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The eigenspaces of twisted polynomials over
cyclic field extensions

Adam Owen and Susanne Pumplün

Abstract

Let K be a field and σ an automorphism of K of order n. Employing
a nonassociative algebra, we study the eigenspace of a bounded skew
polynomial f ∈ K[t;σ]. We mainly treat the case that K/F is a cyclic
field extension of degree n with Galois group generated by σ. We obtain
lower bounds on the dimension of the eigenspace, and compute it in
special cases as a quotient algebra. Conditions under which a monic
polynomial f ∈ F [t] ⊂ K[t;σ] is reducible are obtained in special cases.

Introduction

Let D be a unital associative division ring and R = D[t;σ, δ] be a skew poly-
nomial ring, where σ is an automorphism of D and δ a left σ-derivation.
Let f ∈ R be a skew polynomial of degree m > 1. The associative algebra
E(f) = {g ∈ R |deg(g) < m and fg ∈ Rf} is the eigenspace of f . If f is a
bounded polynomial, then the nontrivial zero divisors in the eigenspace are
in one-to-one correspondence with the irreducible factors of f in D[t;σ, δ], cf.
for instance [10]. Therefore eigenspaces of skew polynomials regularly appear
whenever skew polynomials are factorized, e.g. in results on computational
aspects of operator algebras, or in algorithms factoring skew polynomials over
Fq(t) or over Fq, cf. [7, 8, 11, 12]. For skew polynomial rings over local fields of
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positive characteristic, where the Brauer group is non-trivial, the irreducibility
of a skew polynomial is equivalent to understanding a ring isomorphism to a
full matrix ring over a field extension of the local field. This problem is not
completely solved in the non-split case. Partial results have been obtained e.g.
in [9].

The eigenspace of f also appears implicitly in classical constructions by
Amitsur [1, 2, 3], but was never recognized as the right nucleus of some nonas-
sociative algebra.

In this paper, we investigate eigenspaces using a class of unital nonasso-
ciative algebras Sf defined by Petit [17, 18], which canonically generalize the
quotient algebras R/Rf obtained when factoring out a right invariant f ∈ R.
The algebra Sf = D[t;σ, δ]/D[t;σ, δ]f is defined on the additive subgroup
{h ∈ R |deg(h) < m} of R by using right division by f to define the algebra
multiplication via g ◦ h = gh modrf . Petit’s algebras were studied in detail
in [17, 18], and for K a finite field (hence w.l.o.g. δ = 0) in [15]. Indeed, the
algebra Sf with f(t) = t2 − i ∈ C[t; ], the complex conjugation, already
appeared in [6] as the first example of a nonassociative division algebra. The
right nucleus of Sf is the eigenspace of f , if f is not linear. Thus the eigenspace
of f is an associative subalgebra of Sf .

We concentrate on the case that R = K[t;σ], where K/F is a cyclic Galois
extension of degree n with Galois group generated by σ, and find conditions
under which a monic polynomial f ∈ R is reducible.

In Section 1, we introduce our terminology and some results we need later.
In Section 2 we determine when a power of t lies in the right nucleus. This
yields some lower bounds on the dimension of the right nucleus as an F -vector
space. These bounds can then later be used to decide if certain polynomials
f of degree m which are not right invariant are reducible. Let f ∈ R be a
bounded monic polynomial that is not right invariant with gcrd(f, t) = 1, and

minimal central left multiple h(t) = ĥ(tn), ĥ(x) ∈ F [x] monic. We show that
for f ∈ F [t] ⊂ K[t;σ], the quotient algebra Nuc(Sf )[t;σ]/Nuc(Sf )[t;σ]f is
a subalgebra of Nucr(Sf ) (Theorem 10). In particular if f ∈ F [t] ⊂ K[t;σ]
is bounded and we have Nucr(Sf ) = Nuc(Sf )[t;σ]/Nuc(Sf )[t;σ]f, then f is
irreducible in R, if and only if f is irreducible in Nuc(Sf )[t;σ]. In Section 3
we look at the nucleus of Sf for f ∈ R. Since Nuc(Sf ) = Nucr(Sf ) ∩K, this
helps us to understand which elements of K lie in Nucr(Sf ). In Section 4 we

assume only that ĥ is irreducible in F [x] and obtain some partial results for
this case as well. In Section 5, we look at the right nucleus of Sf for low degree
polynomials in F [t] ⊂ K[t;σ], and in Section 6, we summarize for which types
of skew polynomials which are not right invariant we can decide if they are
reducible using our methods.

Note that cyclotomic extensions where F = Q and K = Q(η), with η a
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primitive pnth root of unity and p prime, which have Galois group Z/pnZ, and
Kummer extensions K = F ( r

√
a) of F , where F contains a primitive rth root

of unity µ and σ( r
√
a) = µ r

√
a, are examples of skew polynomial rings that

are employed in coding theory (e.g. in space-time block coding or for certain
linear codes), where both reducible and irreducible f are needed.

This work is part of the first author’s PhD thesis [16] written under the
supervision of the second author. For more general results on eigenspaces of
skew polynomials f ∈ D[t;σ, δ] the reader is referred to [16].

1 Preliminaries

1.1 Nonassociative algebras

Let F be a field and let A be an F -vector space. A is an algebra over F if
there exists an F -bilinear map A× A→ A, (x, y) 7→ x · y, denoted simply by
juxtaposition xy, the multiplication of A. An algebra A is unital if there is an
element in A, denoted by 1, such that 1x = x1 = x for all x ∈ A. We will only
consider unital algebras.

Associativity in A is measured by the associator [x, y, z] = (xy)z − x(yz).
The left nucleus of A is defined as Nucl(A) = {x ∈ A | [x,A,A] = 0}, the
middle nucleus of A is Nucm(A) = {x ∈ A | [A, x,A] = 0} and the right nucleus
of A is defined as Nucr(A) = {x ∈ A | [A,A, x] = 0}. Nucl(A), Nucm(A), and
Nucr(A) are associative subalgebras of A. Their intersection Nuc(A) = {x ∈
A | [x,A,A] = [A, x,A] = [A,A, x] = 0} is the nucleus of A. Nuc(A) is an
associative subalgebra of A containing F and x(yz) = (xy)z whenever one of
the elements x, y, z lies in Nuc(A). Commutativity in A is measured by the
commutator [x, y] = xy− yx. The subspace of A defined by Comm(A) = {x ∈
A : [x, y] = 0 for all y ∈ A} is called the commutator of A. The center of A is
C(A) = Nuc(A) ∩ Comm(A).

An F -algebra A 6= 0 is called a division algebra if for any a ∈ A, a 6= 0,
both the left multiplication with a, La(x) = ax, and the right multiplication
with a, Ra(x) = xa, are bijective. If A has finite dimension over F , A is a
division algebra if and only if A has no zero divisors [19, pp. 15, 16].

1.2 Twisted polynomial rings K[t;σ]

Let K be a field and σ an automorphism of K with fixed field F = Fix(σ) =
{a ∈ K : σ(a) = a}. The twisted polynomial ring R = K[t;σ] is the set of
polynomials a0 +a1t+ · · ·+ant

n with ai ∈ K, where addition is defined term-
wise and multiplication by ta = σ(a)t for all a ∈ K. For f = a0+a1t+· · ·+antn
with an 6= 0 define the degree of f to be deg(f) = n, by convention deg(0) =
−∞. Then deg(fg) = deg(f) + deg(g). An element f ∈ R of degree m is
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irreducible in R if it is not a unit and it has no proper factors, i.e if there do
not exist g, h ∈ R such that deg(g),deg(h) < deg(f) and f = gh.

R is a left and right principal ideal domain and there is a right division
algorithm in R: for all g, f ∈ R, g 6= 0, there exist unique q, r ∈ R with
deg(r) < deg(f), such that g = qf + r [13, p. 3 and Proposition 1.1.14].

A twisted polynomial f ∈ R is bounded if there exists a nonzero polynomial
f∗ ∈ R, such that Rf∗ is the largest two-sided ideal of R contained in Rf∗.
The polynomial f∗ is uniquely determined by f up to scalar multiplication by
elements in K×. f∗ is called the bound of f . The left idealiser of f ∈ R is
the set I(f) = {g ∈ R | fg ∈ Rf}, which is the largest subring of R within
which Rf is a two-sided ideal. The eigenspace of f is the quotient ring E(f) =
I(f)/Rf = {g ∈ R |deg(g) < m and fg ∈ Rf}.

1.3 Nonassociative algebras obtained from twisted polynomial rings

From now on, let f ∈ R have positive degree m, and for g ∈ R let gmodrf de-
note the remainder of g upon right division by f . The set {g ∈ R |deg(g) < m}
endowed with the usual term-wise addition of polynomials and the multipli-
cation g ◦ h = ghmodrf is a unital nonassociative ring Sf . We usually will
simply use juxtaposition for the multiplication in Sf . Sf is a unital nonasso-
ciative algebra over F0 = {a ∈ K | ag = ga for all g ∈ Sf} = Comm(Sf ) ∩K.
F0 is a subfield of K [17]. Sf is called a Petit algebra. It can be easily seen
that F0 = Fix(σ), see [5, pg. 6]. For all a ∈ K× we have Sf = Saf , and if
f ∈ R has degree 1 then Sf ∼= K. In the following, we thus assume that f is
monic and that it has degree m ≥ 2, unless specifically mentioned otherwise.
Sf is associative if and only if f is right invariant, i.e. Rf a two-sided ideal
in R. In that case, Sf is equal to the classical associative quotient algebra

R/(f). Note that f(t) = tm −
m−1∑
i=0

ait
i ∈ R is right invariant if and only if

ai ∈ F and σm(d)ai = aiσ
i(d) for all i ∈ {0, 1, . . . ,m − 1} and for all d ∈ K

[17, (15)]. In other words, f is right invariant in R if and only if f(t) = g(t)tn

for some g ∈ C(R) and some integer n ≥ 0 [13, Theorem 1.1.22].
If Sf is not associative then Nucl(Sf ) = Nucm(Sf ) = K and C(Sf ) = F .
Moreover,

Nucr(Sf ) = {g ∈ R |deg(g) < m and fg ∈ Rf}.

is the eigenspace of f ∈ R [17].
Sf is a division algebra, if and only if f is irreducible, if and only if Nucr(Sf )

is a division algebra. It is well known that each nontrivial zero divisor q of f in
Nucr(Sf ) gives a proper factor gcrd(q, f) of f , e.g. see [10], where gcrd(q, f)
denotes the greatest common right divisor of q and f in R.
If f(t) ∈ F [t] ⊂ R, then F [t]/(f) is a commutative subring of Nucr(Sf ), and
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a field extension of F of degree m if f is irreducible as a polynomial in F [t]
[4, Proposition 2].

1.4 The right nucleus of Sf for irreducible f

Throughout this section we assume that σ has finite order n > 1. Then R has
center C(R) = F [tn] ∼= F [x], where x = tn [13, Theorem 1.1.22].
For any bounded f ∈ R we define the minimal central left multiple of f in
R as the unique polynomial of minimal degree h ∈ F [tn] such that h = gf

for some g ∈ R, and such that h(t) = ĥ(tn) for some monic ĥ ∈ F [x]. If the
greatest common right divisor gcrd(f, t) of f and t is one, then f∗ ∈ C(R) [10,
Lemma 2.11]), and the minimal central left multiple of f equals f∗ up to a
scalar multiple from K×. From now on we therefore assume that f is bounded
with

gcrd(f, t) = 1

and denote the minimal central left multiple of f by h(t) = ĥ(tn) with ĥ(x) ∈
F [x] monic.

If f is irreducible in R, then ĥ(x) is irreducible in F [x]. If ĥ is irreducible
in F [x], then h generates a maximal two-sided ideal Rh in R [13, p. 16] and
f = f1 · · · fr for irreducible fi ∈ R such that fi ∼ fj for all i, j (for a proof see
[22] or [16]).

The quotient algebra R/Rh has the commutative F -algebra C(R/Rh) ∼=
F [x]/(ĥ(x)) of dimension deg(ĥ) over F as its center, cf. [10, Lemma 4.2].

Define Eĥ = F [x]/(ĥ(x)). If ĥ is irreducible in F [x], then Eĥ is a field extension

of F of degree deg(ĥ).
In [15], Lavrauw and Sheekey determine the size of the right nucleus of

Sf for irreducible f ∈ Fqn [t;σ], where F = Fq with q = pe for some prime p
and integer e. In this setting, Sf is a semifield of order qmn whenever f is
irreducible and not right invariant, and |Nucr(Sf )| = qm [15, Lemma 4]. This
result generalizes as follows:

Theorem 1. (for the proof, cf. [16] or [22]) Suppose that f is irreducible.
Let k be the number of irreducible factors of h in R.
(i) Nucr(Sf ) is a central division algebra over Eĥ of degree s = n/k, and

R/Rh ∼= Mk(Nucr(Sf )).

In particular, this means that deg(ĥ) = m
s , deg(h) = nm

s , and [Nucr(Sf ) :
F ] = ms. Moreover, s divides m.
(ii) If n is prime and f not right invariant, then Nucr(Sf ) ∼= Eĥ. In particular,

then [Nucr(Sf ) : F ] = m, deg(ĥ) = m, and deg(h) = mn.
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Comparing vector space dimensions we obtain that [Sf : Nucr(Sf )] = k.

Moreover, if deg(h) = mn and ĥ is irreducible in F [x], then f is irreducible
and Nucr(Sf ) ∼= Eĥ [10, Proposition 4.1].

Corollary 2. Suppose that f is irreducible and that m is prime. Then f is
not right invariant and one of the following holds:
(i) Nucr(Sf ) ∼= Eĥ, [Nucr(Sf ) : F ] = m, and deg(h) = mn.
(ii) Nucr(Sf ) is a central division algebra over F = Eĥ of prime degree m,

[Nucr(Sf ) : F ] = m2, and m divides n. This case occurs when ĥ(x) = x+ a ∈
F [x], i.e. h(t) = tn + a.

Proof. Since s divides m by Theorem 1, s = 1 which implies (i), or s = m. If

s = m then ĥ has degree one and so F = Eĥ. Furthermore, then Nucr(Sf )
is a central simple algebra over F degree m. Thus f is not right invariant in
both cases. Since here we have deg(h) = km = n, m also must divide n in
this case.

Corollary 3. Suppose that f is irreducible and not right invariant. Let n = pq
for p and q prime.
(i) Nucr(Sf ) ∼= Eĥ is a field extension of F of degree m, or Nucr(Sf ) is a
central division algebra over Eĥ of prime degree q (resp., p), [Nucr(Sf ) : F ] =
qm (resp., = pm), and q (resp., p) divides m.
(ii) If gcd(m,n) = 1, then Nucr(Sf ) ∼= Eĥ is a field extension of F of degree
m.

Proof. (i) Since f is not right invariant, we note that k > 1. If n = pq
then the equation n = ks forces either that s = 1 and k = n, hence that
Nucr(Sf ) ∼= Eĥ, or that s 6= 1 and then w.o.l.o.g. that k = p and s = q, so that
here Nucr(Sf ) is a central division algebra over Eĥ of degree q, deg(h) = pm,

deg(ĥ) = pm/pq = m/q, and [Nucr(Sf ) : F ] = q2m
q = qm. In particular, q

divides m.
(ii) If m is not divisible by p and q, then s = 1 by the proof of (i), or else we
obtain a contradiction.

This observation generalizes as follows by induction:

Corollary 4. Suppose that f is irreducible and not right invariant. Let n =
p1 · · · pl be the prime decomposition of n.
(i) Nucr(Sf ) ∼= Eĥ is a field extension of F of degree m, or Nucr(Sf ) is
a central division algebra over Eĥ of degree q1 · · · qr, with qi ∈ {p1, . . . , pl},
[Nucr(Sf ) : F ] = q1 · · · qrm, and q1 · · · qr divides m.
(ii) If gcd(m,n) = 1 (i.e., m is not divisible by any set of prime factors of n),
then Nucr(Sf ) ∼= Eĥ is a field extension of F of degree m.
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Corollary 5. Let f ∈ F [t] ⊂ R. Suppose that f is irreducible in R and not
right invariant. Let n either be prime or gcd(m,n) = 1. Then Nucr(Sf ) ∼=
F [t]/(f).

Proof. If f is irreducible in R, then F [t]/(f) is a subfield of the right nucleus
of degree m, hence must be all of the right nucleus, since that has dimension
m due to our assumptions (Theorem 1 (ii), Corollary 4 (ii)).

2 Powers of t that lie in the right nucleus of Sf

Throughout this section, let f(t) = tm −
m−1∑
i=0

ait
i ∈ R = K[t;σ] be not right

invariant. Initially, we do not assume anything on the ring R.

Theorem 6. [17] The following are equivalent:
(i) ai ∈ Fix(σ) for all i ∈ {0, 1, . . . ,m− 1},
(ii) t ∈ Nucr(Sf ),
(iii) tmt = ttm,
(iv) ft ∈ Rf .
(v) all powers of t are associative in Sf .

Proof. (i) and (ii) are equivalent by [17, (16)] and (ii), (iii), (iv) and (v) are
equivalent by [17, (5)].

We obtain the following weak generalization of Theorem 6:

Theorem 7. Let k ∈ {1, 2, . . . ,m−1}. If ai ∈ Fix(σk) for all i ∈ {0, 1, . . . ,m−
1}, then tk ∈ Nucr(Sf ). In particular, then tmtk = tktm in Sf .

Proof. Suppose that ai ∈ Fix(σk) for all i. Then

ftk = (tm −
m−1∑
i=0

ait
i)tk = tmtk −

m−1∑
i=0

ait
itk

= tktm − tk
m−1∑
i=0

σ−k(ai)t
i = tk(tm −

m−1∑
i=0

ait
i) (as ai ∈ Fix(σk) ∀i)

= tkf ∈ Rf,

i.e. ftk ∈ Rf , and so tk ∈ Nucr(Sf ) as claimed. Since tk ∈ Nucr(Sf ), we have
in particular that [tk, tm−k, tk] = 0 in Sf , that is tk(tm−ktk) = (tktm−k)tk.
Therefore tktm = tmtk in Sf .

From now on we often write N = Nuc(Sf ) for ease of notation.
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Proposition 8. Suppose that there exists s ∈ {1, 2, . . . ,m − 1} such that
f ∈ Fix(σs)[t;σ].
(i) If m = qs for some positive integer q, then

N ⊕Nts ⊕Nt2s ⊕ · · · ⊕Nt(q−1)s ⊕N(

m−1∑
i=0

ait
i)

is an F -sub vector space of Nucr(Sf ).
(ii) If m = qs+ r for some positive integers q, r with 0 < r < s, then

N ⊕Nts ⊕Nt2s ⊕ · · · ⊕Ntqs

is an F -sub vector space of Nucr(Sf ).

Proof. (i) Since ai ∈ Fix(σs), we have that ts ∈ Nucr(Sf ) by Theorem 7. Since
the right nucleus is a subalgebra of Sf , this implies that t2s, . . . , t(q−1)s, (ts)q =

tm =
∑m−1
i=0 ait

i ∈ Nucr(Sf ). Furthermore, we know that N ⊂ Nucr(Sf ), and
so Ntjs ⊂ Nucr(Sf ) for any j ∈ {0, 1, . . . , q}. Therefore N ⊕ Nts ⊕ · · · ⊕
Nt(q−1)s ⊕N(

∑m−1
i=0 ait

i) ⊂ Nucr(Sf ) as claimed.
(ii) We have ts ∈ Nucr(Sf ). Again since Nucr(Sf ) is a subalgebra of Sf ,
this implies that t2s, . . . tqs, t(q+1)s, · · · ∈ Nucr(Sf ), hence the assertion as in
(i).

Note that the powers tqs, t(q+1)s, t(q+2)s, . . . of ts in Proposition 8 (ii) lie
in Nucr(Sf ), but they need not be equal to polynomials in ts, since qs, (q +
1)s, (q + 2)s, · · · ≥ m.

Corollary 9. Let K/F be a cyclic Galois extension of degree n < m with
Galois group Gal(K/F ) = 〈σ〉.
(i) If m = qn, then

N ⊕Ntn ⊕Nt2n ⊕ · · · ⊕Nt(q−1)n

is an F -sub vector space of Nucr(Sf ) of dimension q[N : F ] and tm =∑m−1
i=0 ait

i ∈ Nucr(Sf ).
(ii) If m = qn+ r for some positive integers q, r with 0 < r < n, then

N ⊕Ntn ⊕Nt2n ⊕ · · · ⊕Ntqn

is an F -sub vector space of Nucr(Sf ) of dimension (q+1)[N : F ]. In particular,
if n is either prime or gcd(m,n) = 1, gcrd(f, t) = 1, as well as [N : F ] = n,
then f is reducible.
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Proof. There exist integers q, r such that q 6= 0, and m = qn + r where
0 ≤ r < n. Moreover, we have ai ∈ Fix(σn) = K for all i ∈ {0, 1, . . . ,m−1} for

every f(t) = tm−
∑m−1
i=0 ait

i ∈ R. By Theorem 7 this yields the assertions.

We write σ = σ|Fix(σc), for ease of notation, then:

Theorem 10. Suppose that f(t) ∈ F [t] ⊂ R. Then N [t;σ]/N [t;σ]f is a Petit
algebra and an associative subalgebra of Nucr(Sf ).

Proof. Clearly N [t;σ|N ] is well-defined, f(t) ∈ F [t] ⊂ N [t;σ], and so
N [t;σ]/N [t;σ]f is a subalgebra of Sf .

Now N ⊂ Nucr(Sf ), and since ai ∈ F for all i, we have that tj ∈ Nucr(Sf )
for all j by Theorem 7. Thus N ⊕Nt⊕ · · · ⊕Ntm−1 ⊂ Nucr(Sf ) is contained
in the right nucleus. We have proved the assertion.

Corollary 11. Suppose that f(t) ∈ F [t] ⊂ R is bounded and that

Nucr(Sf ) = N [t;σ]/N [t;σ]f.

Then f is irreducible in R, if and only if f is irreducible in N [t;σ].

Proof. Let f be irreducible in N [t;σ], then N [t;σ]/N [t;σ]f = Nucr(Sf ) is a
division algebra and therefore f is irreducible in R.

3 The nucleus of Sf

In this section we again assume that f is not right invariant. Then the elements
of K which lie in Nucr(Sf ) are exactly the elements in the nucleus of Sf :

Lemma 12. K ∩Nucr(Sf ) = Nuc(Sf ).

Proof. Since f is not right invariant, Sf is not associative and thus Nucl(Sf ) =
Nucm(Sf ) = K. Therefore Nuc(Sf ) = Nucl(Sf ) ∩ Nucm(Sf ) ∩ Nucr(Sf ) =
K ∩Nucr(Sf ).

Clearly F ⊂ Nuc(Sf ). Let f(t) = tm −
∑m−1
i=0 ait

i ∈ R.

Theorem 13. Nuc(Sf ) = {b ∈ K |σm(b)ai = aiσ
i(b) for all i = 0, 1, 2, . . . ,m−

1}.

Proof. Let c ∈ {b ∈ K |σm(b)ai = aiσ
i(b) for all i = 0, 1, 2, . . . ,m− 1}. Then

an easy calculation shows that f(t)c ∈ Rf , hence that c ∈ Nucr(Sf ) = {g ∈
R |deg(g) < m and fg ∈ Rf}.
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Conversely, let c ∈ Nuc(Sf ) = Nucr(Sf ) ∩ K. Then [a(t), b(t), c] = 0 for
all a(t), b(t) ∈ Sf , in particular, [tk, tm−k, c] = 0 for all k ∈ {1, 2, . . . ,m − 1}.
This implies (tktm−k)c = tk(tm−kc), hence

(

m−1∑
i=0

ait
i)c = tk(σm−k(c)tm−k)⇒

m−1∑
i=0

aiσ
i(c)ti = σm(c)

m−1∑
i=0

ait
i,

and thus aiσ
i(c) = σm(c)ai for each i = 0, 1, . . . ,m − 1. Therefore c ∈ {b ∈

K : σm(b)ai = aiσ
i(b) for all i = 0, 1, 2, . . . ,m− 1} as required.

We denote the indices of the nonzero coefficients ai of f(t) = tm−
m−1∑
i=0

ait
i ∈

R by λ1, . . . , λr, 1 ≤ r ≤ m. The set of these indices we call
Λf = {λ1, λ2, . . . , λr} ⊂ {0, 1, . . . ,m}, and write Λ = Λf when it is clear
from context which f is being used.

Proposition 14. (i) Nuc(Sf ) =
r⋂
j=1

Fix(σm−λj ). In particular, Nuc(Sf ) is a

subfield of K.
(ii) If am−1 6= 0, then Nuc(Sf ) = F.

Proof. (i) Let u ∈ Nuc(Sf ) = {u ∈ K |σm(u)ai = aiσ
i(u) for all

i ∈ {0, 1, . . . ,m − 1}}. Then σm(u)ai = aiσ
i(u) for each i if and only if

σm−i(u) = u for each i such that ai 6= 0, which is equivalent to σm−λj (u) =
u for each λj ∈ Λf . This yields the assertion.
(ii) Let u ∈ Nuc(Sf ), then σm(u)am−1 = am−1σ

m−1(u) yields σ(u) = u, hence
u ∈ F . This implies the assertion.

Example 15. Let F16 = F(a) with a4 = a+1 and K = F16(z) be the rational
function field over F16. Define σ : K −→ K, σ(t) = a5t, then σ has order 3
and F = Fix(σ) = F16(z3) = Fix(σ2). Let R = K[t;σ], then C(R) = F [t3]
[10, Example 2.16]. Note that not every f is bounded in this setup.

Let f ∈ R be monic of degree m, then Nuc(Sf ) =
r⋂
j=1

Fix(σm−λj ) (Propo-

sition 14). If we have m− i = 3l for all ai 6= 0 then N = K, else Nuc(Sf ) = F .
(i) Suppose that f has degree m = 3q ≥ 4, then Nucr(Sf ) contains an F -
vector space of dimension q[N : F ]. If f = g(t3) for some g ∈ K[x] then
Nuc(Sf ) = K and K[x]/(g(x)) = K ⊕ Kt3 ⊕ Kt6 ⊕ · · · ⊕ Kt3(q−1) is a sub
vector space of Nucr(Sf ).

(ii) Let f(t) = t2+ 1
t+a t+az

2+1, then f∗(t) = t6+ (a3+a)z3+a2+a+1
a2t3+a2+a t3+a3z6+1

[10, Example 2.16], so f is bounded and f∗ ∈ C(R). Here

ĥ(x) = x2 +
(a3 + a)z3 + a2 + a+ 1

a2t3 + a2 + a
x+ a3z6 + 1 ∈ F [x]
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has degree 2, and h has degree 6 = mn. Therefore f is irreducible and

Nucr(Sf ) ∼= F [x]/(x2 +
(a3 + a)z3 + a2 + a+ 1

a2t3 + a2 + a
x+ a3z6 + 1)

by Theorem 1.

From now on unless specified otherwise letK/F be a cyclic Galois extension
of degree n > 1 with Gal(K/F ) = 〈σ〉. Then R has center C(R) = F [tn] ∼=
F [x], where x = tn [13, Theorem 1.1.22] and every f ∈ R is bounded.

Theorem 16. If d = gcd(m− λ1,m− λ2, . . . ,m− λr, n), then

Nuc(Sf ) = Fix(σd),

that is [Nuc(Sf ) : F ] = d. In particular, Nuc(Sf ) = F if and only if d = 1.

Proof. By Proposition 14, we have

Nuc(Sf ) =
⋂
λj∈Λ

Fix(σm−λj ) = Fix(σm−λ1) ∩ Fix(σm−λ2) ∩ · · · ∩ Fix(σm−λr ).

It follows immediately that Nuc(Sf ) = Fix(σd). Clearly Nuc(Sf ) = F if and
only if Fix(σd) = F if and only if 〈σd〉 = 〈σ〉, which is true if and only if σd

has order n. Now ord(σd) = n
gcd(n,d) = n

d = n if and only if d = 1.

Corollary 17. Let K/F have prime degree p. Then Nuc(Sf ) = K if and only
if m − λj is a multiple of p for all λj ∈ Λ. In other words, Nuc(Sf ) = F if
and only if there exists λj ∈ Λ such that m− λj is not divisible by p.

Proof. We have Nuc(Sf ) = K if and only if [Nuc(Sf ) : F ] = p, i.e. if and only
if d = p. Now d = gcd(m−λ1,m−λ2, . . . ,m−λr, p) = p if and only if m−λj
is a multiple of p for all λj ∈ Λ. Since second assertion is equivalent to the
first the result follows immediately.

Theorem 18. Let K/F be of degree n = bc < m for some b ∈ N. If [Nuc(Sf ) :
F ] = c then m = qc + r for some integers q, r with 0 ≤ r < c, and f(t) =
g(tc)tr, where g is a polynomial of degree q in K[tc;σc].

Proof. By Theorem 16, we have that Nuc(Sf ) = Fix(σd), where d = gcd(m−
λ1,m− λ2, . . . ,m− λr, n). Now d = c if and only if m− λj is a multiple of c
for all λj ∈ Λ. But m− λj is equal to a multiple of c if and only if λj = r+ cl
for some integer l such that 0 ≤ l < q (since m = qc+ r). Therefore we obtain
Λ ⊂ {r, r + c, r + 2c, . . . , r + (q − 1)c}. Thus

f(t) = tqc+r − a(q−1)c+rt
(q−1)c+r − · · · − ar+ctr+c − artr

= [(tc)q − a(q−1)c+r(t
c)(q−1) − · · · − ar+ctc − ar]tr = g(tc)tr

where g has degree q in K[tc;σc].
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Example 19. Let K = Q(ζ), σ : K −→ K, σ(ζ) = ζ2, and R. Then σ has
order three, F = Fix(σ) = Q(ζ4 + ζ2 + ζ), and C(R) = Fix(σ)[x] with x = t3.
Every f ∈ R is bounded. Moreover, [K : F ] = 3 and [Q(ζ4 + ζ2 + ζ) : Q] = 2.

Let f ∈ Q(ζ)[t, σ] be monic of degree m, then Nuc(Sf ) =
r⋂
j=1

Fix(σm−λj ) ∈

{K,F} (Proposition 14). If we have m− i = 3l for all ai 6= 0 then Nuc(Sf ) =
K, else Nuc(Sf ) = F .
(i) Suppose that f has degree m = 3q ≥ 4, then Nucr(Sf ) contains a F -sub
vector space of dimension q[Nuc(Sf ) : F ]. If f(t) = g(t3) for some g ∈ K[x],
then Nuc(Sf ) = K and K[x]/(g(x)) ∼= K ⊕ Kt3 ⊕ Kt6 ⊕ · · · ⊕ Kt3(q−1) is
an F -sub vector space of Nucr(Sf ). If this f is also irreducible and not right
invariant, then a0 6= 0, and [Nucr(Sf ) : F ] = m. Thus in this case

Nucr(Sf ) ∼= K[x]/(g(x)).

(ii) Suppose that f ∈ Q(ζ4 + ζ2 + ζ)[t] is not right invariant and we have
m− i 6= 3l for some ai 6= 0. Then

Nuc(Sf )/Nuc(Sf )f = Q(ζ4 + ζ2 + ζ)[t]/(f(t)) ⊂ Nucr(Sf ).

In particular, if f is irreducible in R then

Nucr(Sf ) = Q(ζ4 + ζ2 + ζ)[t]/(f(t)).

4 The case that only ĥ(x) is irreducible in F [x]

In this section we assume that σ has finite order n > 1, f is bounded and that
ĥ is irreducible in F [x]. Then f = f1 · · · fl for irreducible fi ∈ R such that
fi ∼ fj for all i, j ([16], cf. [22]). Let deg(fi) = r, then m = rl, and let k be
the number of irreducible factors of h in R (then l ≤ k).

Theorem 20. For every i, 1 ≤ i ≤ l, E(fi) is a central division algebra over
Eĥ of degree s′ = n/k and

R/Rh ∼= Mk(E(fi)), Nucr(Sf ) ∼= Ml(E(fi)).

In particular, Nucr(Sf ) is a central simple algebra over Eĥ of degree s = ls′,

deg(ĥ) = r
s′ = m

s , deg(h) = rn
s′ = mn

s , and

[Nucr(Sf ) : F ] = l2rs′ = ms.

Moreover, s′ divides gcd(r, n), and s and l divide gcd(m,n).
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Proof. Since h is a two-sided maximal element in R, the irreducible factors hi
of any factorization h = h1 · · ·hk of h in R are all similar. Now h(t) = p(t)f(t)
for some p(t) ∈ R and so comparing the irreducible factors of f and h and
employing [13, Theorem 1.2.9], we see that f = f1 · · · fl for irreducible fi ∈ R
such that fi ∼ fj for all i, j (and also fi ∼ hj for all i, j), with l ≤ k. In
particular, R/Rfi ∼= R/Rfj for all i, j. Moreover, R/Rh ∼= Mk(E(fi)) is a
simple Artinian ring [13, Theorem 1.2.19]. Each of the polynomials hi, resp.,
fi, has minimal central left multiple h [10, Proposition 5.2]. Let A = R/Rh.
We obtain

R/Rf ∼= R/Rf1 ⊕R/Rf2 ⊕ · · · ⊕R/Rfl
as a direct sum of simple left A-modules (e.g. see [10, Corollary 4.7]). Let
g be an irreducible factor of h in R. Since R/Rfi ∼= R/Rg, we get R/Rf ∼=
(R/Rg)⊕l as left A-modules. By [21, Exercise 6.7.2, Lemma 6.7.5] we have

EndA(R/Rf) ∼= EndA((R/Rg)⊕l) ∼= Ml(EndA(R/Rg))

as rings.
Since h is the minimal central left multiple of f and of g,

Rh = AnnR(R/Rf) = AnnR(R/Rg) [14, pg. 38], hence EndR(R/Rf) =
EndA(R/Rf), EndR(R/Rg) = EndA(R/Rg), and

EndR(R/Rf) ∼= Ml(EndR(R/Rg)).

Finally, E(g) ∼= EndR(R/Rg), therefore

E(f) ∼= Ml(E(g)).

Since g is irreducible of degree r with minimal central left multiple h(t) =

ĥ(tn), E(g) is a central division algebra over Eĥ of degree s′ = n/k, where k

is the number of irreducible divisors of h in R, deg(ĥ) = r
s′ = m

s and deg(h) =
rn
s′ = mn

s by Theorem 1. Finally, since E(f) ∼= Ml(E(g)), E(f) is a central

simple algebra over Eĥ of degree s = ls′, and [E(f) : F ] = s2deg(ĥ) = ms.
The assertion follows since E(fi) = E(g).

Now s′ = n/k, and deg(ĥ) = r/s′, i.e. s′ divides both n and r, hence s′

divides gcd(n, r). Next, s divides gcd(m,n): deg(ĥ) = m/s means s divides
m. Also [Sf : F ] = b[Nucr(Sf ) : F ] for some positive integer b. We know that
[Sf : F ] = mn and that [Nucr(Sf ) : F ] = ms, hence mn = bms. Cancelling
m yields n = bs, i.e. s divides n. The result follows immediately. Finally, l
divides gcd(m,n): Since s = ls′, l divides s. Hence l divides gcd(m,n) by the
above.

Comparing F -vector space dimensions, we obtain that [Sf : Nucr(Sf )] =
k/l.
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Corollary 21. Suppose that ĥ(x) is irreducible in F [x].
(i) If m is prime, then one of the following holds:
(a) Nucr(Sf ) ∼= Eĥ is a field extension of F of degree m,
(b) Nucr(Sf ) is a central division algebra over F of degree m,
(c) Nucr(Sf ) ∼= Mm(F ).
(ii) If gcd(m,n) = 1, or n is prime and f not right invariant, then f is

irreducible and Nucr(Sf ) ∼= Eĥ is a field extension of F of degree m = deg(ĥ),
and deg(h) = mn.

Corollary 22. Suppose that f ∈ F [t] ⊂ R is not right invariant, and that

ĥ(x) is irreducible in F [x].

(i) If ĥ(x) is irreducible and [N : F ] = ln/k, then Nucr(Sf ) = N [t;σ]/N [t;σ]f.

(ii) If [N : F ] > nl
k , then ĥ(x) is reducible, and therefore f as well.

Proof. (i) We know that N [t;σ]/N [t;σ]f(t) is a subalgebra of Nucr(Sf ) of

dimension lnm
k over F (Theorem 10). If ĥ(x) is irreducible then Nucr(Sf )

has degree ms = mln/k over F by Theorem 20, therefore comparing the
dimensions of the vector spaces we obtain the assertion.
(ii) If f(t) ∈ F [t] ⊂ R thenN [t;σ]/N [t;σ]f has dimensionm[N : F ] over F and

is a subalgebra of Nucr(Sf ) by Theorem 10. Suppose that ĥ is irreducible,
then Nucr(Sf ) has dimension mnl

k as an F -vector space (Theorem 20). In

particular, this implies mnl
k = [Nucr(Sf ) : F ] ≥ m[N : F ], a contradiction if

[N : F ] > nl
k .

As a direct consequence of Proposition 8, we obtain:

Theorem 23. Suppose that f(t) = tm −
∑m−1
i=0 ait

i ∈ Fix(σc)[t;σ] for some
minimal c ∈ {1, 2, . . . ,m− 1}. Suppose that f is not right invariant and that

ĥ(x) is irreducible in F [x].
(i) If m = qc for some positive integer q and [N : F ] > cnl

k , then f is reducible.
(ii) If m = qc+ r for some positive integers q, r with 0 < r < c, and [N : F ] ≥
cnl
k then f is reducible.

Proof. Since ĥ is irreducible in F [x], then the right nucleus has dimension mnl
k

as an F -vector space.
(i) If m = qc for some positive integer q, then

N ⊕Ntc ⊕Nt2c ⊕ · · · ⊕Nt(q−1)c

is an F -sub vector space of Nucr(Sf ) of dimension q[N : F ].
(ii) If m = qc+ r for some positive integers q, r with 0 < r < c, then

N ⊕Ntc ⊕Nt2c ⊕ · · · ⊕Ntqc
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is an F -sub vector space of Nucr(Sf ) of dimension (q + 1)[N : F ].
If [N : F ] > cnl

k in (i), then q[N : F ] > mnl
k , a contradiction. If [N : F ] ≥ cnl

k

in (ii), then (q + 1)[N : F ] ≥ q cnlk + cnl
k > mnl

k , a contradiction. Thus ĥ must
be reducible, and therefore f , too.

5 The right nucleus of Sf for low degree polynomials in
F [t] ⊂ K[t;σ]

We assume that K/F is a cyclic Galois field extension of degree n with
Gal(K/F ) = 〈σ〉. We now explore the structure of Nucr(Sf ) for f ∈ F [t] ⊂ R
of low degree (the same arguments apply for higher degrees). We repeatedly
use that [Fix(σs) : F ] = gcd(n, s), N =

⋂
λj∈Λ

Fix(σm−λj ) by Theorem 13 and

Corollary 14. We also use that if f ∈ F [t] ⊂ R then N [t;σ]/N [t;σ]f is a
subalgebra of Nucr(Sf ) (Theorem 10).

5.1 m = 2

Let f(t) = t2 − a1t− a0 ∈ R, then N =
⋂

λj∈Λ

Fix(σ2−λj ).

1. If f(t) = t2 − a0 with a0 ∈ K×, then N = Fix(σ2).

2. If f(t) = t2 − a1t− a0 with a1 ∈ K×, then N = F .

Note that if n is even, then σ2 has order n
2 in Gal(K/F ), which means that

F 6= Fix(σ2). If n is odd, then gcd(n, 2) = 1, therefore Fix(σ2) = F .

Proposition 24. Let f(t) = t2 − a0 ∈ F [t] ⊂ R, a0 6= 0 then
Fix(σ2)[t;σ]/Fix(σ2)[t;σ]f is a subalgebra of Nucr(Sf ) of dimension 2[Fix(σ2) :
F ] over F . In particular, if n is prime or odd, then f is reducible.

Proof. N [t;σ]/N [t;σ]f is a subalgebra of Nucr(Sf ) and N = Fix(σ2) by (1),
which yields the first assertion. The second assertion follows from the fact
that the right nucleus has dimension 2 over F for irreducible right invariant f
under our assumptions.

5.2 m = 3

Let f(t) ∈ R be of degree 3, then N =
⋂

λj∈Λ

Fix(σ3−λj ).

1. If f(t) = t3 − a0 ∈ R, where a0 ∈ K×, then N = Fix(σ3).
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2. If f(t) = t3 − a1t ∈ R, where a1 ∈ K×, then N = Fix(σ2).

3. In all other cases, N = F .

Proposition 25. (i) If f(t) = t3 − a0 with 0 6= a0 ∈ F , then

Fix(σ3)[t;σ]/Fix(σ3)[t;σ]f

is a subalgebra of Nucr(Sf ) of dimension 3[Fix(σ3) : F ] over F . In particular,
if n is prime or not divisible by 3, then f is reducible.
(ii) If f(t) = t3 − a1t with 0 6= a1 ∈ F , then

Fix(σ2)[t;σ]/Fix(σ2)[t;σ]f

is a subalgebra of Nucr(Sf ) of dimension 3[Fix(σ2) : F ] over F .

Proof. By Proposition 10, N [t;σ]/N [t;σ]f(t) ⊂ Nucr(Sf ).
(i) If f(t) = t3 − a0 ∈ F [t] with a0 6= 0, then N = Fix(σ3) which proves the
assertion looking at the dimensions.
(ii) If f(t) = t3 − a1t ∈ F [t] with a1 6= 0, then N = Fix(σ2).

5.3 m = 4

Let f(t) ∈ R be of degree 4, then N =
⋂

λj∈Λ

Fix(σ4−λj ).

1. If f(t) = t4 − a0 with a0 ∈ K× then N = Fix(σ4).

2. If f(t) = t4 − a1t with a1 ∈ K× then N = Fix(σ3).

3. If f(t) = t4 − a2t
2 with a2 ∈ K× then N = Fix(σ2).

4. If f(t) = t4− a2t
2− a0 with a0, a2 ∈ K×, then N = Fix(σ4)∩Fix(σ2) =

Fix(σ2).

5. In all other cases, N = Fix(σ) = F .

Observe that:

• If n ≡ 0(mod 4), then [Fix(σ4) : F ] = 4.

• If n ≡ 1 or 3(mod 4), then Fix(σ4) = F .

• If n ≡ 2(mod 4), then [Fix(σ4) : F ] = 2.

• If n ≡ 0(mod 3), then [Fix(σ3) : F ] = 3.
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• If n ≡ 1 or 2(mod 3), then Fix(σ3) = F .

• If n ≡ 0(mod 2) then [Fix(σ2) : F ] = 2.

• If n ≡ 1(mod 2) then Fix(σ2) = F .

Proposition 26. (i) If f(t) = t4 − a0 ∈ F [t] with 0 6= a0, then

Fix(σ4)[t;σ]/Fix(σ4)[t;σ]f

is a subalgebra of Nucr(Sf ) of dimension gcd(n, 4) over F . In particular:
(a) If f is irreducible and either n 6= 2 is prime or gcd(n, 4) = 1, then

Nucr(Sf ) ∼= Fix(σ4)[t;σ]/Fix(σ4)[t;σ]f.

(b) If n = 2, then f is reducible.
(ii) If f(t) = t4 − a1t ∈ F [t;σ] with 0 6= a1, then

Fix(σ3)[t;σ]/Fix(σ3)[t;σ]f

is a subalgebra of Nucr(Sf ) of dimension 4gcd(n, 3) over F .
(iii) If f(t) = t4 − a2t− a0 ∈ F [t;σ] with 0 6= a2, then

Fix(σ2)[t;σ]/Fix(σ2)[t;σ]f

is a subalgebra of Nucr(Sf ) of dimension 4gcd(n, 2) over F . In particular:
(a) If f is irreducible, and either n 6= 2 is prime or gcd(n, 4) = 1, then

Nucr(Sf ) ∼= Fix(σ2)[t;σ]/Fix(σ2)[t;σ]f.

(b) If n = 2, then f is reducible.

Proof. N [t;σ]/N [t;σ]f(t) ⊂ Nucr(Sf ) by Theorem 10.
(i) Here N = Fix(σ4) by (1), and thus

Fix(σ4)[t;σ]/Fix(σ4)[t;σ]f ⊂ Nucr(Sf ).

(ii) We know N = Fix(σ3) by (2), and hence

Fix(σ3)[t;σ]/Fix(σ3)[t;σ]f ⊂ Nucr(Sf ).

(iii) We have N = Fix(σ2) by (3), and so

Fix(σ2)[t;σ]/Fix(σ2)[t;σ]f ⊂ Nucr(Sf ).
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6 A small algorithm to check if f is reducible

Let K/F be a cyclic Galois extension of degree n with Galois group
Gal(K/F ) = 〈σ〉. We assume that n is either prime or that gcd(m,n) = 1 to

simplify the process. For some skew polynomials f(t) = tm −
∑m−1
i=0 ait

i ∈ R
which are not right invariant, we can decide if they are reducible based on the

following “algorithm” with output TRUE if f is reducible and STOP if we
cannot decide:

1. Check if f ∈ F [t]. If f is reducible in F [t], then f is reducible in R

TRUE . If f 6∈ F [t] then go to (2).

2. Compute N = Fix(σd), where d = gcd(m − λ1,m − λ2, . . . ,m − λr, n)
as per Theorem 16.

If [N : F ] > m, then f is reducible TRUE .
If [N : F ] ≤ m then go to (3).

3. Find the smallest integer c, such that ai ∈ Fix(σc) for all i, and where
Fix(σc) is a proper subfield of K.

If Fix(σc) = N then f is reducible TRUE .

If m = qc and [N : F ] > c, then f is reducible TRUE .
If m = qc + r with 0 < r < c, and [N : F ] ≥ c then f is reducible

TRUE .
In all other cases, go to (4).

4. If all ai are not contained in a proper subfield of K, then we cannot

decide if f is reducible STOP .

Furthermore, if f(t) ∈ F [t] then we can use the fact that N [t;σ]/N [t;σ]f
is a subalgebra of Nucr(Sf ) to look for zero divisors in Nucr(Sf ) in order to
factor f .
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[10] J. Gòmez-Torrecillas, F. J. Lobillo,; G. Navarro, Computing the bound of
an Ore polynomial. Applications to factorization. J. Symbolic Comput. 92
(2019), 269-297.
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