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On some links between the generalised Lucas
pseudoprimes of level k

Dorin Andrica, Ovidiu Bagdasar and Michael Th. Rassias

Abstract

Pseudoprimes are composite integers sharing behaviours of the prime
numbers, often used in practical applications like public-key cryptogra-
phy. Many pseudoprimality notions known in the literature are defined
by recurrent sequences. In this paper we first establish new arithmetic
properties of the generalized Lucas and Pell-Lucas sequences. Then
we study the recent notion of generalized Pell and Pell-Lucas pseudo-
primes of level k, and find inclusions between the sets of pseudoprimes
on different levels. In this process we extend several results concerning
Fibonacci, Lucas, Pell, and Pell-Lucas sequences.

1 Introduction

Recurrent sequences present both theoretical and practical importance, and
many interesting properties and applications of these sequences are still being
discovered. Famous examples of second-order recurrences with integer coeffi-
cients include the classical Fibonacci, Lucas, Pell, or Pell-Lucas sequences.

For a and b integers, the generalized Lucas sequence {Un(a, b)}n≥0 and
its companion, the generalized Pell-Lucas sequence {Vn(a, b)}n≥0 whose
terms will be denoted by Un and Vn for convenience, are defined by

Un+2 = aUn+1 − bUn, U0 = 0, U1 = 1, n = 0, 1, . . . (1)

Vn+2 = aVn+1 − bVn, V0 = 2, V1 = a, n = 0, 1, . . . . (2)

Key Words: Generalised Lucas sequences, Jacobi symbol, Pseudoprimality, Pseudopri-
mality of level k.
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A standard method to study these sequences involves the quadratic equa-
tion z2 − az + b = 0, which for D = a2 − 4b 6= 0 has the distinct roots

α =
a+
√
D

2
, β =

a−
√
D

2
. (3)

By Viéte’s relations one has α+ β = a, αβ = b, while α− β =
√
D.

Using these notations, the following Binet-like formulae are obtained

Un =
αn − βn

α− β
=

1√
D

(αn − βn) , n = 0, 1, . . . (4)

Vn = αn + βn, n = 0, 1, . . . . (5)

These formulae extend naturally to negative indices, and we have

U−1 =
1√
D

(
α−1 − β−1

)
= −1

b
, V−1 = α−1 + β−1 =

a

b
, (6)

and in general, the following relations hold for any integer n ≥ 0:

U−n =
1√
D

(
α−n − β−n

)
= − 1

bn
Un, V−n = α−n + β−n =

1

bn
Vn. (7)

Note that the terms Un and Vn are integers for all n ∈ Z if and only if
b = ±1, when these sequences have interesting divisibility properties [10]. We
also mention that the general term formula for Un and Vn can also be written
using bivariate cyclotomic polynomials in α and β [11, p. 99].

For b = −1 and k > 0, one obtains the k-Fibonacci and k-Lucas number
Fk,n = Un(k,−1) and Lk,n = Vn(k,−1), where D = k2 + 4. In particular, for
k = 1 we get the classical Fibonacci and Lucas numbers Fn = Un(1,−1) and
Ln = Vn(1,−1) where D = 5, while for k = 2 we get the Pell and Pell Lucas
numbers Pn = Un(2,−1) and Qn = Vn(2,−1), when D = 8.

For b = 1, the integers Un(a, 1) have combinatorial interpretations, while
the terms Vn(a, 1) relate to the number of solutions for certain Diophantine
equations [3], and to important classes of polynomials, including Chebysev
polynomials of the first and second kinds [2, Chapter 2.2].

The generalized Pell and Pell-Lucas sequences have attracted much inter-
est in recent years. New arithmetic properties were established in [3], while
identification formulae for the sequence terms and density results have been
derived in [7]. Conjectures on the infinity of certain sets of pseudoprimes
inspired by [3] have been recently solved by J. Grantham [13].

The arithmetic properties of generalized Lucas and Pell-Lucas sequences
[3], inspired the concept of generalized Lucas pseudoprimes of level k [5],
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which led to new additions to the Online Encyclopedia of Integer Sequences
(OEIS) [17]. The connections between the pseudoprimes of levels 1 and 2
studied in [4] showed that the extension to level 3 are not trivial.

In this paper we first derive new arithmetic properties which can be used
to obtain links between the pseudoprimes of levels 2k. In Section 2 we review
basic properties of generalised Lucas sequences and pseudoprimality notions.
Then, in Section 3 we establish some new relations and arithmetic properties
of the generalised Pell and Pell-Lucas sequences. These are used in Section 4 to
to prove new links between the generalised pseudoprimes of level k, extending
earlier work related to levels 1 and 2, and to Fibonacci and Lucas numbers.

Given the applications of pseudoprimes in public key cryptography [15],
computational number theory [16], and IT security [19], further works can be
dedicated to the use of pseudoprimes of level k in a cryptography context.

2 Preliminary results

For a and b arbitrary integers, the terms of the sequences {Un(a, b)}n≥0 and
{Vn(a, b)}n≥0 will be denoted by Un and Vn.

2.1 Useful identities and arithmetic properties

We first present some Cassini-type identities generalising Lemma 2.4 in [4].

Lemma 1. Let m,M, r,R be integers with r +R = m+M . We have:

1◦ UmUM − UrUR = brUm−rUM−r, (8)

2◦ UmVM − UrVR = brUm−rVM−r, (9)

3◦ VmVM − VrVR = −DbrUm−rUM−r, (10)

4◦ VmVM −DUrUR = brVm−rVM−r. (11)

Proof. For 1◦, from (4), (5), αβ = b and R− r = m+M − 2r we obtain

UmUM − UrUR =
αm − βm

α− β
· α

M − βM

α− β
− αr − βr

α− β
· α

R − βR

α− β

=
αrβR − αmβM − αMβm + αRβr

(α− β)2

= (αβ)
r β

m+M−2r − αm−rβM−r − αM−rβm−r + αm+M−2r

(α− β)2

= (αβ)
r

(
αm−r − βm−r

α− β

)(
αM−r − βM−r

α− β

)
= brUm−rUM−r.
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For 2◦ we use the formulae (4) and (5) to deduce that

UmVM − UrVR =

(
αm − βm

α− β

)(
αM + βM

)
−
(
αr − βr

α− β

)(
αR + βR

)
=
αmβM − αMβm − αrβR + αRβr

α− β

= (αβ)r
αm−r − βm−r

α− β
(
αM−r + βM−r

)
= brUm−rVM−r.

Similar arguments and (α− β)2 = D are used to prove 3◦ and 4◦.

We now summarise some arithmetic properties proved in [3].

Theorem 2 ([3], Theorem 3.1). Let p be an odd prime, k a non-negative
integer, and r an arbitrary integer. If b = ±1 and a is an integer such that
D = a2 − 4b > 0 is not perfect square, then the sequences Un and Vn defined
by (1) and (2) satisfy the following relations:

1) 2Ukp+r ≡
(
D

p

)
UkVr + VkUr (mod p) (12)

2) 2Vkp+r ≡ D
(
D

p

)
UkUr + VkVr (mod p), (13)

where
(

D
p

)
is the Legendre symbol (see, e.g., [1]).

Proposition 3 ([3], Theorem 3.5). Let p be an odd prime, and let k > 0 and
a be integers so that D = a2 +4 > 0 is not a perfect square. If Un = Un(a,−1)
and Vn = Vn(a,−1), then we have

1) Ukp−(D
p ) ≡ Uk−1 (mod p),

2) Vkp−(D
p ) ≡

(
D
p

)
Vk−1 (mod p).

Proposition 4 ([3], Theorem 3.7). Let p be an odd prime, and let k > 0 and
a be integers so that D = a2 − 4 > 0 is not a perfect square. If Un = Un(a, 1)
and Vn = Vn(a, 1), then we have

1) Ukp−(D
p ) ≡

(
D
p

)
Uk−1 (mod p),

2) Vkp−(D
p ) ≡ Vk−1 (mod p).
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Classical identities known to E. Lucas (see, e.g., [20]) are obtained as par-
ticular instances. For example, given that U0 = 0 and V0 = 2, by using k = 1
and r = 0 in Theorem 2 one obtains

Up ≡
(
D

p

)
(mod p), Vp ≡ a (mod p), (14)

while replacing k = 1 in Propositions 3 and 4 one has

Up−(D
p ) ≡ 0 (mod p), Vp−(D

p ) ≡ 2

(
D

p

) 1−b
2

(mod p). (15)

2.2 Pseudoprimality generated by {Un(a, b)}n≥0 and {Vn(a, b)}n≥0

Pseudoprimes are composite numbers which share certain properties of prime
numbers, which have found applications in primality testing, cryptography,
or the factorization of large integers. Important classes of pseudoprimes are
linked to the generalized Lucas sequences {Un(a, b)}n≥0 and {Vn(a, b)}n≥0

given by (1) and (2), based on the relations (14) and (15).
Grantham [12] unified various pseudoprimality notions under the name

of Frobenius pseudoprimes and several examples are listed in Rotkiewicz [18].
Here we briefly recall the key pseudoprime notions relevant to this paper.

Definition 5. [[5], Definition 1.4] An odd composite integer n is said to be a
generalized Lucas pseudoprime of parameters a and b if gcd(n, b) = 1
and n divides Un−(D

n ), where
(
D
n

)
is the Jacobi symbol.

By (14), one has U2
p ≡ 1 (mod p), and in our paper [6] we have defined

some weak pseudoprimality notions for the sequences Un(a, b) and Vn(a, b),
for which we have explored related properties and novel integer sequences.

Definition 6. A composite integer n for which n | U2
n − 1 is called a weak

generalized Lucas pseudoprime of parameters a and b.

Definition 7. A composite integer n is said to be a generalized Bruckman-
Lucas pseudoprime of parameters a and b if n | Vn(a, b)− a.

3 Arithmetic properties of {Un(a, b)}n≥0 and {Vn(a, b)}n≥0

In this section we use Propositions 3 and 4 to derive some divisibility prop-
erties modulo a composite number. These allow to connect some classes of
generalized Lucas and Pell-Lucas pseudoprimes proposed in [4].



ON LINKS BETWEEN GENERALISED LUCAS PSEUDOPRIMES OF LEVEL K 28

If p is prime and a is an odd integer, then for b = ±1 we have D = a2 ∓ 4,
and by the law of quadratic reciprocity for the Jacobi symbol one has(

D

p

)(
p

D

)
= (−1)

p−1
2 ·D−1

2 = 1, (16)

therefore one can deduce that (
D

p

)
=
( p
D

)
. (17)

This property allows us to rewrite Propositions 3 and 4.

3.1 Results for b = −1

We shortly denote Un = Un(a,−1) and Vn = Vn(a,−1). By substituting (17)
in Proposition 3, we obtain the relations

Ukp−( p
D ) ≡ Uk−1 (mod p), Vkp−( p

D ) ≡
( p
D

)
Vk−1 (mod p).

We now investigate some identities modulo an odd composite number n.
Recall that by (7) we have U−n = − 1

bnUn, and V−n = 1
bnVn, which for

b = −1 and n = 1 gives U−1 = U1 = 1 and V−1 = −V1 = −a.

Lemma 8. Consider the integers a, s, k and n, and let D be an odd number
relatively prime with n. The following identities hold:

U(k+1)s−( n
D ) = UsUks + Us−( n

D )Uks−( n
D ), (18)

U(k+1)s = UsUks−( n
D ) + Us−( n

D )Uks + a
( n
D

)
UsUks. (19)

Proof. Applying Lemma 1 part 1◦ for m = s−
(
n
D

)
, M = ks−

(
n
D

)
, r = −

(
n
D

)
,

and R = (k + 1)s−
(
n
D

)
, we obtain

Us−( n
D )Uks−( n

D ) − U−( n
D )U(k+1)s−( n

D ) = (−1)−( n
D )UsUks. (20)

We can easily check that for b = −1 we have U−1 = U1 = 1, hence U−( n
D ) = 1.

Since (n,D) = 1 and
(
n
D

)
= ±1, we have (−1)−( n

D ) = −1, hence (18) holds.
Similarly, using m = s, M = ks+ 1, r = 1, R = (k + 1)s in (8), we get

U(k+1)s = UsUks+1 + Us−1Uks. (21)
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From the recurrence (1) satisfied by Un, one obtains

Uks+1 = aUks + Uks−1, Uks−1 = −aUks + Uks+1

Us+1 = aUs + Us−1, Us−1 = −aUs + Us+1.

The following two cases are possible.
Case 1. If

(
n
D

)
= 1, then

U(k+1)s = Us

[
aUks + Uks−( n

D )

]
+ UksUs−( n

D )

= UsUks−( n
D ) + Us−( n

D )Uks + aUsUks.

Case 2. If
(
n
D

)
= −1, then

U(k+1)s = UsUks−( n
D ) + Uks

[
−aUs + Us−( n

D )

]
= UsUks−( n

D ) + Us−( n
D )Uks − aUsUks.

The two cases are summarised by the unitary formula (19).

Some particular examples of Lemma 8 present special interest, and here
we provide the relations obtained for s = n and k = 0, 1, 2.

U2n−( n
D ) = U2

n + U2
n−( n

D ),

U2n = 2UnUn−( n
D ) + a

( n
D

)
U2
n,

U3n−( n
D ) = UnU2n + Un−( n

D )U2n−( n
D ),

U3n = UnU2n−( n
D ) + Un−( n

D )U2n + a
( n
D

)
UnU2n.

Under the supplementary assumptions n | Un−( n
D ) and n | U2

n − 1 (linked to

Definitions 5 and 6), one obtains the congruences

U2n−( n
D ) ≡ 1 (mod n), U2n ≡ a

( n
D

)
(mod n), (22)

U3n−( n
D ) ≡ a

( n
D

)
Un (mod n), U3n ≡ (1 + a2)Un (mod n).

We investigate some identities modulo a composite number. Recall that a
is odd and D = a2 + 4, while U0 = 0, U1 = 1, U2 = a and U3 = a2 + 1.
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Theorem 9. Let a and n > 0 be odd integers such that n and D are coprime.
If n | Un−( n

D ) and n | U2
n − 1, then for all positive integers k ≥ 1, we have:

U(2k−1)n−( n
D ) ≡

( n
D

)
U2k−2Un (mod n), (23)

U(2k−1)n ≡ U2k−1Un (mod n), (24)

and also,

U(2k)n−( n
D ) ≡ U2k−1 (mod n), (25)

U(2k)n ≡
( n
D

)
U2k (mod n). (26)

Proof. By the hypothesis, using t = k and n = s in (18) and (19) we get

U(t+1)n−( n
D ) ≡ UtnUn (mod n), (27)

U(t+1)n ≡ Utn−( n
D )Un + a

( n
D

)
UtnUn (mod n). (28)

We prove (23), (24), (25) and (26) by induction on k ≥ 1.
For the anchor step k = 1 the relations (23) and (24) clearly follow:

Un−( n
D ) ≡ 0 ≡

( n
D

)
U0Un (mod n),

Un ≡ U1Un (mod n).

Also, (25) and (26) follow directly from relation (22) written as

U2n−( n
D ) ≡ 1 ≡ U1 (mod n),

U2n ≡
( n
D

)
a ≡

( n
D

)
U2 (mod n).

Assume that (23), (24), (25) and (26) hold for k. We then prove that these
statements also hold for k + 1.

Indeed, by substituting t = 2k and t = 2k+1 in (27) and from the induction
hypothesis, one obtains

U(2k+1)n−( n
D ) ≡

( n
D

)
U(2k)nUn ≡

( n
D

)
U2kUn (mod n),

U(2k+2)n−( n
D ) ≡ U(2k+1)nUn ≡ (U2k+1Un)Un ≡ U2k+1 (mod n).
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Also, by substituting t = 2k and t = 2k + 1 in (28), and using the induction
hypotheses, we deduce the following relations

U(2k+1)n ≡ U(2k)n−( n
D )Un + a

( n
D

)
U(2k)nUn (mod n)

≡ U2k−1Un + a
( n
D

)2
U2kU

2
n (mod n)

≡ (U2k−1 + aU2k)Un ≡ U2k+1Un (mod n),

U(2k+2)n ≡ U(2k+1)n−( n
D )Un + a

( n
D

)
U(2k+1)nUn (mod n)

≡
( n
D

)
U2k(Un)2 + a

( n
D

)
U(2k+1)n(Un)2 (mod n)

≡
( n
D

)
(U2k + aU2k+1) ≡

( n
D

)
U2k+2 (mod n).

This ends the proof.

Similarly, we now derive some useful results concerning Vn.

Lemma 10. Consider the integers a, s, k and n, and let D be an odd number
relatively prime with n. The following identities hold:

V(k+1)s−( n
D ) = UsVks + Us−( n

D )Vks−( n
D ), (29)

V(k+1)s = UsVks−( n
D ) + Us−( n

D )Vks + a
( n
D

)
UsVks. (30)

Proof. Applying Lemma 1 part 2◦ for m = s−
(
n
D

)
, M = ks−

(
n
D

)
, r = −

(
n
D

)
,

and R = (k + 1)s−
(
n
D

)
, we obtain

Us−( n
D )Vks−( n

D ) − U−( n
D )V(k+1)s−( n

D ) = (−1)−( n
D )UsVks. (31)

As in Lemma 8, we have U−( n
D ) = 1 and (−1)−( n

D ) = −1, hence (29) holds.

Similarly, for m = s, M = ks+ 1, r = 1, and R = (k + 1)s, we obtain

V(k+1)s = UsVks+1 + Us−1Vks. (32)

From the recurrence (2) satisfied by Vn, one obtains

Vks+1 = aVks + Vks−1, Vks−1 = −aVks + Vks+1

Vs+1 = aVs + Vs−1, Vs−1 = −aVs + Vs+1.

The following two cases are possible.
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Case 1. If
(
n
D

)
= 1, then

V(k+1)s = Us

[
aVks + Vks−( n

D )

]
+ VksUs−( n

D )

= UsVks−( n
D ) + Us−( n

D )Vks + aUsVks.

Case 2. If
(
n
D

)
= −1, then

V(k+1)s = UsVks−( n
D ) + Vks

[
−aUs + Us−( n

D )

]
= UsVks−( n

D ) + Us−( n
D )Vks − aUsVks.

The two cases are summarised by the unitary formula (30).

Some particular examples from Lemma 10 present special interest, and
here we show the relations obtained for s = n and k = 0, 1, 2. Recall that
V0 = 2, V1 = a, V2 = a2 + 2, V3 = a3 + 3a and V−( n

D ) = −a
(
n
D

)
. We have

Vn−( n
D ) = UnV0 + Un−( n

D )V−( n
D ) = 2Un − a

( n
D

)
Un−( n

D ),

Vn = UnV−( n
D ) + Un−( n

D )V0 + a
( n
D

)
UnV0 = 2Un−( n

D ) + a
( n
D

)
Un,

V2n−( n
D ) = UnVn + Un−( n

D )Vn−( n
D ),

V2n = UnVn−( n
D ) + Un−( n

D )Vn + a
( n
D

)
UnVn,

V3n−( n
D ) = UnV2n + Un−( n

D )V2n−( n
D ),

V3n = UnV2n−( n
D ) + Un−( n

D )V2n + a
( n
D

)
UnV2n.

Under the supplementary assumptions n | Un−( n
D ) and n | U2

n − 1 (linked to

Definitions 5 and 6), one obtains the following congruences

Vn−( n
D ) ≡ V0Un (mod n), Vn ≡ V1

( n
D

)
Un (mod n), (33)

V2n−( n
D ) ≡

( n
D

)
V1 (mod n), V2n ≡ V2 (mod n), (34)

V3n−( n
D ) ≡ V2Un (mod n), V3n ≡ V3

( n
D

)
Un (mod n).

We now investigate relations modulo a composite number when D = a2 + 4.



ON LINKS BETWEEN GENERALISED LUCAS PSEUDOPRIMES OF LEVEL K 33

Theorem 11. Let a and n > 0 be odd integers such that n and D are coprime.
If n | Un−( n

D ) and n | U2
n − 1, then for all positive integers k, we have:

V(2k−1)n−( n
D ) ≡ V2k−2Un (mod n), (35)

V(2k−1)n ≡
( n
D

)
V2k−1Un (mod n), (36)

and also,

V(2k)n−( n
D ) ≡

( n
D

)
V2k−1 (mod n), (37)

V(2k)n ≡ V2k (mod n). (38)

Proof. By the hypothesis, using t = k and n = s in (29) and (30) we get

V(t+1)n−( n
D ) ≡ VtnUn (mod n), (39)

V(t+1)n ≡ Vtn−( n
D )Un + a

( n
D

)
VtnUn (mod n). (40)

We will prove (35), (36), (37), (38) by induction on k ≥ 1. The anchor step
relations for k = 1 are confirmed by the formulae (33) and (34).

For the induction step, assume that (35), (36), (37), (38) hold for 1, . . . , k,
and we then prove that these relations also hold for k + 1.

Indeed, replacing t = 2k and t = 2k + 1 in (39), one obtains

V(2k+1)n−( n
D ) ≡ V(2k)nUn ≡

( n
D

)
V2kUn (mod n),

V(2k+2)n−( n
D ) ≡

( n
D

)
V(2k+1)nUn ≡

(
V(2k+1)Un

)
Un ≡

( n
D

)
V(2k+1) (mod n).

Also, by using t = 2k and t = 2k + 1 in relation (40) we deduce that

V(2k+1)n ≡ V(2k)n−( n
D )Un + a

( n
D

)
V(2k)nUn (mod n)

≡
( n
D

)
V2k−1Un + a

( n
D

)2
V(2k)U

2
n (mod n)

≡
( n
D

)
(V2k−1 + aV2k)Un ≡

( n
D

)
V2k+1Un (mod n),

V(2k+2)n ≡ V(2k+1)n−( n
D )Un + a

( n
D

)
V(2k+1)knUn (mod n)

≡ V2k(Un)2 + a
( n
D

)2
V(2k+1)n(Un)2 (mod n)

≡ V2k + aV2k+1 ≡ V2k+2 (mod n).

This ends the proof.
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3.2 Results for b = 1

We denote for simplicity Un = Un(a, 1) and Vn = Vn(a, 1). Substituting (17)
in Proposition 4, we obtain the relations

Ukp−( p
D ) ≡

( p
D

)
Uk−1 (mod p), Vkp−( p

D ) ≡ Vk−1 (mod p).

First, we derive some results which will be useful in the proof of the main
theorem. Recall that by (7) we have U−n = − 1

bnUn, and V−n = 1
bnVn, which

for b = 1 and n = 1 gives U−1 = −U1 = −1 and V−1 = −V1 = a.

Lemma 12. Consider the integers a, s, k and n, and let D be an odd number
relatively prime with n. The following identities hold:

U(k+1)s−( n
D ) =

( n
D

) [
UsUks − Us−( n

D )Uks−( n
D )

]
, (41)

U(k+1)s =
( n
D

) [
aUsUks − UsUks−( n

D ) − Us−( n
D )Uks

]
. (42)

Proof. Applying Lemma 1 part 1◦ for m = s−
(
n
D

)
, M = ks−

(
n
D

)
, r = −

(
n
D

)
,

and R = (k + 1)s−
(
n
D

)
, we obtain

Us−( n
D )Uks−( n

D ) − U−( n
D )U(k+1)s−( n

D ) = UsUks. (43)

For b = 1 we have U−( n
D ) = −

(
n
D

)
, hence (41) holds.

Similarly, using m = s, M = ks+ 1, r = 1, R = (k + 1)s in (8), we get

U(k+1)s = UsUks+1 − Us−1Uks. (44)

From the recurrence (1) satisfied by Un for b = 1, one obtains

Uks+1 = aUks − Uks−1, Uks−1 = aUks − Uks+1

Us+1 = aUs − Us−1, Us−1 = aUs − Us+1.

The following two cases are possible.
Case 1. If

(
n
D

)
= 1, then

U(k+1)s = Us

[
aUks − Uks−( n

D )

]
− UksUs−( n

D )

= aUsUks − UsUks−( n
D ) − UksUs−( n

D ).

Case 2. If
(
n
D

)
= −1, then

U(k+1)s = UsUks−( n
D ) − Uks

[
aUs − Us−( n

D )

]
= −aUsUks + UsUks−( n

D ) + Us−( n
D )Uks.

The two cases are summarised in the unitary formula (42).
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Some particular instances of Lemma 12 present special interest. We show
the relations obtained for s = n and k = 1, 2 (the case k = 0 is trivial).

U2n−( n
D ) =

( n
D

) [
U2
n − U2

n( n
D )

]
,

U2n =
( n
D

) [
aU2

n − 2UnUn−( n
D )

]
U3n−( n

D ) =
( n
D

) [
UnU2n − Un−( n

D )U2n−( n
D )

]
,

U3n =
( n
D

) [
aUnU2n − UnU2n−( n

D ) − Un−( n
D )U2n

]
.

Under the supplementary assumptions n | Un−( n
D ) and n | U2

n − 1 (linked to

Definitions 5 and 6), one obtains the following congruences

U2n−( n
D ) ≡

( n
D

)
U1 (mod n), U2n ≡

( n
D

)
U2 (mod n) (45)

U3n−( n
D ) ≡ U2Un (mod n), U3n = U3Un (mod n).

We now investigate some identities modulo a composite number. Recall
that a is odd, D = a2 − 4, while U0 = 0, U1 = 1, U2 = a and U3 = a2 − 1.

Theorem 13. Let a and n > 0 be odd integers such that n and D are coprime.
If n | Un−( n

D ) and n | U2
n − 1, then for all positive integers k, we have:

U(2k−1)n−( n
D ) ≡ U2k−2Un (mod n), (46)

U(2k−1)n ≡ U2k−1Un (mod n), (47)

and also,

U(2k)n−( n
D ) ≡

( n
D

)
U2k−1 (mod n), (48)

U(2k)n ≡
( n
D

)
U2k (mod n). (49)

Proof. By the hypothesis, using t = k and n = s in (41) and (42) we get

U(t+1)n−( n
D ) ≡

( n
D

)
UtnUn (mod n), (50)

U(t+1)n ≡
( n
D

) [
aUtn − Utn−( n

D )

]
Un (mod n). (51)

We prove (46), (47), (48) and (49) by induction in k ≥ 1. The anchor step
k = 1 clearly follows by (45) and the relation below

Un−( n
D ) ≡ 0 ≡

( n
D

)
U0Un (mod n),

Un ≡ U1Un (mod n).
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For the induction step, assume that (46), (47), (48) and (49) hold for
1, . . . , k, and we prove that they also hold for k + 1. Indeed, substituting
t = 2k and t = 2k + 1 in (50), the following relations hold

U(2k+1)n−( n
D ) ≡

( n
D

)
U(2k)nUn ≡

( n
D

) [( n
D

)
U2k

]
Un ≡ U2kUn (mod n),

U(2k+2)n−( n
D ) ≡

( n
D

)
U(2k+1)nUn ≡

( n
D

)
(U2k+1Un)Un (mod n)

≡
( n
D

)
U2k+1 (mod n).

At the same time, by using t = 2k and t = 2k + 1 in (51) we deduce that

U(2k+1)n ≡
( n
D

) [
aU(2k)n − U(2k)n−( n

D )

]
Un (mod n)

≡
( n
D

) [
a
( n
D

)
U2k −

( n
D

)
U2k−1

]
Un (mod n)

≡ U2k+1Un (mod n),

U(2k+2)n ≡
( n
D

) [
aU(2k+1)n − U(2k+1)n−( n

D )

]
Un (mod n)

≡
( n
D

)[
aU2k+1Un − U2kUn

]
Un (mod n)

≡
( n
D

)
U2k+2 (mod n).

This ends the proof.

Similarly, we derive some useful results for Vn, used in the proof of a related
theorem. Recall that by (7), U−n = − 1

bnUn, and V−n = 1
bnVn, which for b = 1

and n = 1 gives U−1 = −U1 = −1 and V−1 = −V1 = a.

Lemma 14. Consider the integers a, s, k and n, and let D be an odd number
relatively prime with n. The following identities hold:

V(k+1)s−( n
D ) =

( n
D

) [
UsVks − Us−( n

D )Vks−( n
D )

]
, (52)

V(k+1)s =
( n
D

) [
aUsVks − UsVks−( n

D ) − Us−( n
D )Vks

]
. (53)

Proof. Applying Lemma 1 part 5◦ for m = s−
(
n
D

)
, M = ks−

(
n
D

)
, r = −

(
n
D

)
,

and R = (k + 1)s−
(
n
D

)
, when b = 1 we obtain

Us−( n
D )Vks−( n

D ) − U−( n
D )V(k+1)s−( n

D ) = UsVks. (54)

Since we have U−( n
D ) = −

(
n
D

)
, (52) holds.
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Similarly, for m = s, M = ks+ 1, r = 1, and R = (k + 1)s, we obtain

V(k+1)s = UsVks+1 − Us−1Vks. (55)

From the recurrence (2) satisfied by Vn, when b = 1 one obtains

Vks+1 = aVks − Vks−1, Vks−1 = aVks − Vks+1

Vs+1 = aVs − Vs−1, Vs−1 = aVs − Vs+1.

The following two cases are possible.
Case 1. If

(
n
D

)
= 1, then

V(k+1)s = Us

[
aVks − Vks−( n

D )

]
− Us−( n

D )Vks

= aUsVks − UsVks−( n
D ) − Us−( n

D )Vks.

Case 2. If
(
n
D

)
= −1, then

V(k+1)s = UsVks−( n
D ) −

[
aUs − Us−( n

D )

]
Vks

= −aUsVks + UsVks−( n
D ) + Us−( n

D )Vks.

The two cases are summarised in the unitary formula (53).

Some particular examples from Lemma 14 present special interest. We
show here the relations obtained when s = n and k = 0, 1, 2. Recall that
V0 = 2, V1 = a, V2 = a2 − 2, V3 = a3 − 3a and V−( n

D ) = a.

Vn−( n
D ) =

( n
D

) [
UnV0 − Un−( n

D )V−( n
D )

]
=
( n
D

) [
V0Un − V1Un−( n

D )

]
,

Vn =
( n
D

) [
aUnV0 − UnV−( n

D ) − Un−( n
D )V0

]
=
( n
D

) [
V1Un − V0Un−( n

D )

]
V2n−( n

D ) =
( n
D

) [
UnVn − Un−( n

D )Vn−( n
D )

]
,

V2n =
( n
D

) [
aUnVn − UnVn−( n

D ) − Un−( n
D )Vn

]
,

V3n−( n
D ) =

( n
D

) [
UnV2n − Un−( n

D )V2n−( n
D )

]
,

V3n =
( n
D

) [
aUnV2n − UnV2n−( n

D ) − Un−( n
D )V2n

]
.

Under the supplementary assumptions n | Un−( n
D ) and n | U2

n − 1 (linked
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to Definitions 5 and 6), one obtains the following congruences

Vn−( n
D ) ≡

( n
D

)
V0Un (mod n), Vn ≡

( n
D

)
V1Un (mod n), (56)

V2n−( n
D ) ≡ V1 (mod n), V2n ≡ V2 (mod n), (57)

V3n−( n
D ) ≡

( n
D

)
V2Un (mod n), V3n ≡

( n
D

)
V3

( n
D

)
Un (mod n).

We now investigate relations modulo a composite number, with D = a2 − 4.

Theorem 15. Let a and n > 0 be odd integers such that n and D are coprime.
If n | Un−( n

D ) and n | U2
n − 1, then for all positive integers k, we have:

V(2k−1)n−( n
D ) ≡

( n
D

)
V2k−2Un (mod n), (58)

V(2k−1)n ≡
( n
D

)
V2k−1Un (mod n), (59)

and also,

V(2k)n−( n
D ) ≡ V2k−1 (mod n), (60)

V(2k)n ≡ V2k (mod n). (61)

Proof. By the hypothesis, using t = k and n = s in (52) and (53) we get

V(t+1)n−( n
D ) ≡

( n
D

)
VtnUn (mod n), (62)

V(t+1)n ≡
( n
D

) [
aVtn − Vtn−( n

D )

]
Un (mod n). (63)

We now prove the relations (58), (59), (60), (61) by induction in k ≥ 1.
The anchor step k = 1 follows directly by (56) and (57).

For the induction step, we assume that (58), (59), (60), (61) hold for
1, . . . , k, and we prove that they also hold for k + 1. Substituting t = 2k in
(62) and (63), by the induction hypothesis we get

V(2k+1)n−( n
D ) ≡

( n
D

)
V(2k)nUn ≡

( n
D

)
V2kUn (mod n),

V(2k+1)n ≡
( n
D

) [
aV(2k)n − V(2k)n−( n

D )

]
Un (mod n)

≡
( n
D

)
[aV2k − V2k−1]Un ≡

( n
D

)
V2k+1Un (mod n).
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Also, using t = 2k + 1 in (62) and (63), by the hypotheses we deduce

V(2k+2)n−( n
D ) ≡

( n
D

)
V(2k+1)nUn ≡ (V2k+1Un)Un ≡ V2k+1 (mod n),

V(2k+2)n ≡
( n
D

) [
aV(2k+1)n − V(2k+1)n−( n

D )

]
Un (mod n)

≡
( n
D

) [
a
( n
D

)
V2k+1Un −

( n
D

)
V2kUn

]
Un (mod n)

≡
( n
D

)2
[aV2k+1 − V2k]U2

n ≡ V2k+2 (mod n).

This ends the proof.

4 Results on pseudoprimality of level k

In this section we use the arithmetic properties proved earlier, to establish
connections between the generalized Lucas and Pell-Lucas pseudoprimes of
levels k− and k+ defined in [4] and [5]. We start with some preliminaries.

Fibonacci and Lucas pseudoprimes of level k

For a prime p, the following relations hold

Fp ≡
(p

5

)
(mod p), Fp−( p

5 ) ≡ 0 (mod p). (64)

A composite integer n is called a Fibonacci pseudoprime if n | Fn−(n
5 ).

The odd Fibonacci pseudoprimes indexed A081264 in OEIS [17] start with

323, 377, 1891, 3827, 4181, 5777, 6601, 6721, 8149, 10877, 11663, 13201, 13981,

15251, 17119, 17711, 18407, 19043, 23407, 25877, 27323, 30889, 34561, . . . .

For k ≥ 1 integer, the set of Fibonacci pseudoprimes of level k and
denoted by Fk consists of all the composite integers n satisfying [8]:

n | Fkn−(n
5 ) − Fk−1.

Proposition 1 in [8] states that if gcd(n, 10) = 1, then n ∈ Fk for all k ≥ 1
if and only if n ∈ F1 and n | F 2

n − 1. In [4] we have proved that if n is a
composite integer with gcd(n, 10) = 1 and n ∈ F1, then n ∈ F2 if and only if
n | F 2

n − 1. We have also provided a counterexample, showing that n = 323 is
the first composite integer for which n ∈ F1 and n | F 2

n − 1, but n /∈ F3.
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Here D = 5,
(
n
5

)
= −1 and the calculations involving large numbers are

implemented using Matlab’s vpi (variable precision integer) library.

F324 = 2304148358552416826222090648

9642018075101617466780496790573690289968

F647 = 733699527799930913528078624701375446456404924309271040434990690014

584668246528603476477043108568806527592562210693671820824200536283472

F970 = 23362861818152996537467507811299195417669439511689710925227862142

275523753399638967783310781704529676533897971172191948004316934631842

045065771638088947558424515687624190113122357319209227560059859345334.

For a prime number p, the following congruences hold

Lp ≡ 1 (mod p), Lp−( p
5 ) ≡ 2

(p
5

)
(mod p). (65)

We recall that a composite integer satisfying n | Ln−1 is called a Bruckman-
Lucas pseudoprime, whose set was proved to be infinite in 1964 by Lehmer
[14]. The composite integers which also satisfy n | Fn−(n

5 ) are called Fibonacci-

Bruckman-Lucas pseudoprimes, proved to be infinite in [9]. The infinity
of sets of pseudoprimes related to other notions in this paper was proved in
2021 by Grantham [13].

In [5], the congruences (65) involving Lucas numbers modulo a prime led
to the concept of Lucas pseudoprimes of level k denoted by Lk, defined
for k ≥ 1, consisting of the composite numbers n satisfying

n | Lkn−(n
5 ) −

(n
5

)
Lk−1.

For these numbers we have proved that if n is a composite integer which is
coprime with 10, then if n ∈ L1, then n ∈ L2 if and only if n | F 2

n − 1.
Moreover, we have shown that n = 323 is also the first composite integer n
for which n ∈ L1 and n | F 2

n − 1, but n /∈ L3.
Furthermore, in the same paper we have introduced the generalized Lucas

pseudoprimes of levels k− (defined for b = −1) and k+ (defined for b = 1),
and calculated many novel related integer sequences obtained for k = 1, 2, 3
and a = 1, 3, 5, 7, indexed in the OEIS [17] by us.

Finally, we have also proved that when n | U2
n − 1 (see Definition 6),

the pseudoprimes of level 1 (i.e., the classical pseudoprime numbers satisfying
Definitions 5 or 7) are also of level 2, but not always of level 3, providing
numerous counterexamples and conjectures.

We here use the results in Section 3 to establish further inclusions.

In what follows a, k and n are non-negative integers with a and n odd.
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4.1 Results for Un and b = −1

The set U−
k (a) of generalised Lucas pseudoprimes of level k− and pa-

rameter a contains the odd composite integers n satisfying the relation

n | Ukn−( n
D ) − Uk−1.

We recall a result linking U−
1 (a) and U−

2 (a) with the property n | U2
n − 1.

Proposition 16 ([4], Theorem 4.3). Let a, n > 0 be odd integers with gcd(D,n) =
1. If n ∈ U−

1 (a), then n ∈ U−
2 (a) if and only if n | U2

n − 1.

By Theorem 9 we deduce the following general result.

Theorem 17. Let a, n > 0 be odd integers with gcd(D,n) = 1, and let k be a
positive integer. If n ∈ U−

1 (a) and n | U2
n − 1, then n ∈ U−

2k(a).

Proof. Since U0 = 0, notice that n ∈ U−
1 (a) is equivalent to n | Un−( n

D ).

As Theorem 9 hypotheses are fulfilled, by (25) we have U(2k)n−( n
D ) ≡ U2k−1

(mod n), that is equivalent to n ∈ U−
2k(a).

By Proposition 16 we also deduce the following property.

Corollary 18. Let a, n > 0 be odd integers with gcd(D,n) = 1, and let k ≥ 2
be a positive integer. If n ∈ U−

1 (a) and n ∈ U−
2 (a), then n ∈ U−

2k(a).

When a = 1 the set U−
k (a) consists of the Fibonacci pseudoprimes of level

k denoted n ∈ Fk, and one has the following result.

Corollary 19. If n is a composite integer with gcd(n, 10) = 1, then if n ∈ F1

and n | F 2
n − 1, then for all integers k ≥ 1 we have n ∈ F2k.

The inclusions obtained between the first few sets Fk in the previous corol-
lary are strict. As noted in [5], the sequence F1 of Fibonacci pseudoprimes
indexed A081264 in OEIS [17] starting with

323, 377, 1891, 3827, 4181, 5777, 6601, 6721, 8149, 10877, 11663, 13201, 13981,

15251, 17119, 17711, 18407, 19043, 23407, 25877, 27323, 30889, 34561, . . . ,

while the sequence F2 indexed A340118 is given by

323, 377, 609, 1891, 3081, 3827, 4181, 5777, 5887, 6601, 6721, 8149, 10877, 11663,

13201, 13601, 13981, 15251, 17119, 17711, 18407, 19043, 23407, 25877, 27323, . . . .



ON LINKS BETWEEN GENERALISED LUCAS PSEUDOPRIMES OF LEVEL K 42

The intersection F1 ∩ F2 starting with the elements

323, 377, 1891, 3827, 4181, 5777, 6601, 6721, 8149, 10877, 11663, 13201, 13981,

15251, 17119, 17711, 18407, 19043, 23407, 25877, 27323, 30889, 34561, 34943, . . .

was proven to be included in the sequence F4 starting with

21, 33, 323, 329, 377, 451, 861, 1081, 1463, 1819, 1891, 2033, 2211, 3383, 3647,

3653, 3741, 3827, 4089, 4163, 4181, 4323, 5071, 5671, 5777, 6083, 6541, 6601, . . .

but this also contains new terms like 21, 33, or 329.

4.2 Results for Vn and b = −1

The set V−
k (a) of generalised Pell-Lucas pseudoprimes of level k− and

parameter a contains the odd composite integers n satisfying the relation

n | Vkn−( n
D ) −

( n
D

)
Vk−1.

By Theorem 11 one can obtain the following result, linking U−
1 (a), U−

2 (a),
and V−

2k(a), for positive integers k.

Theorem 20. Let a, n > 0 be odd integers with gcd(D,n) = 1, and let k be a
positive integer. If n ∈ U−

1 (a) and n | U2
n − 1, then n ∈ V−

2k(a).

Proof. If n ∈ U−
1 (a) then we clearly have n | Un−( n

D )−U0, that is n | Un−( n
D ).

As the hypotheses in Theorem 11 are fulfilled, by relation (37) it follows
that V(2k)n−( n

D ) ≡
(
n
D

)
V2k−1 (mod n), hence n ∈ V−

2k(a).

For a = 1 one recovers the sets U−
k (1) = Fk and V−

k (1) = Lk, the Fibonacci
and Lucas pseudoprimes of level k. We have the following result.

Corollary 21. If n is a composite integer with gcd(n, 10) = 1, then if n ∈ F1

and n | F 2
n − 1 (or n ∈ F2), then for all integers k ≥ 1 we have n ∈ L2k.

The inclusions obtained between the first few sets Lk in the previous corol-
lary are strict. As noted in [5], the sequence L1 of Lucas pseudoprimes of level
1 was indexed A339125 in OEIS [17], beginning with

9, 49, 121, 169, 289, 361, 529, 841, 961, 1127, 1369, 1681, 1849, 2209, 2809, 3481,

3721, 3751, 4181, 4489, 4901, 4961, 5041, 5329, 5777, 6241, 6721, 6889, 7381,

7921, 9409, 10201, 10609, 10877, 11449, 11881, 12769, 13201, 15251, 16129, . . . ,
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while the sequence L2 indexed A339517 started with

323, 377, 1001, 1183, 1729, 1891, 3827, 4181, 5777, 6601, 6721, 8149, 8841, 10877,

11663, 13201, 13981, 15251, 17119, 17711, 18407, 19043, 23407, 25877, . . . .

At the same time, the terms of the new sequence L4 start with

21, 323, 329, 377, 451, 861, 1081, 1403, 1819, 1891, 2033, 2211, 3653, 3827, 4089,

4181, 4407, 4427, 5671, 5777, 6601, 6721, 8149, 8557, 9503, 10877, 11309, 11663,

12443, 13201, 13861, 13981, 14701, 15251, 16321, 17119, 17193, 17513, 17711, . . .

As proved, one has F1 ∩F2 ⊆ L2 and F1 ∩F2 ⊆ L4, but the inclusions are not
strict, as L2 also includes 9, 49, 121, . . . , while L4 has 21, 329, 451, . . . .

Interestingly, 23407 ∈ (F1 ∩ F2) ∩ (L2 \ L4), while it seems that we have
the relation (F1 ∩ F2) ∩ (L4 \ L2) = ∅, i.e., F1 ∩ F2 ∩ L2 ⊆ F1 ∩ F2 ∩ L4.

4.3 Results for Un and b = 1

The set U+
k (a) of generalised Lucas pseudoprimes of level k+ and pa-

rameter a contains the odd composite integers n satisfying the relation

n | Ukn−( n
D ) −

( n
D

)
Uk−1.

We recall a result linking U+
1 (a) and U+

2 (a) with the property n | U2
n − 1.

Proposition 22 ([4], Theorem 4.9). Let a, n > 0 be odd integers satisfying
gcd(D,n) = 1. If n ∈ U+

1 (a), then n ∈ U+
2 (a) if and only if n | U2

n − 1.

By Theorem 13 we deduce the following result, linking U+
1 (a), U+

2 (a), and
V+
2k(a), for positive integers k.

Theorem 23. Let a, n > 0 be odd integers with gcd(D,n) = 1, and let k be a
positive integer. If n ∈ U+

1 (a) and n | U2
n − 1, then n ∈ U+

2k(a).

Proof. Notice that since U0 = 0, n ∈ U+
1 (a) is equivalent to n | Un−( n

D ).

As the hypothesis of Theorem 13 is satisfied, by relation (49) it follows
that U(2k)n−( n

D ) ≡
(
n
D

)
U2k−1 (mod n), that is equivalent to n ∈ U+

2k(a).

As for b = −1, by Proposition 22 we also deduce the property.

Corollary 24. Let a, n > 0 be odd integers with gcd(D,n) = 1, and let k ≥ 2
be a positive integer. If n ∈ U+

1 (a) and n ∈ U+
2 (a), then n ∈ U+

2k(a).
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4.4 Results for Vn and b = 1

The set V+
k (a) of generalised Pell-Lucas pseudoprimes of level k+ and

parameter a contains the odd composite integers n satisfying the relation

n | Vkn−( n
D ) − Vk−1.

By Theorem 15 the following result can be proved.

Theorem 25. Let a, n > 0 be odd integers with gcd(D,n) = 1, and let k ≥ 1
be an integer. If n ∈ U+

1 (a) and n | U2
n − 1, then n ∈ V+

2k(a).

Proof. If n ∈ U+
1 (a) then we clearly have n | Un−( n

D )−U0, that is n | Un−( n
D ).

Since the hypotheses in Theorem 15 are satisfied, by relation (60) it follows
that V(2k)n−( n

D ) ≡ V2k−1 (mod n), that is equivalent to n ∈ V+
2k(a).

Note that Un(1,−1) = Fn and Vn(1,−1) = Ln, while Un(3, 1) = F2n

(A001906) and Vn(3, 1) = L2n (A005248) are the bisection of Fibonacci and
Lucas sequences, respectively. Having tested that the first Fibonacci pseudo-
primes given by

323, 377, 1891, 3827, 4181, 5777, 6601, 6721, 8149,

can be found amongst the elements of U+
1 (3).

Numerical simulations tested for n ≤ 10000 suggest that [5]:

U−
1 (1) ⊂ U+

1 (3), V−
1 (1) ⊂ V+

1 (3),

Further investigations may reveal other unexpected connections between
the pseudoprimes of level k mentioned in this paper.
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generalized Lucas sequences, An. Ştiinţ. Univ. Ovidius Constanţa Ser.
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