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On (1,2)-absorbing primary ideals and
uniformly primary ideals with order ≤ 2

Khaled Alhazmy, Fuad Ali Ahmed Almahdi, El Mehdi Bouba, and
Mohammed Tamekkante

Abstract

This paper introduces a subset of the set of 1-absorbing primary
ideals introduced in [3]. An ideal I of a ring R is (1,2)-absorbing primary
if, whenever non-unit elements α, β, γ ∈ R with αβγ ∈ I, then αβ ∈ I
or γ2 ∈ I. The introduced notion is related to uniformly primary ideals
introduced in [5]. The first main objective of this paper is to compare
(1,2)-absorbing primary ideals with uniformly primary ideals with order
less than or equal 2, as well as to characterize them in many classes
of rings. The second part of this paper characterizes, by using (1,2)-
absorbing primary ideals, the rings R for which all ideals lie between
N(R) (the nil-radical of R) and N(R)2.

1 Introduction

Throughout this paper, R is a commutative with unit (6= 0) and I is a proper
ideal of R (that is, I 6= R). Let

√
I , Id(R), Id(R)∗, N(R), Spec(R), Prim(R),

and Max(R) denote the radical of I, the set of proper ideals R, the set of
nonzero proper ideals R, the nil-radical of R, the set of all prime ideals of R,
the set of primary ideals of R, and the set of all maximal ideals of R, respec-
tively.
Primary ideals are one of the most important tools of commutative algebra
and algebraic geometry. In [5], the authors defined uniformly primary ideals.
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I is said to be uniformly primary if there exists an integer n ≥ 0 such that,
whenever α, β ∈ R with αβ ∈ I, then α ∈ I or βn ∈ I. The order of I is the
smallest positive integer such that the above property holds. Prime ideals are
just uniformly primary ideals with order 1. Thus, the order of a uniformly
primary ideal I measures how far away I is from being prime. An interesting
characterization of uniformly primary ideals is given by [5, Proposition 8]. Re-
cently, in [3], Badawi and Yetkin have introduced an important generalization
of primary ideals. I is called 1-absorbing primary (1-AP for short) if, for each
non-unit elements α, β, γ ∈ R, αβγ ∈ I implies αβ ∈ I or γ ∈

√
I. It is clear

that every primary ideal is 1-AP. Moreover, if the rings is non-local the two
notions coincide ([3, Corollary 1]). However, over local rings, the two concepts
are different in general ([3, Example 3])
This paper focus on uniformly primary ideals with order ≤ 2. For the order
one, the absorbing version of prime ideals is defined and studied in [12] as fol-
lows: I is called 1-absorbing prime if, for each non-unit elements α, β, γ ∈ R,
αβγ ∈ I implies αβ ∈ I or γ ∈ I. So, in this paper, we define the absorb-
ing version of uniformly primary ideal of order ≤ 2 as follows: I is said to
be (1,2)-absorbing primary ((1,2)-AP for short) if, for each non-unit elements
α, β, γ ∈ R, αβγ ∈ I implies αβ ∈ I or γ2 ∈ I.
A characterization of (1,2)-AP ideals is given at the beginning of section
2 . Indeed, it is proved that I is (1,2)-AP if and only if I is 1-AP with√
I =

{
x ∈ R | x2 ∈ I

}
, or equivalently I is 1-AP and

(√
I
)
2
⊆ I (Theorem

2). We show also that uniformly primary ideals with ord ≤ 2 are (1,2)-AP and
that, over non-local rings, the two notions are the same. Proposition 7 gives
us a simple way to construct examples of (1,2)-AP ideals that are not pri-
mary. Theorem 9 characterizes local Noetherian rings over which all (1,2)-AP
ideals are uniformly primary with order ≤ 2. It is obvious that every prime
ideal is (1,2)-AP. However, Noetherian rings over which every (1,2)-AP ideal
is prime must be von Neumann regular (Theorem 10). We describe explicitly
in Theorem 11 (resp. Theorem 12) the (1,2)-AP ideals, which are exactly the
uniformly primary ideals with order ≤ 2, in rings whose non-zero prime ideals
are maximal (resp. principle ideal rings). It is proved in Theorem 13 that
a Noetherian domain that is not a field is a Dedekind domain if and only if
the only non-zero (1,2)-AP ideals are P and P 2 with P prime if and only if
the only non-zero uniformly primary ideal with ord ≤ 2 are P and P 2 with
P prime. Proposition 15 uses the product of ideals to characterizes the (1,2)-
AP ideals. At the end of Section 2, we study the behavior of (1,2)-AP ideals
over certain ring extensions. Namely, quotient ring, localization of a ring, and
polynomial ring. Section 3 is devoted to characterize rings over which every
(non-zero) proper ideal is (1,2)-AP (resp. uniformly primary with order ≤ 2).
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2 (1,2)-absorbing primary ideals vs uniformly primary
with order ≤ 2

Throughout, R is a commutative with unit ( 6= 0) and I is a proper ideal of R.

Definition 1. I is said to be (1,2)-absorbing primary ((1,2)-AP for short) if,
whenever non-unit elements α, β, γ ∈ R, αβγ ∈ I implies αβ ∈ I or γ2 ∈ I.
The set of (1,2)-AP ideals of R is denoted (1, 2)−AP (R).

Let I2 denotes the ideal generated by the squares of elements of I; I2 =(
a2 | a ∈ I

)
([2]).

The first result of this section gives a characterization of (1,2)-AP ideals by
comparing them with 1-AP ideals.

Theorem 2. The following are equivalent:

1. I is (1,2)-AP.

2. I is 1-AP and
(√
I
)
2
⊆ I.

3. I is 1-AP and
√
I =

{
x ∈ R | x2 ∈ I

}
.

Consequently, if I is (1,2)-AP then
√
I is prime.

Proof. (1)⇒ (2) Since every (1,2)-AP is 1-AP, it suffices to prove that
(√
I
)
2
⊆

I. Consider x ∈
√
I and let n be the smallest integer such that xn ∈ I. Sup-

pose that n ≥ 3. Since I is (1,2)-AP and xxn−2x = xn ∈ I, we obtain that
xxn−2 = xn−1 ∈ I or x2 ∈ I, a contradiction. Hence, n ≤ 2, and so x2 ∈ I, as
desired.
(2)⇒ (1) Let α, β, γ ∈ R− U(R) s such that αβγ ∈ I and αβ 6∈ I. Since I is

1-AP, we get that γ ∈
√
I. Thus, γ2 ∈

(√
I
)
2
⊆ I. Consequently, I is (1,2)-AP.

(2)⇔ (3) It suffices to see that
(√
I
)
2
⊆ I if and only if

√
I =

{
x ∈ R | x2 ∈ I

}
.

The last statement follows from [3, Theorem 2].

Clearly, every (1,2)-AP is 1-AP. However, a 1-AP ideal I need not satisfy(√
I
)
2
⊆ I, and so need not be (1,2)-AP. Indeed, the zero ideal of Z/8Z is

primary since
√

(0) = (2) is maximal Hence, (0) is 1-AP. However,
(√

(0)
)
2

=

(4) * (0).
We recall the following definition.
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Definition 3 ([5]). I is said to be uniformly primary if there exists an integer
n ≥ 0 such that, whenever α, β ∈ R with αβ ∈ I, then α ∈ I or βn ∈ I. The
order of I is the smallest positive integer such that the above property holds.
Let U− Prim(R) denotes the set of uniformly primary ideals of R and, for
a given positive integer n, let U− Prim(R)≤n denotes the set of uniformly
primary ideals of R of order ≤ n.

Using [5, Proposition 8] and its proof, we conclude the following characteriza-
tion of uniformly primary ideals with ord ≤ 2.

Proposition 4. The following are equivalent:

1. I ∈ U− Prim(R)≤2.

2. I ∈ Prim(R) and
√
I = {x ∈ R | x2 ∈ I}.

3. I ∈ Prim(R) and
(√
I
)
2
⊆ I.

Since primary ideals are 1-AP, comparing Theorem 2 and Proposition 4, we
conclude that uniformly primary ideals with ord ≤ 2 are (1,2)-AP. Moreover,
using [3, Corollary 1], we deduce that over a non-local ring, the two notions
coincide. Accordingly, we have the following.

Corollary 5. Suppose that R is non-local. Then, the following are equivalent:

1. I ∈ (1, 2)−AP (R).

2. I ∈ Prim(R) and
(√
I
)
2
⊆ I.

3. I ∈ U− Prim(R)≤2.

Let S and T be two rings. It is known that

Prim(S × T ) = (Prim(S)× T ) ∪ (S × Prim(T )) .

Let I ∈ Id(S) andK ∈ Id(T ). We have,
(√
I × T

)
2
⊆ I×T

(
resp.

(√
S ×K

)
2
⊆

S×K
)

if and only if
(√
I
)
2
⊆ I

(
resp.

(√
K
)
2
⊆ K

)
. Therefore, given Corol-

lary 5, we have the following result.

Corollary 6. Let S and T be two rings and J a proper ideal of R := S × T .
Then, the following are equivalent:

1. J ∈ (1, 2)−AP (R).

2. J ∈ U− Prim(R)≤2.
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3. J = I × T for some I ∈ U− Prim(S)≤2 or J = S × K for some K ∈
U− Prim(T )≤2.

Proposition 7. Suppose that (R,M) is local and let P ∈ Spec(R) . Then,

1. PM is (1,2)-AP. Moreover, PM is primary if and only if P = M or
PM = P .

2. In particular, if (0) 6= P = (x) 6= M for some x ∈ R, then PM is
(1,2)-AP that is not primary.

Proof. (1) Following [3, Theorem 7], PM is 1-AP with
√
PM = P . Moreover,

P2 ⊆ P 2 ⊆ PM . Using Theorem 2, we conclude that PM is (1,2)-AP.
Suppose now that PM ∈ Prim(R) and P 6= M . Let x ∈ M\P . For each
p ∈ P , we have px ∈ PM . Since PM is primary and x /∈

√
PM = P , we

obtain that p ∈ PM . Thus, P = PM . Conversely, if P = M then PM = M2

is clearly primary (as a power of the maximal ideal M). Also, if PM = P is
prime then it is clearly primary.
(2) If (x) = P = PM then x ∈ PM . Thus, x(1 − a) = 0 for some a ∈ M .
Hence, x = 0 since 1 − a is a unit, a contradiction. Accordingly, P 6= PM .
Now, the desired result follows from (1).

By definitions, it is clear that 1-absorbing prime ideals are (1,2)-AP. The
following example shows that these two notions do not coincide.

Example 8. Let k be a field and set A = k[x,y]
(x2,xy) . We have M = (x, y) ∈

Max(A). So, set R = AM. Then, (R,M) is local with M = MRM =
(

x
1
, y
1

)
,

and P =
(

x
1

)
∈ Spec(R). By Proposition 7, PM = (0R) is (1,2)-AP. How-

ever, it is not 1-absorbing prime. Indeed,
(

y

1

)2
.x
1

= 0R but neither
(

y

1

)2
= 0R

nor x
1

= 0R.

Seen [3, Example 3] and keeping in mind Proposition 7, we observe that, over
a local ring, (1,2)-AP ideals do not need be primary.
A ring in which the prime ideals are comparable to all principal ideals is called
a divided ring. Note that, over a divided ring (even local), every 1-AP ideal is
primary ([3, Example 3]). In particular, every (1,2)-AP is primary. Next, we
classify the local Noetherian rings in which the (1,2)-AP ideals are all primary.

Theorem 9. Suppose that (R,M) is local Noetherian. The following are
equivalent:

1. (1, 2)−AP (R) ⊆ U− Prim(R)≤2.
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2. (1, 2)−AP (R) ⊆ U− Prim(R).

3. (1, 2)−AP (R) ⊆ Prim(R)

4. R is a divided ring.

Proof. (1)⇒ (2)⇒ (3) are trivial since

U− Prim(R)≤2 ⊆ U− Prim(R) ⊆ Prim(R).

(3)⇒ (4) Let P ∈ Spec(R). Using Proposition 7, we get PM = P or P = M .
If PM = P , the Nakayama’s lemma implies that P = {0}. Hence, P = (0) or
P = M . Thus, Spec(R) ⊆ {(0),M}. Thus, prime ideals are comparable to all
(principal) ideals. Hence, R is a divided ring as desired.
(4) ⇒ (1) Let I ∈ (1, 2) − AP (R). Then, by Theorem 2, I is 1-AP and√
I =

{
x ∈ R | x2 ∈ I

}
. Hence, by [3, Theorem 9], I is primary and

√
I ={

x ∈ R | x2 ∈ I
}

. Which means, by using Proposition 4, that
I ∈ U− Prim(R)≤2, as desired.

Recall that a ring R is called von Neumann regular (V NR for short) if, for
every a ∈ R, there exists b ∈ R such that a = a2b [6, 7]. As a consequence,
every ideal in a V NR ring is radical. In particular, if R is VNR then

(1, 2)−AP (R) = U− Prim(R)≤2 = Prim(R) = Spec(R).

Theorem 10. Suppose that U− Prim(R)≤2 ⊆ Spec(R). Then,

(a) M2 = M for each M ∈ Max(R), and

(b) p2Rp = pRp for each p ∈ Spec(R).

In particular, if R is Noetherian then, the following are equivalent:

1. (1, 2)−AP (R) ⊆ Spec(R).

2. U− Prim(R)≤2 ⊆ Spec(R).

3. R is V NR.

Proof. Let M ∈ Max(R). Since M2 ∈ U− Prim(R)≤2, we get that M2 ∈
Spec(R). So, M2 =

√
M2 = M .

Let p ∈ Spec(R) and set A = R/p2, P = p/p2, and S = AP . We have that√
(0S) = N(S) = N(A)P = PP is maximal. Thus, (0S) is a primary ideal of

S. Then, (0S) = IP for some I ∈ Prim(A) such that I ⊆ P . Hence, I = I0/p
2

for some I0 ∈ Prim(R) such that p2 ⊆ I0 ⊆ p. By hypothesis, I0 is prime
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since I0 ∈ U− Prim(R)≤2. Hence, I0 = p. Thus, (0S) = PP is maximal.
Accordingly, S is a field. On the other hand, S = AP =

(
R/p2

)
p/p2

∼=
Rp/p

2Rp. Thus, p2Rp is the maximal ideal of the local ring Rp. Then, p2Rp =
pRp.
Suppose now that R is Noetherian.
(1)⇒ (2) Trivial since U− Prim(R)≤2 ⊆ (1, 2)−AP (R).
(3) ⇒ (1) Since R is V NR then every ideal is radical. Since (1,2)-AP ideals
have prime radical, every (1,2)-AP ideal of R becomes prime.
(2) ⇒ (3) The local ring Rp is Noetherian for each p ∈ Spec(R). Since
p2Rp = pRp, by applying the Nakayama’s lemma, we obtain that pRp = (0).
Thus, Rp is a field. Hence, R is a V NR ring.

We saw that over a V NR ring, the sets (1, 2) − AP (R) and U− Prim(R)≤2
are the same and coincide with Spec(R). The next two theorems give other
classes of rings over which, (1,2)-AP ideals coincide with uniformly primary
ideals with ord ≤ 2, and have a simple form.

Theorem 11. Suppose that every non-zero prime ideal is maximal (for ex-
ample, R is a 0-dimensional ring or a 1-dimensional domain). Then, the
following are equivalent:

1. I ∈ U− Prim(R)≤2.

2. I ∈ (1, 2)−AP (R).

3. P2 ⊆ I ⊆ P for some P ∈ Spec(R).

Proof. (1)⇒ (2) Clear.
(2)⇒ (3) Follows from Theorem 2.
(3) ⇒ (1) Let P ∈ Spec(R) and I an ideal such that P2 ⊆ I ⊆ P . Then,
P =

√
P2 ⊆

√
I ⊆ P . Thus,

√
I = P . If P = (0), then R is a domain and

I = (0) is prime. Now, suppose that P 6= (0). Then, P ∈ Max(R), and so I is

primary with
(√
I
)
2
⊆ I. Thus, by Proposition 4, I ∈ U− Prim(R)≤2.

The ring R (not necessarily a domain) is called a principal ideal ring (PIR for
short) if every ideal of R is principal.

Theorem 12. Suppose that R is a PIR. Then, the following are equivalent:

1. I ∈ U− Prim(R)≤2.

2. I ∈ (1, 2)−AP (R).

3. I is prime or I = M2 for some M ∈ Max(R).
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Proof. (3)⇒ (1)⇒ (2) Clear.
(2) ⇒ (3) Following the Zariski-Samuel theorem [11, Theorem 33], R is iso-
morphic to a direct product

∏n
i=1Ri of PIR, where each Ri is either a domain

or N(Ri) is maximal. Without loss of generality, write R =
∏n

i=1Ri. For each
i, the unique possible non-maximal prime ideal of Ri is (0), and in this case Ri

must be a domain. Thus, non-maximal prime ideals of R are
∏n

i=1 Pi, where
Pj = (0) for some j and Pi = Ri for each i 6= j. Thus, non-maximal prime
ideals of R are generated by idempotent.
Let I ∈ (1, 2)−AP (R). If

√
I = P is not maximal then P 2 = P . Since R is a

PIR, P 2 = P2 ⊆ I ⊆ P . Thus, I = P . Suppose now that
√
I = M is maximal.

In this case I becomes primary and M2 = M2 = (m2) ⊆ I = (x) ⊆ M = (m)
for some m,x ∈ R. Set m2 = αx and x = mβ for some α, β ∈ R. We have
mβ ∈ I, and so m ∈ I or β ∈

√
I = M . Hence, M = I or x = mβ ∈ M2.

Then, M = I or I ⊆M2. Consequently, I = M or I = M2.

A domain R is a Dedekind domain if every ideal of R is a product of prime
ideals.

Theorem 13. Suppose that R is a Noetherian domain which is not a field.
Then, the following are equivalent:

1. The only non-zero (1,2)-AP ideals are P and P 2 with P ∈ Spec(R).

2. The only non-zero uniformly primary ideal with ord ≤ 2 are P and P 2

with P ∈ Spec(R).

3. R is a Dedekind domain.

Proof. (3) ⇒ (1) Let I 6= (0) be a (1,2)-AP ideal and set P =
√
I. Clearly,

P 6= (0), otherwise I = (0). By [10, Theorem 5.2.15], R is a 1-dimensional
domain, and so P is maximal. However, RP is a PID (again by [10, Theorem
5.2.15]). Hence, P2RP = P 2RP and for each P 6= M ∈ Max(R), we have
P2RM = RM = P 2RM since P2 ⊆ P 2 *M . Hence, P2 = P 2. Using Theorem
2, I lies between P2 = P 2 and P . Accordingly, by [9, Theorem 6.20], I = P 2

or I = P .
(1)⇒ (2) Clear.
(2) ⇒ (3) Let M ∈ Max(R). If an idea I satisfies M2 ⊆ I ⊆ M , then√
I = M , and so I ∈ Prim(R). Thus, by Proposition 4, I ∈ U− Prim(R)≤2

since
(√
I
)
2

= M2 ⊆ I, and so I is equal to M or M2. It follows from [9,

Theorem 6.20] that R is a Dedekind domain.

Proposition 14. The following are equivalent:

1. I[X] ∈ (1, 2)−AP (R[X]).
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2. I[X] ∈ U− Prim(R[X])≤2.

3. I ∈ U− Prim(R)≤2.

Proof. (1)⇔ (2) is a particular case of Corollary 5 since R[X] is never local.

(2)⇒ (3) Following Proposition 4, I[X] ∈ Prim(R[X]) and
(√

I[X]
)
2
⊆ I[X].

Then, I is primary. Moreover, for each a ∈
√
I ⊆

√
I[X] =

√
I[X], and so

a2 ∈
(√

I[X]
)
2
⊆ I[X]. Hence, a2 ∈ I. Then,

(√
I
)
2
⊆ I. Therefore, by

Proposition 4, I ∈ U− Prim(R)≤2.

(3) ⇒ (2) Following Proposition 4, I ∈ Prim(R) and
(√

I
)
2
⊆ I. Then,

I[X] ∈ Prim(R[X]). Let f ∈
√
I[X]. Set f =

∑n
k=0 akX

k. We have

f2 =

n∑
k=0

(ak)
2
X2k +

∑
0≤i<j≤n

2aiajX
i+j

=

n∑
k=0

(ak)
2
X2k +

∑
0≤i<j≤n

[
(ai + aj)

2 − a2i − a2j
]
Xi+j

Since ai ∈
√
I for each i, we get that (ai)

2
, (ai + aj)

2 ∈
(√

I
)
2
⊆ I for each i

and j. Hence, f2 ∈ I[X]. Then,
(√

I[X]
)
2
⊆ I[X]. Thus, by Proposition 4,

I[X] ∈ U− Prim(R[X])≤2.

Using ideals, the definition of (1,2)-AP ideals can be rephrased as follows:

Proposition 15. The following are equivalent:

1. I ∈ (1, 2)−AP (R).

2. For each X,Y, Z ∈ Id(R), XY Z ⊆ I implies XY ⊆ I or Z2 ⊆ I.

Proof. (1) ⇒ (2) Let X,Y, Z ∈ Id(R). Suppose that XY Z ⊆ I and XY * I.
Consider x ∈ X and y ∈ Y such that xy /∈ I. For each z ∈ Z, we have xyz ∈ I.
Hence, since I ∈ (1, 2)−AP (R), z2 ∈ I. Thus, Z2 ⊆ I.
(2)⇒ (1) Let x, y, z ∈ R− U(R) such that xyz ∈ I. Assume that xy 6∈ I and
set X = (x), Y = (y), and Z = (z). Then, XY Z ⊆ I and XY * I. Thus,
(z2) = (z)2 = Z2 ⊆ I. Hence, z2 ∈ I. Thus, I ∈ (1, 2)−AP (R).

Proposition 16. Let ϕ : R → S be a ring homomorphism such that
ϕ−1 (U(S)) ⊆ U(R). Then, If I ′ ∈ (1, 2) − AP (S), then ϕ−1(I ′) ∈ (1, 2) −
AP (R).



ON (1,2)-ABSORBING PRIMARY IDEALS AND UNIFORMLY PRIMARY
IDEALS WITH ORDER ≤ 2 14

Proof. Let α, β, γ ∈ R−U(R). Suppose that αβγ ∈ ϕ−1(I ′) and γ2 6∈ ϕ−1(I ′).
Since ϕ−1 (U(S)) ⊆ U(R), we get that ϕ(α), ϕ(β), ϕ(γ) ∈ S − U(S). Hence,
since I ′ ∈ (1, 2) − AP (S), ϕ(αβγ) ∈ I ′, and ϕ(γ2) 6∈ I ′, we get ϕ(αβ) ∈ I ′.
Thus, αβ ∈ ϕ−1(I ′). So, ϕ−1(I ′) ∈ (1, 2)−AP (R).

Remark 17. Let R be a ring admitting a (1,2)-AP ideal I that is not primary
(see Example 8). Consider the ring homomorphism ϕ : R × R → R defined
by ϕ(x, y) = x. Then, ϕ−1(I) = I × R. If I × R ∈ (1, 2) − AP (R × R) then,
by Corollary 6, I ∈ Prim(R), a contradiction. Hence, in general, the inverse
image of a (1,2)-AP ideal by a ring homomorphism need not be (1,2)-AP.

Proposition 18. Let ϕ : R → S be a ring epimorphism. Then, If ker(ϕ) ⊆
I ∈ (1, 2)−AP (R), then ϕ(I) ∈ (1, 2)−AP (S).

Proof. Let α, β, γ ∈ S − U(S). Suppose that αβγ ∈ ϕ(I) and γ2 6∈ ϕ(I). Set
α = ϕ(a), β = ϕ(b), and γ = ϕ(c) for some a, b, c ∈ R. Clearly, a, b, c 6∈ U(R).
Since ϕ(abc) = αβγ ∈ ϕ(I) and ker(ϕ) ⊆ I, we get abc ∈ I. Moreover,
ϕ(c2) = γ2 6∈ ϕ(I) implies that c2 6∈ I. Hence, since I ∈ (1, 2)−AP (R), we get
ab ∈ I. Thus, αβ = ϕ(ab) ∈ ϕ(I). Consequently, ϕ(I) ∈ (1, 2)−AP (S).

Proposition 19. Let S be a multiplicative subset of R (with 0 6∈ S).

1. If I ∈ (1, 2)−AP (R) such that ∅ = S∩I, then S−1I ∈ (1, 2)−AP (S−1R).

2. Suppose that a/1 is non-unit in S−1R for every a 6∈ U(R). If J ∈
(1, 2)−AP (S−1R), then Jc = {x ∈ R | x/1 ∈ J} ∈ (1, 2)−AP (R).

Proof. (1) First, note that S−1I 6= S−1R since I∩S = ∅. Now, let a
s1
, b
s2
, c
s3
∈

S−1R−U(S−1R) such that a
s1

b
s2

c
s3
∈ S−1I and a

s1
b
s2
/∈ S−1I. Thus, abcs ∈ I

for some s ∈ S and abw /∈ I for all w ∈ S. In particular, abs /∈ I. So, c2 ∈ I.

Then,
(

c
s3

)2
∈ S−1I. This shows that S−1I ∈ (1, 2)−AP (S−1R).

(2) Consider the natural ring homomorphism ϕ : R → S−1R; ϕ(a) = a/1.
Since a/1 is non-unit in S−1R for every a 6∈ U(R), we get that
ϕ−1

(
U(S−1R)

)
⊆ U(R). Hence, by Proposition 16, Jc = ϕ−1(J) ∈ (1, 2) −

AP (R).

3 Rings over which every (non-zero) proper ideal is (1,2)-
absorbing primary

This section is devoted to characterize rings satisfying one the of inclusion/
equality: Id(R)∗ ⊆ U− Prim(R)≤2, Id(R)∗ ⊆ (1, 2) − AP (R), Id(R)∗ =
U− Prim(R)≤2, Id(R)∗ = (1, 2) − AP (R), Id(R) = U− Prim(R)≤2, and
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Id(R) = (1, 2)−AP (R).

Recall that a nonzero ideal of a ring is said to be minimal if it is minimal by
inclusion over nonzero proper ideals. A minimal ideal need not be unique.
Let L be the intersection of all non-zero ideals of R. If L 6= (0), then R is
called subdirectly irreducible and L is called the little ideal of R ([8]). Thus,
a little ideal L (if it exists) is a non-zero ideal included in all other non-zero
ideals of R. It is clear that L is unique and it is the unique minimal ideal of
R. Similarly, we define the notion of the little sub-ideal of an ideal as follows:

Definition 20. Let I 6= (0) be an ideal of a ring R. Set L the intersection of
all non-zero sub-ideals of I. If L 6= (0) then L is called the little sub-ideal of I
(note that L must be unique).

We need the following lemmas.

Lemma 21. Suppose that N(R) ⊆ I. Then, I is a 1-AP ideal of R if and
only if I/N(R) is a 1-AP ideal of R/N(R).

Proof. Set S = R/N(R) and I = I/N(R).
Suppose that I is a 1-AP ideal of R. Let α, β, γ ∈ S−U(S) such that αβγ ∈ I
and αβ 6∈ I. Clearly α, β, γ 6∈ U(R) and αβγ ∈ I since N(R) ⊆ I. Thus,

γ ∈
√
I, and so γ ∈

√
I/N(R) =

√
I. Accordingly, I is a 1-AP ideal of S.

Conversely, assume that I is a 1-AP ideal of S. Let α, β, γ ∈ R − U(R) such
that αβγ ∈ I and αβ 6∈ I. If α ∈ U(S) then αt − 1 ∈ N(R) for some t ∈ R.
Thus, αt ∈ N(R)+1 ⊆ U(R). So, α ∈ U(R), a contradiction. Thus, α 6∈ U(S).
Similarly β, γ 6∈ U(S). Moreover, αβ 6∈ I. Thus, since αβγ ∈ I , we get that

γ ∈
√
I =
√
I/N(R). Hence, γ ∈

√
I since N(R) ⊆

√
I. Consequently, I is a

1-AP ideal of R.

R is said to be a UN -ring if N(R) is a maximal ideal of R ([4]).

Lemma 22. Every non-zero proper ideal of R is 1-AP if and only if

(a) R ∼= k1 × k2, where k1 and k2 are fields, or

(b) R is a UN -ring, or

(c) (R,M) is local with Spec(R) = {N(R),M} such that N(R)M is zero or
the little sub-ideal of N(R).

Proof. (⇒) Assume that R is not local and let M1 6= M2 be two maximal ide-
als. If M1∩M2 6= (0), then M1∩M2 is 1-AP, and so M1∩M2 =

√
M1 ∩M2 is

prime. Hence, M1 and M2 are comparable, a contradiction. Then, M1∩M2 =
(0). Therefore, R ∼= R/M1 ×R/M2, and so (a) holds.
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Suppose now that (R,M) is local. If R is a domain then, by [1, Corollary
2.14], R is a field or Spec(R) = {0,M}. So, R satisfies either (b) or (c).
Next, assume that R is not a domain. We claim that prime ideals are com-
parable. Consider two incomparable prime ideals P1 and P2. If P1 ∩ P2 6= 0
then P1 ∩ P2 is 1-AP and so prime since it is a radical ideal. Hence, P1

and P2 are comparable, a contradiction. Then, P1 ∩ P2 = (0). Therefore,
N(R) =

√
(0) =

√
P1 ∩ P2 = P1 ∩ P2 = (0). Hence, R is reduced. Con-

sider x ∈ P1\P2 and y ∈ P2\P1. Thus, x + y 6∈ P1. Let p1 ∈ P1\{0}
(such p1 exists since P1 6= (0)). Since R is reduced, p21 6= 0. We have
p21y ∈ P1 ∩ P2 = (0). If p21x = 0 ∈ P2 then p21 ∈ P1 ∩ P2 = (0), a con-
tradiction. Then, (x + y)p21 = xp21 6= 0. Thus,

(
(x+ y)p21

)
is 1-AP. Since

(x + y)p21 ∈
(
(x+ y)p21

)
and x + y 6∈

√
((x+ y)p21) ⊆ P1, we obtain that

p21 ∈
(
(x+ y)p21

)
. So, p21 = (x + y)p21α = xp21α for some α ∈ R. Thus,

p21(1−xα) = 0. Since R is local, 1−xα is unit. Then, p21 = 0, a contradiction.
Consequently, prime ideals are comparable. Thus, (0) 6= N(R) is prime.
Consider the domain R′ = R/N(R). By Lemma 21, every proper ideal of R′

is 1-AP. By [1, Corollary 2.14], R′ is a field or Spec(R′) = {(0R′),M/N(R)}.
Hence, either R is a UN -ring or Spec(R) = {N(R),M}. Assume that R
is not a UN -ring. Let I be a non-zero sub-ideal of N(R). Let a ∈ N(R),
m ∈ M , and m′ ∈ M\N(R). Then, I + (amm′) is a non-zero ideal of R with√
I + (amm′) = N(R). Hence, I+(amm′) is 1-AP. Since amm′ ∈ I+(amm′)

and m′ 6∈ N(R), we get am ∈ I + (amm′). Hence, for some r ∈ R, we have
am(1 − rm′) ∈ I. Note that 1 − rm′ 6∈ N(R) =

√
I, otherwise 1 ∈ M . Then,

since I is 1-AP, we obtain that am ∈ I. Then, N(R)M ⊆ I for each non
zero sub-ideal I of N(R). Hence, either N(R)M = (0) or N(R)M is the little
sub-ideal of N(R).
(⇐) Let k1 and k2 be two field. non-zero proper ideals of k1 × k2 are (0)× k2
and k1 × (0) which are maximal and so 1-AP.
If R is a UN -ring then every (non-zero) ideal is primary, and so 1-AP.
Suppose now that R is local such that Spec(R) = {N(R),M} and either
N(R)M = (0) or N(R)M is the little sub-ideal of N(R). Let I be a non-zero
ideal. If

√
I = M then I is primary, and so 1-AP. If

√
I = N(R) then I is

a non-zero sub-ideal of N(R). Hence, N(R)M ⊆ I (in the both cases). Let
x, y, z ∈ R − U(R) with xyz ∈ I and z 6∈

√
I = N(R). Then, either x ∈ N(R)

or y ∈ N(R). In the both cases, xy ∈ N(R)M ⊆ I. Thus, I is 1-AP.

Comparing Lemma 22 with [1, Theorem 2.11], we conclude that Id(R)∗ coin-
cide with the set of 1-AP ideals if and only if R ∼= k1 × k2, where k1 and k2
are fields, or (R,M) is local with Spec(R) = {N(R),M} such that N(R)M is
the little sub-ideal of N(R).
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Rings R such that Id(R) = Prim(R) are treated in [1, Corollary 2.15]. Next
we characterizes rings that satisfy the inclusion Id(R)∗ ⊆ Prim(R).

Corollary 23. Id(R)∗ ⊆ Prim(R) if and only if

(a) R ∼= k1 × k2, where k1 and k2 are fields, or

(b) R is a UN -ring, or

(c) (R,M) is local and Spec(R) = {N(R),M} such that N(R) is zero or a
minimal ideal of R.

Proof. (⇒) Suppose that R satisfies neither (a) nor (b). By Lemma 22, R is
local and Spec(R) = {N(R),M} with N(R)M = (0) or N(R)M is the little
sub-ideal of N(R). If N(R)M 6= (0) then it is primary. Since N(R) 6= M , using
Proposition 7, we get N(R)M = N(R). Thus, N(R) is the little sub-ideal of
N(R). That is, N(R) is a minimal ideal of R.
Now suppose that N(R)M = (0) but N(R) 6= (0). Let I 6= (0) be a sub-ideal
of N(R) and m ∈ M\N(R). For each x ∈ N(R), we have xm = 0 ∈ I and
m 6∈

√
I = N(R). Thus, x ∈ I. Hence, N(R) = I. Thus, N(R) is again

minimal.
(⇐) If R satisfies (a) or (b), the desired result follows easily. So, assume
that (c) holds. Let I 6= (0) be an ideal. If

√
I = M then I is primary. So,

assume that
√
I = N(R). Thus, N(R) must be minimal since I 6= (0). Hence,

I = N(R), and so is prime.

Comparing [1, Corollary 2.15] with Corollary 23, we conclude that Id(R)∗ =
Prim(R) if and only if R ∼= k1 × k2, where k1 and k2 are fields or (R,M) is
local such that Spec(R) = {N(R),M} and N(R) is a minimal ideal.

The main result of this section is the following.

Theorem 24. The following are equivalent:

1. Id(R)∗ ⊆ U− Prim(R)≤2.

2. Id(R)∗ ⊆ (1, 2)−AP (R).

3. One of the following holds:

(a) R ∼= k1 × k2, where k1 and k2 are fields.

(b) R is a UN -ring such that N(R)2 is zero or the little ideal of R.



ON (1,2)-ABSORBING PRIMARY IDEALS AND UNIFORMLY PRIMARY
IDEALS WITH ORDER ≤ 2 18

Proof. (1)⇒ (2) Clear.
(2)⇒ (3) Following Lemma 22, either R ∼= k1× k2, where k1 and k2 are fields
or R is local and N(R) is prime. Suppose that R is local. Let x ∈ R − U(R).
Suppose that x3 6= 0. Since (x3) is (1,2)-AP and x ∈

√
(x3), we get that

x2 ∈ (x3). Thus, x2(1 − xt) = 0 for some t ∈ R. Since R is local, 1 − xt is a
unit element of R. Hence, x2 = 0, a contradiction since x3 6= 0. Consequently,
for each x ∈ R − U(R), we have x3 = 0, and then R is a UN -ring. Suppose
that N(R)2 6= (0) and let I ∈ Id(R)∗. Then, I is (1,2)-AP with

√
I = N(R).

Hence, N(R)2 ⊆ I. Thus, N(R)2 is the little ideal of R.
(3) ⇒ (1) Let k1 and k2 be two field. non-zero proper ideals of k1 × k2 are
k1 × (0) and (0) × k2 which are maximal, and so uniformly primary with
ord ≤ 2.
Suppose now that R is a UN -ring such that N(R)2 = (0) or N(R)2 is the
little ideal of R. Let I ∈ Id(R)∗. Clearly

√
I = N(R) (hence, primary) and

N(R)2 ⊆ I. Thus, I ∈ U− Prim(R)≤2.

Example 25. 1. Z/4Z is a non-reduced UN -ring such N(Z/4Z)2 = (0).

2. Z/8Z is a UN -ring such N(Z/8Z)2 = (4) is the little ideal of Z/8Z.

Remark 26. If R is non-local, we can conclude easily from Theorem 24 that:

Id(R)∗ = U− Prim(R)≤2 ⇔ Id(R)∗ = (1, 2)−AP (R)⇔ R ∼= k1 × k2,

where k1 and k2 are fields.

In the local context, the equality Id(R)∗ = (1, 2) − AP (R) means that (0) is
not (1, 2) − AP . But that means also that R is UN , and so (0) is primary.

Thus, by Theorem 2, we must have
(√

(0)
)
2
* (0). That is, N(R)2 6= (0). So,

by Theorem 24, N(R)2 is the little ideal of R. Conversely, we can show that if
R is UN with little ideal N(R)2, then Id(R)∗ = U− Prim(R)≤2. Accordingly,
in the local context, we have

Id(R)∗ = U− Prim(R)≤2 ⇔ Id(R)∗ = (1, 2)−AP (R)⇔

⇔ R is UN with little ideal N(R)2.

Corollary 27. Suppose that R is PIR. Then, the following are equivalent:

1. Id(R)∗ ⊆
{
M,M2 |M ∈ Max(R)

}
.

2. Id(R)∗ ⊆ U− Prim(R)≤2.

3. Id(R)∗ ⊆ (1, 2)−AP (R).
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4. R ∼= k1 × k2, where k1 and k2 are fields or R is a UN -ring such that
N(R)3 = (0).

5. R has at most four ideals.

Proof. (1)⇒ (2)⇒ (3) Clear.
(3)⇒ (4) From Theorem 24, if R is not isomorphic to a product of two fields,
then R is UN such that N(R)2 = (0) or N(R)2 is the little ideal of R. Set
N(R) = (x). Suppose that x3 6= 0. Then, N(R)2 = (x2) 6= (0), and so
N(R)2 = (x2) is the little ideal of R. Thus, (x2) ⊆ (x3) Hence, x2(1− xt) = 0
for some t ∈ R. Thus, since R is local, x2 = 0, a contradiction. Hence, x3 = 0.
(4) ⇒ (5) It suffices to show that if R is UN such that N(R)3 = (0) then R
has at most four ideals. Set N(R) = (x). Let I = (y) be a non-zero proper
ideal of R. Then, y ∈ (x). Write y = xα for some α ∈ R. If α is unit then
I = (x). Now, suppose that α 6∈ U(R). Hence, α = xβ for some β ∈ R. If
β 6∈ U(R) then β = xγ for some γ ∈ R, and so y = x3γ = 0, a contradiction.
Then, β ∈ U(R) and y = x2β. Thus, I = N(R)2. Hence, the only possible
non-zero proper ideals of R are N(R) and N(R)2.
(5) ⇒ (1) If R is a field the result is trivial. If R admits three ideals (0),
M and R. Then, Id(R)∗ = {M} = Max(R). Suppose now that R admits
exactly four ideals (0), I, J and R. If I and J are incomparable then they
are maximal and then Id(R)∗ = {I, J} = Max(R). If I ⊆ J then R is local
with maximal ideal J . Let x ∈ I − {0} and y ∈ J − I. Then, I = (x) and
J = (y). If J2 = J then y(1− yt) = 0 for some t ∈ R. But R is local, and so
y = 0, a contradiction. If J2 = (0), write x = yt. If t 6∈ U(R) then t = yw and
then x = y2w = 0, a contradiction. Thus, t ∈ U(R) and I = (x) = (y) = J , a
contradiction. Then, J2 = I, and so I is a square of a maximal ideal.

Corollary 28. Suppose that R is a PID. Let p be a non-zero prime element of
R, and n ≥ 1 be an integer. Set An = R/(pn). Then, Id(R)∗ ⊆ (1, 2)−AP (R)
if and only if n ≤ 3.

Proof. The ring An is a principal UN -ring with N(An) = pAn. Then,

Id(R)∗ ⊆ (1, 2)−AP (R) ⇐⇒ p3An = (0) ⇐⇒ n ≤ 3.

Corollary 29. The following are equivalent:

1. Id(R) = U− Prim(R)≤2.

2. Id(R) = (1, 2)−AP (R).

3. R is a UN -ring such that N(R)2 = (0).
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Proof. (1)⇒ (2) Clear.
(2) ⇒ (3) Since (0) is (1,2)-AP, N(R) =

√
0 ∈ Spec(R) and N(R)2 ⊆ (0).

Hence, R cannot be isomorphic to a product of fields and N(R)2 = (0). More-
over, by Theorem 24, R is a UN -ring.
(3)⇒ (1) Let I be a proper ideal of R. Then, I ∈ Prim(R) since

√
I = N(R) ∈

Max(R). Thus, since N(R)2 = (0) ⊆ I, I ∈ U− Prim(R)≤2.

Corollary 30. Suppose that R is reduced. Then,

1. Id(R)∗ ⊆ (1, 2) − AP (R) if and only if R is a field or R is isomorphic
to a product of two fields.

2. Id(R) = (1, 2)−AP (R) if and only if R is a field.
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