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Solving the dynamic coloring problem for
direct products of paths with fan graphs

Raúl M. Falcón, S. Gowri and M. Venkatachalam

Abstract

This paper deals with the r-dynamic chromatic problem of the direct
product of a path with a fan graph Fm,n. The problem is completely
solved except for the case n < r ∈ {2m + 2, 2m + 3}, which is solved
under certain assumptions. It enables us to determine in particular the
dynamic chromatic number concerning this problem, for all r ≤ 7, and
also, for all m ∈ {1, 2}.

1 Introduction

Let r and ` be two positive integers. An r-dynamic proper `-coloring of a finite
and simple graph G = (V (G), E(G)) is any map c : V (G) → {0, . . . , ` − 1}
such that c(v) 6= c(w), for every pair of adjacent vertices v, w ∈ V (G), and

|c(N(v))| ≥ min {r, d(v)} , (1)

for every vertex v ∈ V (G), where N(v) and d(v) denote, respectively, the
neighborhood and the degree of the vertex v. The r-dynamic chromatic num-
ber of the graph G is the minimum positive integer k such that G has an
r-dynamic proper k-coloring. It is denoted χr(G). Both concepts were intro-
duced by Montgomery [19] as a natural generalization of the classical problem
of graph coloring. More specifically, if r = 1, then these two concepts coincide
with the classical ones of proper `-coloring and chromatic number of a graph.

Key Words: Dynamic coloring problem, direct product, path, fan graph.
2010 Mathematics Subject Classification: Primary 05C15.
Received: 05.01.2022
Accepted: 04.07.2022

115



SOLVING THE DYNAMIC COLORING FOR DIRECT PRODUCTS OF PATHS
WITH FAN GRAPHS 116

Since the original manuscript of Montgomery, a wide amount of authors
have dealt with the problem of determining the r-dynamic chromatic number
of distinct types of graphs. As a first stage, they focused on the case r = 2 [2,
3, 5, 6], whereas the case r > 2 has received particular attention in the recent
literature [8, 12, 20]. Of special relevance for the aim of this paper is the study
of the r-dynamic coloring of different types of products of graphs [1, 4, 16, 17].
Particularly, it has recently been studied the r-dynamic chromatic number of
the direct product of paths with paths, cycles, complete graphs, wheel graphs
and star graphs [9, 7, 11]. This paper delves into this last topic by focusing
on the direct product of a path with a fan graph. Notice that the r-dynamic
coloring of fan graphs has already been dealt with [10, 18, 21].

The paper is organized as follows. In Section 2, we describe some pre-
liminary concepts and results on Graph Theory that are used throughout the
manuscript. Then, a detailed study of cases is analyzed in Section 3 for solv-
ing the r-dynamic coloring problem of the direct product of a path with a
fan graph Fm,n. Particularly, this problem is completely solved except for the
case n < r ∈ {2m + 2, 2m + 3}, which is solved under certain assumptions.
In order to make easier the reading of the manuscript, a series of examples
illustrate each case of the study. Finally, Section 4 makes use of the obtained
results for establishing the exact solution of the mentioned problem, whenever
r ≤ 7 or m ∈ {1, 2}.

2 Preliminaries

This section deals with some preliminary concepts and results on Graph The-
ory that are used throughout the paper. For more details about this topic, we
refer the reader to the classical manuscript of Harary [13].

Any graph G = (V (G), E(G)) is formed by a set of vertices V (G) and a set
of edges E(G) so that each edge joins two vertices, which are called adjacent.
The number of vertices and edges are, respectively, the order and size of G. If
both of them are finite, then the graph is finite. From now on, let vw denote
the edge formed by two vertices v, w ∈ V (G). If v = w, then the edge is a
loop. A graph is simple if it contains no loops and no two edges join the same
pair of vertices. All the graphs in this paper are simple and finite.

A path between two distinct vertices v, w ∈ V (G) is any ordered sequence
of n adjacent vertices 〈 v0 = v, v1, . . . , vn−2, vn−1 = w 〉 in V (G), with n > 2,
such that all the vertices under consideration are pairwise distinct. From here
on, let Pn denote the path of order n. Then, the fan graph Fm,n is the graph
resulting after joining each one of the vertices of the path Pn with m isolated
vertices. If m = 1 (respectively, m = 2), then it constitutes the simple fan
graph F1,n (respectively, the double fan graph F2,n).
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The direct product of two finite simple graphs G = (V (G), E(G)) and
H = (V (H), E(H)) is the graph G×H, whose set of vertices is the Cartesian
product V (G)× V (H), and two such vertices (v, v′) and (w,w′) are adjacent
if and only if vw ∈ E(G) and v′w′ ∈ E(H). Figure 1 illustrates this concept
for the direct product P3 × F1,3.

Figure 1: Construction of the direct product P3 × F1,3.

The neighborhood NG(v) of a vertex v ∈ V (G) is the set formed by its
adjacent vertices. Its cardinality is the degree dG(v) of the vertex v. When
there is no risk of confusion, the respective notations N(v) and d(v) are used.
Let δ(G) and ∆(G) respectively denote the minimum and maximum vertex
degree of the graph G. The following result holds readily from the previous
definitions.

Lemma 1. Let G and H be two finite simple graphs. Then,

1. dG×H((v, w)) = dG(v) dH(w), for all (v, w) ∈ V (G×H).

2. δ(G×H) = δ(G) δ(H).

3. ∆(G×H) = ∆(G) ∆(H).

Concerning the dynamic coloring problem described in the introductory
section, the following results are known.

Lemma 2. [14] Let G be a simple finite graph and let r be a positive integer.
Then, min {r,∆(G)}+ 1 ≤ χr(G) ≤ χr+1(G). Moreover, χr(G) ≤ χ∆(G)(G).

Lemma 3. [15] Let n and r be two positive integers such that n > 2. Then,
χ1(Pn) = 2, and χr(Pn) = 3, whenever r > 1.
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Lemma 4. [10] Let m, n and r be three positive integers such that n > 2.
Then,

χr(Fm,n) =



3, if r ∈ {1, 2},
2r − 1, if 3 ≤ r ≤ min{m+ 1, n},
n+ r − 1, if n < r ≤ m+ 1,

m+ r, if max{3,m+ 1} ≤ r ≤ n,
m+ n, if r ≥ max{m+ 1, n}.

Lemma 5. [9] Let G and H be two finite simple graphs and let r be a positive
integer such that r ≤ δ(G′), for some G′ ∈ {G,H}. Then, χr(G × H) ≤
χr(G′).

3 Dynamic coloring of Pl × Fm,n

Let l > 2, n > 2, m and r be four positive integers. This section deals
with the dynamic coloring problem for the direct product of the path Pl =
〈u0, . . . , ul−1 〉 and the fan graph Fm,n, where V (Fm,n) = {v0, . . . , vm−1, w0,
. . . , wn−1} arises from m isolated vertices v0, . . . , vm−1 and a path 〈w0, . . . ,
wn−1 〉. From Lemma 1, δ(Pl × Fm,n) = min{m + 1, n} and ∆(Pl × Fm,n) =
max{2m+ 4, 2n}. The following study of cases arises.

3.1 Case r ≥ 2m+ 4

Lemma 6. If r ≥ 2m+ 4, then χr(Pl × Fm,n) = 2m+ min{2n, r}.

Proof. Let c be an r-dynamic proper χr(Pl×Fm,n)-coloring of Pl×Fm,n. Since
d(u1w0) = 2m+2 < 2m+4 ≤ r, Condition (1) applied to the vertex u1w0 im-
plies that the set {c(u0v0), . . . , c(u0vm−1), c(u2v0), . . . , c(u2vm−1)} is formed
by 2m distinct colors and also that no vertex in {u0w0, . . . , u0wn−1, u2w0,
. . . , u2wn−1} is colored by one of these colors. Otherwise, one could find a ver-
tex u1wi, with 0 ≤ i < n, such that |c(N(u1wi))| < d(uiwi) ≤ 2m+ 4, which
would contradict Condition (1). Thus, since d(u1v0) = 2n, the same condi-
tion applied to the vertex u1v0 implies that the set {c(u0w0), . . . , c(u0wn−1),
c(u2w0), . . . , c(u2wn−1)} is formed by min{2n, r} extra distinct colors. Hence,
2m+ min{2n, r} ≤ χr(Pl × Fm,n).

In order to prove that this lower bound is tight, it is enough to consider the
r-dynamic proper coloring c of the direct product Pl × Fm,n such that, for all
i < l, j < m and k < n, we have that c(uivj) = min{2n, r}+m ·

⌊
imod 4

2

⌋
+ j

and
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c(uiwk) =


(
2k +

⌊
imod 4

2

⌋)
mod r, if


r ≥ 2n,

r < 2n is odd,

r < 2n is even and

k 6∈ { r2 , . . . , r − 1},(
2k + 1−

⌊
imod 4

2

⌋)
mod r, otherwise.

Here, it is relevant that r ≥ 6. (Figure 2 illustrates the direct product P4×F2,5,
for r ∈ {8, 9}.)

Figure 2: r-dynamic proper (r + 4)-coloring of the direct product P4 × F2,5,
for r = 8 (left) and r = 9 (right).

3.2 Case n ≥ r ∈ {2m+ 2, 2m+ 3}

Proposition 1. Let r ∈ {2m+ 2, 2m+ 3} be such that r ≤ n. Then, χr(Pl×
Fm,n) = 2m+ r.

Proof. Let c be an r-dynamic proper χr(Pl×Fm,n)-coloring of Pl×Fm,n. Con-
dition (1) implies that the 2m vertices in N(u1w0) \ {u0w1, u2w1} are colored
with pairwise distinct colors, and also that all of these colors are different from
the, at least, r distinct colors of the set N(u0v0) = {c(u1w0), . . . , c(u1wn−1)}.
Thus, the result holds because, from Lemmas 2 and 6, 2m + r ≤ χr(Pl ×
Fm,n) ≤ χ2m+4(Pl × Fm,n) = 2m+ r.

3.3 Case n < r ∈ {2m+ 2, 2m+ 3}

Lemma 7. Let r ∈ {2m + 2, 2m + 3} be such that n < r. Then, 2m + n ≤
χr(Pl × Fm,n).
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Proof. Let c be an r-dynamic proper χr(Pl × Fm,n)-coloring of Pl × Fm,3.
Condition (1) implies that the 2m + 2 vertices of N(u1w0) are colored by
pairwise distinct colors. Similarly, since n < r, the n vertices of N(u0v0) are
colored by pairwise distinct colors. From adjacency, these n colors are different
from those ones in c(N(u0v0) \ {u0w1, u2w1}).

The next result shows some cases for m = 2 in which the lower bound in
Lemma 7 is reached.

Proposition 2. Let r ∈ {6, 7} and n ∈ {r− 2, r− 1}. Then, χr(Pl × F2,n) =
n+ 4.

Proof. Let us prove each case separately.

• Case r = 6 and n ∈ {4, 5}.
From Lemma 7, we have that n + 4 ≤ χr(Pl × F2,n). In order to prove
that this lower bound is reached, it is enough to consider the 6-dynamic
proper (n+4)-coloring c of the direct product Pl×F2,n that is described
so that, for all i < l, j < 2 and k < n,

c(uivj) =

{
4 +

((
2 +

⌊
i
2

⌋)
mod 4

)
, if j = 0,(

2 +
⌊
i
2

⌋)
mod 4, if j = 1.

c(uiwk) =



8, if n = 5 and k = 2,

4 +
((

3 +
⌊
i
2

⌋)
mod 4

)
, if i is even and k = 0,

4 +
((

1 +
⌊
i
2

⌋)
mod 4

)
, if i is odd and k = 0,⌊

i
2

⌋
mod 4, if k = 1,

4 +
(⌊

i
2

⌋
mod 4

)
, if k = n− 2,(

3 +
⌊
i
2

⌋)
mod 4, if i is even and k = n− 1,(

1 +
⌊
i
2

⌋)
mod 4, if i is odd and k = n− 1.

(Figure 3 illustrates the case l = 8.)

• Case (n, r) = (5, 7).

From Lemma 7, we have that 9 ≤ χ7(Pl×F2,5). Figure 4 illustrates that
this lower bound is tight for all l ∈ {3, 4, 5}. It is also reached for l = 6,
as it is illustrated in Figure 5 (left).

In order to prove that the mentioned lower bound is also reached for all
l ≥ 7, it is enough to consider the 7-dynamic proper 9-coloring c of the
direct product Pl×F2,5 that is described so that, for all i < l, j < 2 and
k < n,
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Figure 3: 6-dynamic proper 8- and 9-colorings of P8 × F2,n.

c(uivj) =


7, if (i, j) = (0, 0),

(i+ j) mod 9, if (i, j) 6∈ {(0, 0), (l − 1, 1)},
(l + 2) mod 9, if (i, j) = (l − 1, 1).

c(uiwk) =



6, if (i, k) = (1, 1),

i+ 4, if k = 2 and i ∈ {0, 1},
(l − 5) mod 9, if (i, k) = (l − 3, 4),

(l + 1) mod 9, if (i, k) = (l − 2, 1),

(l − 6) mod 9, if (i, k) = (l − 2, 4),

lmod 9, if (i, k) ∈ {(l − 3, 3), (l − 2, 3)},
(i− 2) mod 9, if k = 0,

(i+ 4) mod 9, if k = 1 and i 6∈ {1, l − 2},
(i− 3) mod 9, if k ∈ {2, 3} and (i, k) 6∈ {(0, 2), (1, 2),

(l − 3, 3), (l − 2, 3)},
(i+ 3) mod 9, if k = 4 and i 6∈ {l − 3, l − 2}.

(Figure 5 (right) illustrates the case l = 7.)
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Figure 4: 7-dynamic proper 9-coloring of Pl × F2,5, for l ∈ {3, 4, 5}.

Figure 5: 7-dynamic proper 9-coloring of Pl × F2,5, for l ∈ {6, 7}.

• Case (n, r) = (6, 7).

From Lemma 7, 10 ≤ χ7(Pl×F2,6). This lower bound is reached, because
of the 7-dynamic proper 10-coloring of Pl × F2,6 such that, for all i < l,
j < 2 and k < 6, we have that c(uivj) = 3j + 4 +

((
1 +

⌊
i+1
2

⌋)
mod 3

)
and

c(uiwk) =


2k +

(⌊
i
2

⌋
mod 2

)
, if k ∈ {0, 1},

3k − 2 +
(⌊

i
2

⌋
mod 3

)
, if k ∈ {2, 3},

2k − 8 +
((

1 +
⌊
i
2

⌋)
mod 2

)
, if k ∈ {4, 5},

(Figure 6 illustrates the case l = 8.)
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Figure 6: 7-dynamic proper 10-coloring of P8 × F2,6.

The next result shows that an extra color is however required for (m,n, r) =
(2, 4, 7).

Proposition 3. It is verified that χ7(Pl × F2,4) = 9.

Proof. Let c be a 7-dynamic proper χ7(Pl × F2,4)-coloring of Pl × F2,4. From
Lemma 7, this map c requires, at least, eight distinct colors. If this lower
bound were tight, then Condition (1) implies that both sets {c(u1w0), c(u1w1),
c(u1w2), c(u1w3)} and {c(u0w1), c(u0w2), c(u2w1), c(u2w2)} would be formed
by the same four pairwise distinct colors. None of these colors coincides with
one of the four distinct colors of the set {c(u0v0), c(u0v1), c(u2v0), c(u2v1)}.
As a consequence, two distinct colors of this last set would be required for
coloring the vertices u1v0 and u1v1. But then, |c(N(u1v0)| ≤ 6, which con-
tradicts Condition (1). Hence, 9 ≤ χ7(Pl × F2,4). In order to prove that this
lower bound is tight, it is enough to define the map c so that, for all i < l,
j < 2 and k < 4, we have that c(uivj) = 3 + j + 2

((
1 +

⌊
i+1
2

⌋)
mod 3

)
and

c(uiwk) =



3 + (imod 6), if k = 0,⌊
i
2

⌋
mod 3, if k = 1,(

1 +
⌊
i+1
2

⌋)
mod 3, if k = 2,

4 + (imod 6), if i is even and k = 3,

2 + (imod 6), if i is odd and k = 3.

(Figure 7 illustrates the case l = 8.)
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Figure 7: 7-dynamic proper 9-coloring of P8 × F2,4.

Let us focus now on the case n = 3 and r ∈ {2m+ 2, 2m+ 3}.

Proposition 4. Let r ∈ {2m+ 2, 2m+ 3}. Then,

χr(Pl × Fm,3) =

 2m+ 4, if

{
m = 1,

m > 1 and r = 2m+ 2,

2m+ 5, otherwise.

Proof. Let c be an r-dynamic proper χr(Pl×Fm,3)-coloring of Pl×Fm,3. From
the proof of Lemma 7, it requires 2m + 2 colors for the vertices in N(u1w0).
Moreover, adjacency implies that u1w0 and u1w2 require two extra colors.
Hence, 2m+ 4 ≤ χr(Pl × Fm,3). The following study of cases arises.

• Case m = 1.

The described lower bound is reached in this case. To prove it, it is
enough to consider the map c so that, for each pair of non-negative
integers i < l and k < 3, we have that c(uiv0) =

(
1 +

⌊
i+1
2

⌋)
mod 3 and

c(uiwk) =

{
3k +

(⌊
i
2

⌋
mod 3

)
, if k ∈ {0, 1},

3 +
((

1 +
⌊
i+1
2

⌋)
mod 3

)
, if k = 2.
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(Figure 8 (left) illustrates the case l = 7.)

• Case m > 1 and r = 2m+ 2.

Again, the lower bound is tight. To prove it, it is enough to define the
map c so that, for all i < l, j < m and k < 3, we have that

c(uivj) =

{
3j +

((
1 +

⌊
i+1
2

⌋)
mod 3

)
, if j ∈ {0, 1},

4 + 2j +
(⌊

i
2

⌋
mod 2

)
, otherwise.

and

c(uiwk) =


⌊
i
2

⌋
mod 3, if k = 0,

6 +
(⌊

i
2

⌋
mod 2

)
, if k = 1,

3 +
(⌊

i
2

⌋
mod 3

)
, if k = 2.

(Figure 8 (center) illustrates the case (l,m) = (7, 3).)

• Case m > 1 and r = 2m+ 3.

Since r > 6, Condition (1) applied to u1v0 implies that the set {c(u0w0),
c(u0w1), c(u0w2), c(u2w0), c(u2w1), c(u2w2)} is formed by six distinct
colors. That condition applied to the vertices u1wk, with k ∈ {0, 1, 2},
also implies that at most one of these six colors belongs to the set
{c(u0v0), . . . , c(u0vm−1), c(u2v0), . . . , c(u2vm−1)}. Hence, it is 2m+ 5 ≤
χ2m+3(Pl × Fm,3), whenever m > 1. This lower bound is reached, be-
cause of the map c that is described so that, for all i < l, j < m and
k < n, we have that

c(uivj) =

{ (
1 +

⌊
i+1
2

⌋)
mod 3, if j = 0,

5 + 2j +
(⌊

i
2

⌋
mod 2

)
, otherwise.

and

c(uiwk) =

{ ⌊
i
2

⌋
mod 3, if k = 0,

1 + 2k +
(⌊

i
2

⌋
mod 2

)
, if k ∈ {1, 2}.

(Figure 8 (right) illustrates the case (l,m) = (7, 3).)

Let us finish our study on the case n < r ∈ {2m + 2, 2m + 3} by dealing
with (m,n, r) = (1, 4, 5).

Proposition 5. It is verified that χ5(Pl × F1,4) =

{
6, if l 6= 5,

7, if l = 5.
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Figure 8: r-dynamic proper 6-coloring of P7 × F1,3, for r ∈ {4, 5} (left);
8-dynamic proper 10-coloring of P7 × F3,3 (center); and 9-dynamic proper
11-coloring of P7 × F3,3 (right).

Proof. Let c be a 5-dynamic proper χ5(Pl×F1,4)-coloring of the direct product
Pl×F1,4. From Lemma 7, this map c requires at least six distinct colors. Figure
9 (left and center) illustrates that the mentioned lower bound is tight whenever
l ∈ {3, 4}. Further, a simple study by brute force enables one to ensure that
no 5-dynamic proper 6-coloring exists for l = 5. So, a seventh color is required
in that case. In fact, Figure 9 (right) illustrates that χr(P5 × F1,4) = 7.

Figure 9: 5-dynamic proper `-coloring of the direct product Pl × F1,4, for
(l, `) ∈ {(3, 6), (4, 6), (5, 7)}.

In order to prove that the lower bound or six colors is also reached for all
l > 5, it is enough to define the map c so that, for each pair of non-negative
integers i < l and k < 4,
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c(uiv0) =


3, if imod 6 ∈ {3, 4},
4, if imod 6 ∈ {0, 5},
5, otherwise.

and
c(uiwk) =

1, if (i, k) ∈ {(0, 0), (1, 3)},
3, if (i, k) ∈ {(0, 2), (0, 3), (1, 0)},
c(ul−3w0), if l is odd and (i, k) ∈ {(l − 1, 1), (l − 2, 3)}
c(ul−3w1), if l is even and (i, k) ∈ {(l − 1, 0), (l − 2, 3)},
c(ul−3w2), if l is odd and (i, k) ∈ {(l − 1, 3), (l − 2, 0)},
c(ul−3v0), if l is odd and (i, k) = (l − 1, 0),

c(ul−4v0), if l is even and (i, k) ∈ {(l − 1, 2), (l − 1, 3), (l − 2, 0)},
3 +

(⌊
i
2

⌋
mod 3

)
, if 1 < i < l − 2 and k ∈ {0, 3},⌊

i
2

⌋
mod 3, if k = 1 and

{
l is even,

l is odd and i 6= l − 1,(
2 +

⌊
i−1

2

⌋)
mod 3, if k = 2 and i > 0 and

{
l is odd,

l is even and i 6= l − 1,

(Figure 10 illustrates the case l ∈ {6, 7, 8}.)

3.4 Case r ≤ 2m+ 1

Lemma 8. If r ≤ 2m+1, then [χr(Pl×Fm,n) ≤ max{min{r, 2n}+ min{r, m+
1} − 1, r + min{r, n} − 2}.

Proof. Let c be an r-dynamic proper coloring of the direct product Pl×Fm,n.
From Condition (1), this map c requires at least

• min{r, 2n} distinct colors for N(u1v0) = {u0w0, . . . , u0wn−1, u2w0, . . . ,
u2wn−1}, which must be pairwise different of the, at least, min{r, m +
1}− 1 distinct colors that are necessary for the set N(u0w0) \ {u1w1} =
{u1v0, . . . , u1vm−1}; and

• r − 2 distinct colors for coloring the set N(u1w0) \ {u0w1, u2w1} =
{u0v0, . . . , u0vm−1, u2v0, . . . , u2vm−1}, which must be pairwise different
of the, at least, min{r, n} distinct colors that are necessary for coloring
the set N(u0v0) = {u1w0, . . . , u1wn−1}.



SOLVING THE DYNAMIC COLORING FOR DIRECT PRODUCTS OF PATHS
WITH FAN GRAPHS 128

Figure 10: 5-dynamic proper 6-coloring of Pl × F1,4, for l ∈ {6, 7, 8}.

Hence, the number of required distinct colors is, at least, the maximum of
these two values.

In the following results, we show how the lower bound described in Lemma
8 enables one to deal with the dynamic chromatic problem under consideration.

Proposition 6. If r ≤ δ(Pl × Fm,n), then

χr(Pl × Fm,n) =

{
2, if r = 1,

2r − 1, otherwise.

Proof. The case r = 1 follows from Lemmas 2, 3 and 5 once it is noticed that
δ(Pl) = 1. Now, if 1 < r ≤ δ(Pl × Fm,n) = δ(Fm,n), then Lemmas 4 and
5 imply that χr(Pl × Fm,n) ≤ 2r − 1. This lower bound is tight because of
Lemma 8.

Proposition 7. If δ(Pl × Fm,n) < r ≤ min{2m+ 1, n}, then

χr(Pl × Fm,n) =

{
5, if m = 1,

2r − 2, otherwise.

Proof. If m = 1, then it must be r = 3. From Lemma 2, we have that
4 ≤ χ3(Pl × F1,n). Let us prove that the assumption of the existence of a
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3-dynamic proper 4-coloring c of the direct product Pl × F1,n gives rise to a
contradiction.

Condition (1) applied to the vertex u0v0 implies that the set {c(u1w0),
. . . , c(u1wn−1)} is formed by three distinct colors and hence, c(u2v0) = c(u0v0).
The same condition applied to the vertex u1w0 implies that the set {c(u1w0),
c(u0w1), c(u2w1), c(u0v0)} is formed by the four distinct colors under consid-
eration. Then, since c is a proper coloring, it must be c(u1w2) = c(u1w0).

If n = 3, then it contradicts that the set {c(u1w0), c(u1w1), c(u1w2)} is
formed by three distinct colors. In any case, whatever the positive integer n is,
it would be |c(N(u0w1))| ≤ 2 < 3 = d(u0w1), which contradicts Condition (1)
applied to the vertex u0w1. Hence, 5 ≤ χr(Pl × F1,n). In order to prove that
this lower bound is reached, it is enough to consider the 3-dynamic proper
5-coloring c of Pl ×F1,n such that, for each pair of non-negative integers i < l
and k < n, we have that c(uiv0) = 3 +

(⌊
i
2

⌋
mod 2

)
and c(uiwk) = kmod 3.

(Figure 11 (left) illustrates the case (l, n, r) = (4, 4, 3).)

Figure 11: r-dynamic proper `-coloring of the direct product P4 × Fm,n, for
(`,m, n, r) = (5, 1, 4, 3) and (`,m, n, r) = (8, 2, 5, 5).

Let us focus now on the case m > 1. It must be r > m + 1 and hence,
Lemma 8 implies that 2r − 2 ≤ χr(Pl × Fm,n). This lower bound is tight,
because of the r-dynamic proper (2r − 2)-coloring c of the direct product
Pl × Fm,n that is described so that, for all i < l, j < m and k < n, we have
that c(uiwk) = (2i+ k) mod r and

c(uivj) =

{
r +m+ j, if imod 4 ∈ {2, 3} and j < r −m− 2,

r + j, otherwise.

(Figure 11 (right) illustrates the case (l,m, n, r) = (4, 2, 5, 5).)
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Proposition 8. If n < r ≤ min{2m+ 1, 2n}, then

χr(Pl × Fm,n) =


2r − 1, if r ≤ m+ 1,

r +m, if n < m+ 1 < r,

r + n− 2, if m+ 1 ≤ n < r.

Proof. Notice that m > 1. Let us prove each case separately.

• Case r ≤ m+ 1.

From Lemma 8, we have that χr(Pl ×Fm,n) ≥ 2r− 1. In order to prove
that this lower bound is tight, it is enough to consider the r-dynamic
proper (2r− 1)-coloring c of the direct product Pl × Fm,n such that, for
all i < l, j < m and k < n, we have that c(uivj) = r + (jmod (r − 1))
and

c(uiwk) =

{
n+ k, if imod 4 ∈ {1, 2} and k < r − n,
k, otherwise.

(Figure 12 illustrates the case (l,m, n, r) = (4, 3, 3, 4).)

Figure 12: 4-dynamic proper 7-coloring of P4 × F3,3.

• Case n < m+ 1 < r.

Here, m > 2 and n + 2 ≤ r ≤ min{2m + 1, 2n} = 2n. From Lemma 8,
we have that r +m ≤ χr(Pl × Fm,n). To prove that this lower bound is
reached, we define an r-dynamic proper (r+m)-coloring c of Pl×Fm,n.
More specifically, for each pair of non-negative integers i < l and j < m,
we define

c(uivj) =

{
3j +

(⌊
i
2

⌋
mod 3

)
, if j < r − n,

r + j, otherwise.
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In addition, the following two subcases arise, for each pair of non-
negative integers i < l and k < n.

– Subcase m = n = r − 2.

c(uiwk) =



6, if k = 0 and n > 3,(
1 +

⌊
i+1
2

⌋)
mod 3, if k = 1,

5 + k, if 2 ≤ k < n− 2,

3 +
((

1 +
⌊
i+1
2

⌋)
mod 3

)
, if

{
(k, n) = (0, 3),

k = n− 2 > 1,

n+ 3, if k = n− 1.

(Figure 13 illustrates the case m ∈ {3, 5}, for l = 5.)

Figure 13: (m + 2)-dynamic proper (2m + 2)-coloring of the direct product
P5 × Fm,m, for m ∈ {3, 5}.

– Subcase r > n+ 2.
c(uiwk) =

6 +
((

1 +
⌊
i+1
2

⌋)
mod 3

)
, if k = 0 and n > 3,(

1 +
⌊
i+1
2

⌋)
mod 3, if k = 1,

3(k + 1) +
((

1 +
⌊
i+1
2

⌋)
mod 3

)
, if 1 < k < min{n− 2, r − n− 1},

2(r − n) + k + 1, if r − n− 1 ≤ k < n− 2,

3 +
((

1 +
⌊
i+1
2

⌋)
mod 3

)
, if

{
(k, n) = (0, 3),

k = n− 2 > 1,

3(n− 1) +
(
1 +

⌊
i+1
2

⌋)
mod 3, if (k, r) = (n− 1, 2n),

2r − n− 1, if k = n− 1 and r < 2n.

(Figure 14 illustrates the case (m,n, r) ∈ {(4, 3, 6), (5, 5, 8)}, for
l = 5.)
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Figure 14: r-dynamic proper (r+m)-coloring of the direct product P5×Fm,n,
for (m,n, r) ∈ {(4, 3, 6), (5, 5, 8)}.

• Case m+ 1 ≤ n < r.

Here, m + 2 ≤ r ≤ min{2m + 1, 2n} = 2m + 1. From Lemma 8,
r+n−2 ≤ χr(Pl×Fm,n). To prove that this lower bound is reached, we
define an appropriate r-dynamic proper (r+n−2)-coloring c of Pl×Fm,n.

– Subcase m = 2.

Here, (n, r) ∈ {(3, 4), (3, 5), (4, 5)}. For all i < l, j < m and k < n,
it is enough to define c(uivj) =

⌊
i
2

⌋
mod 3 and

c(uiwk) =



3 +
(⌊

i
2

⌋
mod 2

)
(r − 4), if (k, n) = (0, 3),

3 +
(⌊

i
2

⌋
mod 3

)
, if (k, n) = (0, 4),(

1 +
⌊
i+1
2

⌋)
mod 3, if k = 1,

3 +
((

1 +
⌊
i+1
2

⌋)
mod 3

)
, if (k, n) = (2, 4),

r + n− 3, if k = n− 1.

(Figure 15 illustrates the case l = 5.)

– Subcase m > 2.

Here, r + n− 2 ≥ m+ n ≥ 6. The map c is such that, for all i < l,
j < m and k < n, we have that c(uiwk) =

(
2
⌊
i
2

⌋
+ k
)

modn and

c(uivj) = n+ j, if

{
j < 2m− r + 2,

j ≥ 2m− r + 2 and imod 4 ∈ {0, 1},
n+ r − 2−m+ j, if j ≥ 2m− r + 2 and imod 4 ∈ {2, 3}.

(Figure 16 illustrates the case (l,m, n, r) = (5, 3, 4, 6).)
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Figure 15: r-dynamic proper (r + n − 2)-coloring of P5 × F2,n, for (n, r) ∈
{(3, 4), (3, 5), (4, 5)}.

Figure 16: 6-dynamic proper 8-coloring of P5 × F3,4.

Proposition 9. If 2n < r ≤ 2m+ 1, then

χr(Pl×Fm,n) =


2n+ r − 1, if r ≤ m+ 1,

m+ 2n, if m+ 2 ≤ r < m+ n+ 2,

n+ r − 2, if m+ n+ 2 ≤ r and (l, n) ∈ {(3, 4), (4, 4)},
n+ r − 1, otherwise.

.

Proof. Here, n ≤ m and hence, m ≥ 3. Let c be an r-dynamic proper χr(Pl×
Fm,n)-coloring of the direct product Pl × Fm,n.

• Case r ≤ m+ 1.

From Lemma 8, 2n+r−1 ≤ χr(Pl×Fm,n). This lower bound is reached,
because of the map c such that, for all i < l, j < m and k < n, it is
c(uivj) = 2n+ (jmod (r − 1)) and
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c(uiwk) =

{
k, if imod 4 ∈ {0, 1},
n+ k, otherwise.

(Figure 17 illustrates the case (l,m, n, r) = (4, 7, 3, 7).)

Figure 17: 7-dynamic proper 12-coloring of P4 × F7,3.

• Case m+ 2 ≤ r < m+ n+ 2.

From Lemma 8, m+ 2n ≤ χr(Pl × Fm,n). This lower bound is reached,
because of the map c such that, for all i < l, j < m and k < n, we have
that

c(uivj) =


n+ j, if imod 6 ∈ {0, 5} and j < n,

j, if imod 6 ∈ {3, 4} and j < n,

2n+ j, otherwise.

and

c(uiwk) =


k, if imod 6 ∈ {0, 1},
n+ k, if imod 6 ∈ {2, 3},
2n+ k, otherwise.

(Figure 18 illustrates the case (l,m, n) = (6, 4, 3), for r ∈ {7, 8}.)

• Case m+ n+ 2 ≤ r.
Since r ≤ 2m + 1 and n ≤ m, it must be n < m. From Lemma 8,
n + r − 2 ≤ χr(Pl × Fm,n). In order to prove that this lower bound is
reached for (l, n) ∈ {(3, 4), (4, 4)}, it is enough to define the map c so
that, for all i < l, j < m and k < 4,
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Figure 18: r-dynamic proper 11-coloring of P6 × F4,3, for r ∈ {7, 8}.

c(uivj) =



0, if (i, j) = (3, 0),

3, if (i, j) = (3, 1),

m+ n+ j, if

{
i = 0 and j < r −m− 2,

i = 3 and 1 < j < r −m− 2,

4 + j, otherwise.

c(uiwk) =



0, if (i, k) ∈ {(0, 2), (1, 0)},
1, if (i, k) ∈ {(1, 1), (2, 1)},
2, if (i, k) ∈ {(1, 2), (2, 2)},
3, if (i, k) ∈ {(0, 1), (1, 3)},
m+ n, if (i, k) ∈ {(2, 0), (3, 2)},
m+ n+ 1, if (i, k) ∈ {(2, 3), (3, 1)},
m+ n+ 2, if (i, k) ∈ {(0, 0), (3, 0)},
m+ n+ 3, if (i, k) ∈ {(0, 3), (3, 3)}.

(Figure 19 illustrates the case (l,m, n, r) = (4, 6, 4, 12).)

Now, if (l, n) 6∈ {(3, 4), (4, 4)}, then let us consider the pair of sets S =
{c(u1w0), . . . , c(u1wn−1)} and S′ = {c(u0w0), . . . , c(u0wn−1), c(u2w0),
. . . , c(u2wn−1)}. If χr(Pl×Fm,n) = n+r−2, then Condition (1) applied
to the vertex u0v0 implies that the set S is formed by n distinct colors.
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Figure 19: 12-dynamic proper 14-coloring of P4 × F6,4.

The same condition applied to the vertex u1w0 implies that the set
{c(u0v0), . . . , c(u0vm−1), c(u2v0), . . . , c(u2vm−1)} is formed by the re-
maining r − 2 colors. As a consequence, for each non-negative integer
i < n, the set c(N(u1wi)) ∩ S′ must contain two distinct colors of the
set S.

Furthermore, since r > 2n, Condition (1) applied to the vertex u1v0

implies that all the colors in the set S′ are pairwise distinct. Hence, the
map c would require at least one extra color whenever n 6= 4. From a
similar reasoning, if n = 4 < l, then it must be {c(u2w1), c(u2w2)} ∈ S∩
{c(u3w0), . . . , c(u3wn−1)}. But this last intersection is empty, because of
Condition (1) applied to vertex u2v0 and the fact that r > 2n. So, again,
an extra color is required. In order to prove that this extra (n+ r− 1)th

color is sufficient in any of the described cases, it is enough to define the
map c so that, for all i < l, j < m and k < n,

c(uivj) =


m+ j, if

{
imod 6 ∈ {2, 3} and j ≤ r −m− 2,

imod 8 ∈ {6, 7} and n ≤ j ≤ r −m− 2,

r − 1 + j, if imod 6 ∈ {4, 5} and j < n,

j, otherwise.

and

c(uiwk) =


k, if imod 6 ∈ {3, 4},
m+ k, if imod 6 ∈ {0, 5},
r − 2 + k, if imod 6 ∈ {1, 2}.

(Figure 20 illustrates the case (l,m, n, r) = (8, 6, 4, 12).)
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Figure 20: 12-dynamic proper 15-coloring of P8 × F6,4.

4 Some exact solutions

Based on the results described in the previous section, let us finish our study
by deducing some exact solutions of the r-dynamic coloring problem of direct
products of paths with fan graphs. Firstly, we determine the case r ≤ 7.

Theorem 1. Let r ∈ {1, 2, 3}. Then,

χr(Pl × Fm,n) =

{
r + 1, if r ∈ {1, 2},
5, if r = 3.

Proof. The result follows readily from Propositions 6 and 7.

Theorem 2. It is verified that

χ4(Pl × Fm,n) =



5, if (m,n) = (2, 3),

6, if

{
m = 1,

m = 2 and n ≥ 4,

7, if

{
4 ≤ min{m+ 1, n},
m ≥ n = 3.

Proof. The result holds from the following study of cases: (a) Proposition 1
proves the case m = 1 and n ≥ 4; (b) Proposition 4 proves the case (m,n) =
(1, 3); (c) Proposition 6 proves the case 4 ≤ min{m+ 1, n}; (d) Proposition 7
proves the case m = 2 and n ≥ 4; and (e) Proposition 8 proves the case n = 3
and m > 1.
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Theorem 3. It is verified that

χ5(Pl × Fm,n) =



6, if

{
(m,n) ∈ {(1, 3), (2, 3)},
(m,n) = (1, 4) and l 6= 5,

7, if


m = 1 and n ≥ 5,

(l,m, n) = (5, 1, 4),

(m,n) ∈ {(2, 4), (3, 4)},

8, if

{
min{m+ 1, n} < 5 ≤ min{2m+ 1, n},
m = n = 3,

9, if

{
5 ≤ min{m+ 1, n},
n < 5 ≤ m+ 1,

Proof. The result holds from the following study of cases: (a) Proposition 1
proves the case m = 1 and n ≥ 5; (b) Proposition 4 proves the case (m,n) =
(1, 3); (c) Proposition 5 proves the case (m,n) = (1, 4); (d) Proposition 6
proves the case 5 ≤ min{m+ 1, n}; (e) Proposition 7 proves the case min{m+
1, n} < 5 ≤ min{2m + 1, n}; and (f) Proposition 8 proves the cases n < 5 ≤
m+ 1 and (m,n) ∈ {(2, 3), (2, 4), (3, 3), (3, 4)}.

Theorem 4. It is verified that

χ6(Pl × Fm,n) =



8, if

{
m = 1,

(m,n) ∈ {(2, 3), (2, 4), (3, 4)},
9, if (m,n) ∈ {(2, 5), (3, 3), (3, 5), (4, 5)},

10, if


m = 2 and n ≥ 6,

min{m+ 1, n} < 6 ≤ min{2m+ 1, n},
(m,n) ∈ {(4, 3), (4, 4)},

11, if

{
6 ≤ min{m+ 1, n},
n < 6 ≤ m+ 1,

Proof. The result holds from the following study of cases: (a) Lemma 6 proves
the case m = 1; (b) Proposition 1 proves the case m = 2 and n ≥ 6; (c)
Proposition 2 proves the case (m,n) ∈ {(2, 4), (2, 5)}; (d) Proposition 4 proves
the case (m,n) = (2, 3); (e) Proposition 6 proves the case 6 ≤ min{m+ 1, n};
(f) Proposition 7 proves the case min{m + 1, n} < 6 ≤ min{2m + 1, n}; and
(g) Proposition 8 proves the cases n < 6 ≤ m+ 1 and (m,n) ∈ {(3, 3), (3, 4),
(3, 5), (4, 3), (4, 4), (4, 5)}.
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Theorem 5. It is verified that

χ7(Pl×Fm,n) =



8, if (m,n) = (1, 3),

9, if

{
m = 1 and n > 3,

(m,n) ∈ {(2, 3), (2, 4), (2, 5), (3, 3), (3, 4)},
10, if (m,n) ∈ {(2, 6), (4, 3), (3, 5), (4, 5)},

11, if

{
m = 2 and n ≥ 7,

(m,n) ∈ {(3, 6), (4, 4), (4, 6), (5, 3), (5, 6)},

12, if


min{m+ 1, n} < 7 ≤ min{2m+ 1, n},
(m,n) ∈ {(5, 4), (5, 5)},
n = 3 and 7 ≤ m+ 1,

13, if

{
7 ≤ min{m+ 1, n},
n < 7 ≤ m+ 1.

Proof. The result holds from the following study of cases: (a) Lemma 6
proves the case m = 1; (b) Proposition 1 proves the case m = 2 and n ≥
7; (c) Proposition 2 proves the case (m,n) ∈ {(2, 5), (2, 6)}; (d) Proposi-
tion 3 proves the case (m,n) = (2, 4); (e) Proposition 4 proves the case
(m,n) = (2, 3); (f) Proposition 6 proves the case 7 ≤ min{m + 1, n}; (g)
Proposition 7 proves the case min{m + 1, n} < 7 ≤ min{2m + 1, n}; (h)
Proposition 8 proves the cases n < 7 ≤ m + 1 and (m,n) ∈ {(3, 4), (3, 5),
(3, 6), (4, 4), (4, 5), (4, 6), (5, 4), (5, 5), (5, 6)}; and (i) Proposition 9 proves the
case n = 3 ≤ m ≤ 5.

Finally, we solve the dynamic chromatic problem for the direct product of
a path with either a simple fan graph or a double fan graph.

Theorem 6. Let l > 2, n > 2 and r be three positive integers. Then,

χr(Pl × F1,n) =



r + 1, if


r ∈ {1, 2},
(n, r) = (3, 5),

(n, r) = (4, 5) and l 6= 5,

r + 2, if



r = 3,

(n, r) = (3, 4),

(l, n, r) = (5, 4, 5),

n ≥ r ∈ {4, 5},
6 ≤ r ≤ 2n,

2n+ 2, if r > 2n.
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Proof. The result holds from the following study of cases: (a) Lemma 6 proves
the case r ≥ 6; (b) Proposition 1 proves the case n ≥ r ∈ {4, 5}; (c) Proposition
4 proves the case (n, r) ∈ {(3, 4), (3, 5)}; (d) Proposition 5 proves the case
(n, r) = (4, 5); and (e) Theorem 1 proves the case r ∈ {1, 2, 3}.

Theorem 7. Let l > 2, n > 2 and r be three positive integers. Then,

χr(Pl×F2,n) =



r + 1, if

{
r ∈ {1, 2},
(n, r) ∈ {(3, 4), (3, 5)}

r + 2, if

{
r = 3,

(n, r) ∈ {(3, 6), (3, 7), (4, 5), (4, 6), (4, 7), (5, 7)},
r + 3, if (n, r) ∈ {(5, 6), (6, 7)},

r + 4, if

{
n ≥ r ∈ {6, 7},
8 ≤ r ≤ 2n,

2r − 2, if 3 < r ≤ min{n, 5},
2n+ 4. if r > 2n.

Proof. The result holds from the following study of cases: (a) Lemma 6
proves the case r ≥ 8; (b) Proposition 1 proves the case n ≥ r ∈ {6, 7}; (c)
Proposition 2 proves the case (n, r) ∈ {(4, 6), (5, 6), (5, 7), (6, 7)}; (d) Propo-
sition 3 proves the case (n, r) ∈ {(4, 7)}; (e) Proposition 4 proves the case
(n, r) ∈ {(3, 6), (3, 7)}; (f) Proposition 7 proves the case 3 < r ≤ min{n, 5};
(g) Proposition 8 proves the case (n, r) ∈ {(3, 5), (4, 5)}; (h) Theorem 1 proves
the case r ∈ {1, 2, 3}; and (i) Theorem 2 proves the case (n, r) = (3, 4).

5 Conclusion and further work

In this paper, we have solved the r-dynamic chromatic problem of the direct
product of a path Pl with a fan graph Fm,n, except for the case n < r ∈
{2m+ 2, 2m+ 3}, which, due to its difficulty, it has been solved under certain
assumptions. The obtained results have been used to determine in particular
the r-dynamic chromatic number of the direct product Pl×Fm,n, for all r ≤ 7,
and also, for all m ∈ {1, 2}. In order to deal with higher orders, the study
concerning the remaining cases satisfying that n < r ∈ {2m + 2, 2m + 3} is
established as further work.
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