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Inequalities for pqth-dual mixed volumes

Chang-Jian Zhao and Mihály Bencze

Abstract

In the paper, our main aim is to generalize the qth dual volume to
Lp space, and introduce pqth-dual mixed volume by calculating the first
order variation of qth dual volumes. We establish the Lpq-Minkowski
inequality for pqth-dual mixed volumes and Lpq-Brunn-Minkowski in-
equality for the qth-dual volumes, respectively. The new inequalities in
special case yield some new dual inequalities for the qth-dual volumes.

1 Introduction

The qth dual volume was defined by for q 6= 0 (see e.g. [1])

µq(K) =

(
1

|µ|

∫
Sn−1

ρ(K,u)qdµ(u)

)1/q

, (1.1)

where K is a convex body (compact, convex subsets with nonempty interior)
that contain the origin in their interiors, µ is a Borel measure on Sn−1 and
ρ(K,u) is the radial function of K. The radial function of convex body K is
defined by (see e.g. [2])

ρ(K,u) = max{c ≥ 0 : cu ∈ K},

for u ∈ Sn−1.
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Recall that µq(K) is monotone nondecreasing and continuous in q. Define
the log-volume of K with respect to µ by µ0(K) = limq→0 µq(K). Obviously,
the log-volume µ(K) of K with respect to µ is the following (see also [3]):

µ0(K) = exp

(
1

|µ|

∫
Sn−1

log ρ(K,u)dµ(u)

)
. (1.2)

The log-volume µ(K) of a convex body K with respect to µ plays a very
important role in solving the Gauss image problem.

In the paper, our main aim is to generalize the qth dual volume to Lp
space, and introduce the pqth-dual mixed volume of convex bodies (contain
the origin in their interiors) K and L, by calculating the first order variation
of of the qth dual volumes with respect to the Lp-harmonic radial addition, is
denoted by µp,q(K,L), is defined by

µp,q(K,L) =
µq(K)1−q

|µ|

∫
Sn−1

(
ρ(K)

ρ(L)

)p
ρ(K)qdµ(u). (1.3)

where p ≥ 1 and q 6= 0. Obviously, when K = L, the pqth-dual mixed volume
µp,q(K,L) becomes the qth dual volume µq(K). When q → 0 and K = L, the
pqth-dual mixed volume µp,q(K,L) becomes the log-volume µ0(K). Further,
we establish the following Lpq-Minkowski, and Bunn-Minkowski inequalities
for the pqth-dual mixed volumes.
The Lpq-Minkowski inequality for pqth-dual mixed volumes If K and
L are convex bodies that contain the origin in their interiors, q 6= 0 and p ≥ 1,
then for q > 0

µp,q(K,L) ≥ µq(K)
p+q
q µq(L)−

p
q . (1.4)

When µ is a spherical Lebesgue measure of Sn−1, equality holds if and only if
K and L are dilates.

The inequality is reversed for q < 0.
The Lpq-Brunn-Minkowski inequality for qth dual volumes If K and L
are convex bodies that contain the origin in their interiors, q 6= 0, ε > 0 and
p ≥ 1, then for q > 0

µq(K+̂pε · L)−
p
q ≥ µq(K)−

p
q + ε · µq(L)−

p
q . (1.5)

When µ is a spherical Lebesgue measure of Sn−1, equality holds if and only
if K and L are dilates, and where +̂p is the Lp-harmonic radial addition (see
Section 2).

The inequality is reversed for q < 0.
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2 Notations and Preliminaries

A body in the n-dimensional Euclidean space Rn is a compact set equal to
the closure of its interior. For a compact set K ⊂ Rn, we denote by V (K) the
(n-dimensional) Lebesgue measure of K, called the volume of K. The unit
ball in Rn and its surface are denoted by B and Sn−1, respectively. Let Kn

denote the class of nonempty compact convex subsets containing the origin in
their interiors in Rn. The radial function sssociated with a compact subset K
of Rn, which is star-shaped with respect to the origin and contains the origin,
is ρ(K, ·) : Sn−1 → [0,∞). If ρ(K, ·) is positive and continuous, K will be
called a star body. Let Sn denote the set of star bodies about the origin in
Rn. Two star bodies K and L are dilates if ρ(K,u)/ρ(L, u) is independent of
u ∈ Sn−1. For K,L ∈ Sn, the radial Hausdorff metric is given by (see e.g. [4])

δ̃(K,L) = |ρ(K,u)− ρ(L, u)|∞.

2.1 Lp-harmonic radial addition

The Lp-harmonic radial addition was defined by Lutwak [5]: If K,L are star
bodies, the Lp-harmonic radial addition, defined by

ρ(K+̂pL, x)−p = ρ(K,x)−p + ρ(L, x)−p, (2.1)

for p ≥ 1 and x ∈ Rn. The Lp-harmonic radial addition of convex bodies was
first studied by Firey [6]. The operation of the Lp-harmonic radial addition
and Lp-dual Minkowski, Brunn-Minkwski inequalities are the basic concept
and inequalities in the Lp-dual Brunn-Minkowski theory.

2.2 Lp-dual mixed volume

The dual mixed volume Ṽ−1(K,L) of star bodies K and L is defined by ([5])

Ṽ−1(K,L) = lim
ε→0+

V (K)− V (K+̂ε · L)

ε
, (2.2)

where +̂ is the harmonic addition. The following is a integral representation
for the dual mixed volume Ṽ−1(K,L):

Ṽ−1(K,L) =
1

n

∫
Sn−1

ρ(K,u)n+1ρ(L, u)−1dS(u). (2.3)

The dual Minkowski inequality for the dual mixed volume states that

Ṽ−1(K,L)n ≥ V (K)n+1V (L)−1, (2.4)
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with equality if and only if K and L are dilates. (see ([7]))
The dual Brunn-Minkowski inequality for the harmonic addition (due to

Firey [6]) states that

V (K+̂L)−1/n ≥ V (K)−1/n + V (L)−1/n, (2.5)

with equality if and only if K and L are dilates.
The Lp-dual mixed volume Ṽ−p(K,L) of K and L is defined by ([5])

Ṽ−p(K,L) = − p
n

lim
ε→0+

V (K+̂pε · L)− V (K)

ε
, (2.6)

where K,L ∈ Sn and p ≥ 1.
The following is an integral representation for the Lp-dual mixed volume:

For K,L ∈ Sn and p ≥ 1,

Ṽ−p(K,L) =
1

n

∫
Sn−1

ρ(K,u)n+pρ(L, u)−pdS(u). (2.7)

Lp-dual Minkowski and Brunn-Minkowski inequalities were established by
Lutwak [5]: If K,L ∈ Sn and p ≥ 1, then

Ṽ−p(K,L)n ≥ V (K)n+pV (L)−p, (2.8)

with equality if and only if K and L are dilates, and

V (K+̂pL)−p/n ≥ V (K)−p/n + V (L)−p/n, (2.9)

with equality if and only if K and L are dilates.

2.3 Lp-mixed harmonic quermassintegral

From (2.1), it is easy to see that if K,L ∈ Sn, 0 ≤ i < n and p ≥ 1, then

− p

n− i
lim
ε→0+

W̃i(K+̂pε · L)− W̃i(L)

ε
=

1

n

∫
Sn−1

ρ(K.u)n−i+pρ(L.u)−pdS(u).

(2.10)
Let K,L ∈ Sn, 0 ≤ i < n and p ≥ 1, the mixed p-harmonic quermassintegral
of star K and L, denoted by W̃−p,i(K,L), defined by (see [8])

W̃−p,i(K,L) =
1

n

∫
Sn−1

ρ(K,u)n−i+pρ(L, u)−pdS(u). (2.11)

Obviously, when K = L, the p-harmonic quermassintegral W̃−p,i(K,L) be-

comes the dual quermassintegral W̃i(K). The Minkowski and Brunn-Minkowski
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inequalities for the mixed p-harmonic quermassintegral are following (see [9]):
If K,L ∈ Sn, 0 ≤ i < n and p ≥ 1, then

W̃−p,i(K,L)n−i ≥ W̃i(K)n−i+pW̃i(L)−p, (2.12)

with equality if and only if K and L are dilates. If K,L ∈ Sn, 0 ≤ i < n and
p ≥ 1, then

W̃i(K+̂pL)−p/(n−i) ≥ W̃i(K)−p/(n−i) + W̃i(L)−p/(n−i), (2.13)

with equality if and only if K and L are dilates.

3 Inequalities for pqth-dual mixed volumes

In this section, in order to derive the Lpq-Minkowski inequality for the pqth-
dual mixed volumes and Lpq-Brunn-Minkowski inequality for the qth-dual vol-
umes, we need to the following definition and lemmas.

Definition 3.1 (The pqth-dual mixed volumes) For K,L ∈ Kn, q 6= 0 and
p ≥ 1, the pqth-dual mixed volume of K and L, is denoted by µp,q(K,L), is
defined by

µp,q(K,L) =
µq(K)1−q

|µ|

∫
Sn−1

(
ρ(K)

ρ(L)

)p
ρ(K)qdµ(u). (3.1)

When p = 1, the pqth-dual mixed volume µp,q(K,L) becomes the qth dual
mixed volume µq(K,L), and for q 6= 0

µq(K,L) =
µq(K)1−q

|µ|

∫
Sn−1

ρ(K)q+1ρ(L)−1dµ(u).

When q → 0, the pqth-dual mixed volume µp,q(K,L) becomes the Lp log-
volume µp,0(K), and for p ≥ 1

µp,0(K,L) =
µ0(K)

|µ|

∫
Sn−1

(
ρ(K)

ρ(L)

)p
dµ(u).

When p = 1, the Lp log-volume µp,0(K) becomes the log-volume µ0(K).

Lemma 3.1 If K,L ∈ Sn and p ≥ 1, then (see e.g. [10])

K+̂pε · L→ K (3.2)

as ε→ 0+.
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Lemma 3.2 If K,L ∈ Kn, q 6= 0 and p ≥ 1, then

dµq(K+̂pε · L)
∣∣∣
ε=0

= −µp(K)1−q

p|µ|

∫
Sn−1

(
ρ(K)

ρ(L)

)p
ρ(K)qdµ(u). (3.3)

Proof From the hypotheses and by using Lemma 3.1, it is easy to observe that

lim
ε→0

µq(K+̂pε · L)− µq(K)

ε

=
1

|µ|1/q
lim
ε→0

(∫
Sn−1 ρ(K+̂pε · L, u)qdµ(u)

)1/q − (∫
Sn−1 ρ(K,u)qdµ(u)

)1/q
ε

=
1

q|µ|1/q

(∫
Sn−1

ρ(K,u)qdµ(u)

)1/q−1

lim
ε→0

∫
Sn−1

ρ(K+̂pε · L, u)q − ρ(K,u)q

ε
dµ(u)

=
1

q|µ|
µq(K)1−q

∫
Sn−1

lim
ε→0

(ρ(K,u)−p + ερ(L, u)−p)−q/p − ρ(K,u)q

ε
dµ(u)

=− 1

p|µ|
µq(K)1−q

∫
Sn−1

(
ρ(K)

ρ(L)

)p
ρ(K)qdµ(u).

�

Lemma 3.3 If K,L ∈ Kn, q 6= 0 and p ≥ 1, then

µp,q(K,L) = p lim
ε→0

µq(K)− µq(K+̂pε ·AL)

ε
. (3.4)

Proof This yields immediately from the Definition 3.1 and Lemma 3.1. �

Lemma 3.4 If K,L ∈ Sn and p ≥ 1, then for A ∈ O(n) (see e.g. [10])

A(K+̂pε · L) = AK+̂pε ·AL. (3.5)

Lemma 3.5 If K,L ∈ Kn, q 6= 0 and p ≥ 1, then for A ∈ O(n),

µp,q(AK,AL) = µp,q(K,L). (3.6)

Proof From (3.4) and (3.5), we have

µp,q(AK,AL) = p lim
ε→0

µq(AK)− µq(AK+̂pε ·AL)

ε

= p lim
ε→0

µq(AK)− µq(A(K+̂pε · L))

ε

= p lim
ε→0

µq(K)− µq(K+̂pε · L)

ε
= µp,q(K,L),
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where µ is a spherical Lebesgue measure of Sn−1. �

Lemma 3.6 Let K,L ∈ Kn, ε > 0 and p ≥ 1.
(1) If K and L are dilates, then K and K+̂pε · L are dilates.
(2) If K and K+̂pε · L are dilates, then K and L are dilates.
Proof Suppose exist a constant δ > 0 such that L = δK, for ε > 0 and

p ≥ 1, we have

ρ(K+̂pε · L) = [1 + εδ−p]−1/p · ρ(K,u).

On the other hand, the exist unique constant η > 0 such that

ρ(ηK, u) = [1 + εδ−p]−1/p · ρ(K,u),

where η satisfies that

η = [1 + εδ−p]−1/p · ρ(K,u).

This shows that (1− λ)K +p ε · L = ηK.
For p ≥ 1, suppose exist a constant δ > 0 such that K+̂pε · L = δK. Then(

ρ(K,u)

ρ(L, u)

)−p
=

ε

δ−p − 1
.

This shows that K and L are homothetic. �

Theorem 3.1 (The Lpq-Minkowski inequality for pqth-dual volumes) If
K,L ∈ Kn, q 6= 0 and p ≥ 1, then for q > 0

µp,q(K,L) ≥ µq(K)
p+q
q µq(L)−

p
q . (3.7)

When µ is a spherical Lebesgue measure of Sn−1, equality holds if and only if
K and L are dilates. The inequality is reversed for q < 0.

Proof From (1.1), (3.1) and by using Hölder inequality for p > 0

µp,q(K,L) =
µq(K)1−q

|µ|

∫
Sn−1

(
ρ(K)

ρ(L)

)p
ρ(K)qdµ(u)

=
µq(K)1−q

|µ|

∫
Sn−1

(ρ(K)q)
p+q
q (ρ(L)q)

−p
q dµ(u)

≥ µq(K)1−q

|µ|

(∫
Sn−1

ρ(K)qdµ(u)

) p+q
q
(∫

Sn−1

ρ(L)qdµ(u)

)− p
q

= µq(K)
p+q
q µq(L)−

p
q .
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When µ is a spherical Lebesgue measure of Sn−1, from the equality of Hölder’s
inequality, it yields the equality holds if and only if K and L are dilates.
Obviously, the inequality is reversed for q < 0. �

Theorem 3.2 (The Lpq-Brunn-Minkowski inequality for qth dual volumes)
If K,L ∈ Kn, q 6= 0, ε > 0 and p ≥ 1, then for q > 0

µq(K+̂pε · L)−
p
q ≥ µq(K)−

p
q + ε · µq(L)−

p
q . (3.8)

When µ is a spherical Lebesgue measure of Sn−1, equality holds if and only if
K and L are dilates.

The inequality is reversed for q < 0.
Proof From (2.1), (3.1) and (3.7) , for p > 0, ε > 0 and any M ∈ Kn

µp,q(M,K+̂pε · L) =
µq(K)1−q

|µ|
∫
Sn−1 ρ(M)p+q (ρ(K)−p + ερ(L)−p) dµ(u)

=
µq(M)1−q

|µ|

(∫
Sn−1

(
ρ(M)
ρ(K)

)p
ρ(K)qdµ(u) + ε ·

∫
Sn−1

(
ρ(M)
ρ(L)

)p
ρ(M)qdµ(u)

)
= µp,q(M,K) + ε · µp,q(M,L)

≥ µq(M)
p+q
q µq(K)−

p
q + ε · µq(M)

p+q
q µq(L)−

p
q . (3.9)

Putting M = K+̂pε ·L in (3.9), and as µp,q(M,K+̂pε · ε ·L) = µq(K+̂pε ·L),
(3.8) easily follows.

From the equality of (3.7), it follows that the equality in (3.8) holds if and
only if K+̂pε · L and K, and K+̂pε · L and L are dilates, respectively. On
the other hand, from the equality of Theorem 3.1, this yields that when µ is
a spherical Lebesgue measure of Sn−1, the equality in (3.8) holds if and only
if K and L are dilates. Obviously. this inequality is reversed for q < 0. �

The following inequalities are special cases of (3.7) and (3.8), respectively.
Corollay 3.1 (The Lq-Minkowski inequality for qth-dual volumes) If K,L ∈
Kn and q 6= 0, then q > 0

µq(K,L) ≥ µq(K)
q+1
q µq(L)−

1
q . (3.10)

When µ is a spherical Lebesgue measure of Sn−1, equality holds if and only if
K and L are dilates. The inequality is reversed for q < 0.

Corollary 3.2 (The Lq-Brunn-Minkowski inequality for qth dual volumes) If
K,L ∈ Kn, q 6= 0 and ε > 0, then for q > 0

µq(K+̂ε · L)−
1
q ≥ µq(K)−

1
q + ε · µq(L)−

1
q . (3.11)
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When µ is a spherical Lebesgue measure of Sn−1, equality holds if and only if
K and L are dilates. The inequality is reversed for q < 0.
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Email: benczemihaly@gmail.com



INEQUALITIES FOR pqth-DUAL MIXED VOLUMES 200


