Leng, L_p-dual mixed quermassintegrals, Indian J. Pure Appl. Math., 36 (2005), 177–188.
- [9] N. S. Trudinger, Isoperimetric inequalities for quermassintegrals, Ann. Inst. Henri Poincaré, 11 (1994), 411–425.
- [10] C.-J. Zhao, Orlicz dual affine quermassintegrals, Forum Math., 30 (2018), 929–945.

Chang-Jian ZHAO Department of Mathematics, China Jiliang University, Hangzhou 310018, P. R. China. Email: chjzhao@163.com chjzhao@cjlu.edu.cn

Mihály BENCZE Hărmanului street 6, 505600 Săcele-Négyfalu, Braşov, Romania. Email: benczemihaly@gmail.com