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Abstract

In the present paper, a numerical scheme is discussed to solve one-
dimensional nonlinear diffusion equation of fractional order in which
collocation is performed using the Lucas operational matrix. Since the
spectral collocation method is used in the proposed method, therefore
the residual, initial and boundary conditions of the presented problem
are collocated at fixed collocation points. The result is a system of non-
linear equations that can be solved by using Newton’s method. Through
error analysis and application to some existing problems, the accuracy of
the method is confirmed. The obtained results are presented in tabular
forms, which clearly show the higher accuracy of the proposed method.
The variations of the solute profile of the proposed model are shown
graphically due to the presence or absence of advection and reaction
terms for different particular cases.

1 Introduction

The fractional order diffusion equation (FDE) is used to deal with the prob-
lems related to chemical reactions, environmental pollution, physics, biological
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system, and hydrology, etc. In most of the cases exact solutions are not avail-
able for the FDE especially for nonlinear cases, so it is important to obtain
the numerical solutions for such types of problems, and therefore it has re-
ceived more attention from the researchers to solve diffusion equations. In
this article, an approximate solution of one-dimensional FDE is obtained with
the operational matrix method. Over the past few years, the development of
many different methods has taken place. [1] have numerically solved diffusion
equations using the quadrature method, [2] have established a method to find
exact solution of nonlinear diffusion equation by using variational iteration
method, [3] have developed a method to find the unknown boundary condi-
tions of diffusion equation of fractional order, [4] have developed a scheme to
find the approximate solution of diffusion equation of fractional order, [5] have
discussed operational matrix (OM) of Chebyshev polynomial to solve FDE,
[6]-[7] have established a method to find approximate solution of nonlinear dif-
fusion equation of fractional order, [8]-[10] have found approximate analytical
solution of coupled FDE.
The ground water is a huge source for drinking water as well in agriculture and
industrial sectors. Nowadays we are facing a threat to groundwater resources
from expanding demand, waste use and contamination. Understanding the
behavior of contaminants as they travel through different media, many re-
searchers are working on numerical as well as analytical studies to simulate
the movement of contaminants in groundwater. Mass conservation of the so-
lutes transported through porous media is depicted by a partial differential
equation called reaction-advection-diffusion equation. Here the authors have
considered the transport of the solute through an aquifer with homogeneous
porous medium. The problem can be illustrated physically by assuming the
length of the aquifer as l, and pollutants enter into the groundwater through
the porous medium. Since pollutants concentration is greater than that of
the concentration of the groundwater, so there will be diffusion. The govern-
ing equation of the solute can be expressed by the following nonlinear non-
homogeneous fractional-order reaction-advection-diffusion equation (FRADE)
as

∂αC(x, t)

∂tα
=

∂

∂x

(
C(x, t)

∂βC(x, t)

∂xβ

)
− v(x)

∂C(x, t)

∂x
+ kC(x, t) + f(x, t),

(1)

where 0 < β,α ≤ 1,
with the initial condition as

C(x, 0) = ρ0(x) (2)



An approximate solution of a nonlinear FRADE 99

and the boundary conditions as

C(0, t) = ρ1(t), C(l, t) = ρ2(t). (3)

Here C(x, t) is solute concentration, k is reaction term, v is the advection
coefficient and f(x, t) is the forced term. For α = 1 and β = 2, the mathe-
matical model (1) becomes the integer order classical RADE model. Here one
dimensional FDE is approximated using Lucas operational matrix together
with collocation method. In the discussed method the solution is expressed
as a series of Lucas polynomial

∑
ci,jφiφj , where φ is the set of polynomials

and coefficients ci,j are calculated by taking help of collocation method. In
which boundary, initial conditions and residual are to be collocated at the
certain collocation points. In the present article, the solution is approximated
by using Lucas polynomials as basis functions. Many authors have used Lucas
OM to solve the problem. The authors of [11] have proposed a method with
the help of the said matrix to solve the differential equation. In the next year
the same authors [12] had generalized the matrix to solve fractional order dif-
ferential equation. The novelty of the present article is the drive taken by the
authors to extend the method to solve the nonlinear PDE in fractional order
systems. OM method is better than the other existing methods because as it
involves sparse matrix which reduces the computational time. The use of OM
method can be seen in many articles, [13] have used Legendre wavelet method
for integration, [14] used direct method to solve integro-differential equations
and nonlinear Volterra-Fredholm integral equations. An OM to solve differ-
ential equations of fractional order was developed in [15]. Thus our effort to
apply the method in nonlinear fractional order PDEs is first of its kind. The
salient part of this study is the effect of advection and convection terms on the
solution profile and damping of concentrations due to presence of sink term
for different fractional order parameters.
The article is arranged as follows. Section 2 consists of some basic definitions
and formulae of fractional calculus are introduced. Section 3 contains OM for
derivative using Lucas polynomial and in Section 4 the details of the proposed
numerical tool is provided. In Section 5 the authors have applied the proposed
method on three existing problems and compare their solutions with the ex-
isting analytical results. The solutions of the concerned scientific model by
applying the proposed method is given in Section 6, which is followed by the
section Conclusion of the overall work.
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2 Preliminaries

2.1 Some useful definitions and formulae

In this section, the following basic properties and definitions of fractional cal-
culus have been used.
The Caputo derivative of fractional order ϑ, where i − 1 < ϑ ≤ i of function
f(x, t) w.r. to the time variable t is given as

Dϑ
t f(x, t) =


1

Γ(i−ϑ)

∫ t
0
(t− s)i−ϑ−1 ∂

if(x,s)
∂si ds, i− 1 < ϑ < i,

∂if(x,t)
∂ti , ϑ = i.

(4)

Similarly the fractional order derivative of function f(x, t) w.r. to variable x
is given by

Dϑ
xf(x, t) =


1

Γ(i−ϑ)

∫ x
0

(x− s)i−ϑ−1 ∂
if(s,t)
∂si ds, i− 1 < ϑ < i,

∂if(x,t)
∂xi , ϑ = i.

(5)

In addition, Caputo differential operator satisfies the linearity property

Dϑ(µf(x, t) + λg(x, t) = µDϑf(x, t) + λDϑg(x, t), (6)

where µ and λ are constants. According to the definition of the Caputo dif-
ferential operator we have

Dϑ
xx

m =


Γ(m+1)

Γ(m+1−ϑ)x
m−ϑ, m = 1, 2 · · · ,

0, m = 0.

(7)

2.2 Lucas polynomial

Lucas polynomials can be obtained from the following relation

Ln+2(x) = Ln(x) + xLn+1(x), n ≥ 0, (8)

with the conditions
L0(x) = 2, L1(x) = x.

From the above relation the Lucas polynomial is obtained as

Ln(x) = n

bn2 c∑
m=0

(n− 2m+ 1)m−1

m!
xn−2m, (9)
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where b.c denotes the floor function and Pochhammer symbol (k)m is defined
as

(k)m =
Γ (m+ k)

Γ (k)
.

The polynomial xm for m ≥ 1 can be expressed as linear combination of Lucas
polynomial as

xm =

bm2 c∑
k=0

(−1)kδm−2k(m− k + 1)k
k!

Lm−2k(x), (10)

where δs is defined by

δs =

{
1 s > 0,
1
2 , s = 0.

(11)

Suppose f(x, t) be a function in [0, 1] × [0, 1]. Then f(x, t) can be written in
series form of Lucas polynomial Ln(x) as

f(x, t) =

∞∑
i=0

∞∑
j=0

uijLi(x)Lj(t),

where coefficients uij ’s are not known . We can approximate the above func-
tion in first (n+ 1) terms in combination of Lucas polynomial as

f(x, t) =

n∑
i=0

n∑
j=0

uijLi(x)Lj(t) = ΨT (x)UΨ(t),

where U is (1 + n)× (1 + n) unknown matrix and Ψ(x) is (1 + n)× 1 column
vector given by

U =


u0,0 u0,1 · · · u0,n+1

u1,0 u1,1 · · · u1,n+1

...
...

. . .
...

un+1,1 un+1,2 · · · un+1,n+1


(n+1)×(n+1)

(12)

and
Ψ(x) = [L0(x), L1(x), ..., Ln(x)]T . (13)

3 Formation of Lucas OM for fractional order derivative

The differentiation of the vector Ψ(x) w.r. to x is given by

dΨ(x)

dx
= P (1)Ψ(x), (14)
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where P (1) = (m
(1)
ij ) is an (1 + n)-dimensional square matrix, whose compo-

nents are calculated as

m
(1)
ij =

{
i(−1)

i−j−1
2 δj , if j < i, and (j + i) odd,

0, else.

In general, for any positive integer r,

drΨ(x)

dxr
= P (r)Ψ(x) = (P (1))rΨ(x). (15)

From [11], it can be seen for the fractional derivative of order α > 0,

DαΨ(x) = x−αP (α)Ψ(x) , (16)

where Ψ(x) be the Lucas polynomial vector already defined in equation (13),

and P (α)=(m
(α)
i,j ) is the Lucas OM of derivative of order α is given by

P (α) =



0 0 0 · · · 0
...

...
...

...
ηα(dαe, 0) ηα(dαe, dαe) 0 · · · 0

...
...

...
...

ηα(i, 0) · · · ηα(i, i) · · · 0
...

...
...

...
ηα(n, 0) ηα(n, 1) ηα(n, 2) · · · ηα(n, n)


(n+1)×(n+1)

(17)
the elements mα

i,j ’s are given explicitly as

m
(α)
ij =

{
ηα(i, j), if j ≤ i, i ≥ dαe,
0, elsewhere ,

where

ηα(i, j) =

i∑
k=dαe

(k+i)even
(k+j)even

(−1)
k−j
2 δj

(
i+k−2

2

)
!
(

2+j+k
2

)
k−j
2(

i−k
2

)
!
(
k−j

2

)
!Γ(1− α+ k)

. (18)

4 Numerical method to solve one dimensional Diffusion
equation

In this section, we will discuss the method in brief for the approximate solu-
tion of the FDE .
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To approximate the problem numerically, we assume

C(x, t) ≈ C̃(x, t) =

n∑
i=0

n∑
j=0

ui,jLi(x)Lj(t) = ΨT (x)UΨ(t), (19)

where

Ψ(x) = [L0(x), L1(x), ..., Ln(x)]T , Ψ(t) = [L0(t), L1(t), ..., Ln(t)]T , (20)

and U is defined in equation (12) whose unknown coefficients have to be de-
termined.
According to the problem, we have

t−αΨT (x)UP (α)Ψ(t) = x−βΨT (x)UΨ(t)(P (β)Ψ(x))TUΨ(t)

+ x−(β−1)ΨT (x)(P 1)TUΨ(t)ΨT (x)(P (β−1))TUΨ(t)

− v(x)(P (1)Ψ(x))TUΨ(t) + kΨT (x)UΨ(t) + f(x, t),

(21)

where Ψt(t) = [ ∂∂tL0(t), · · · , ∂∂tLn(t)]T ,Ψx(x) = [ ∂∂xL0(x), · · · , ∂∂xLn(x)]T ,

Ψxx(x) = [ ∂
2

∂x2L0(x), · · · , ∂
2

∂x2Ln(x)]T .
If we approximate u(x, t), then the residual R(x, t) is

R(x, t) = t−αΨT (x)UP (α)Ψ(t)− x−βΨT (x)UΨ(t)(P (β)Ψ(x))TUΨ(t)

− x−(β−1)ΨT (x)(P 1)TUΨ(t)ΨT (x)(P (β−1))TUΨ(t)

+ v(x)(P (1)Ψ(x))TUΨ(t)− kΨT (x)UΨ(t)− f(x, t).

(22)

Now, from the initial condition and boundary conditions, we have

ΨT (x)UΨ(0) = ρ0(x), (23)

ΨT (0)UΨ(t) = ρ1(t), (24)

ΨT (l)UΨ(t) = ρ2(t). (25)

While using the collocation method, R(x, t) vanishes at certain collocation

points. The collocation points are chosen as
(

i
n+1 ,

j
n+1

)
.

Now, making residual R(x, t) zero at certain collocation points, we have

R(xi, tj) = 0, i = 1, 2, · · · , n− 1, j = 1, 2, · · · , n, (26)
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and collocating the equation (23) at (n + 1) points {xi : i = 0, 1, · · · , n}, we
get

ΨT (xi)UΨ(0) = ρ0(xi). (27)

Also collocating equations (24) and (25) at n points {tj : j = 1, 2, · · · , n}, we
get

ΨT (0)UΨ(tj) = ρ1(tj), (28)

ΨT (1)UΨ(tj) = ρ2(tj). (29)

Equation (26) with the aid of equations (27), (28) and (29) generates a (n +
1) × (n + 1) nonlinear system. whose solution can be obtained by using well
known Newton’s iteration method.

5 Error bound

In this section, authors aim is to find an upper bound for the error which may
be expected in the presented method. Consider the space∏

n

= span {Li(x)Lj(t), i = 1, 2, · · · , n, j = 1, 2, · · · , n} .

If we assume that C̃(x, t) is the best approximation of C(x, t) ∈
∏
n, then

using the definition of best approximation, we have

||C(x, t)− C̃(x, t)||∞ ≤ ||C(x, t)− S(x, t)||∞, ∀S(x, t) ∈
∏
n

. (30)

Inequality (31) is also true if S(x, t) is the interpolating polynomial of C(x, t)
at points (xi, tj), where xi, tj 0 < i, j ≤ n are roots of the polynomial Ln(x)
and Ln(t) respectively. Then using [16] we get

C(x, t)− S(x, t) =
1

(1 + n)!

∂1+nC(γ, t)

∂x1+n

n∏
i=0

(x− xi) +
1

(1 + n)!

∂1+nC(x, τ)

∂t1+n

×
n∏
i=0

(t− ti)−
1

(1 + n)!

1

(1 + n)!

∂2+2nC(γ′, τ ′)

∂x1+n∂t1+n

×
n∏
i=0

(x− xi)
n∏
j=0

(t− tj)
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where γ, γ′, τ, τ ′ ∈ [0, 1], now taking norm on both the sides, we have

‖C(x, t)− S(x, t)‖∞ ≤
1

(1 + n)!
max

(x,t)∈[0,1]

∣∣∣∣∣∂1+nC(γ, t)

∂x1+n

∣∣∣∣∣×
∥∥∥∥∥
n∏
i=0

(x− xi)

∥∥∥∥∥
∞

+
1

(1 + n)!
max

(x,t)∈[0,1]

∣∣∣∣∣∂1+nC(x, τ)

∂t1+n

∣∣∣∣∣
×

∥∥∥∥∥
n∏
i=0

(t− tj)

∥∥∥∥∥
∞

+
1

(1 + n)!2
max

(x,t)∈[0,1]

∣∣∣∂2+2nC(γ′, τ ′)

∂x1+n∂t1+n

∣∣∣
×

∥∥∥∥∥
n∏
i=0

(x− xi)

∥∥∥∥∥
∞

×

∥∥∥∥∥∥
n∏
j=0

(t− tj)

∥∥∥∥∥∥
∞

.

Since C(x, t) has continuous derivative over [0, 1] therefore there exist con-
stants K1, K2 and K3 such that

max
(x,t)∈[0,1]

∣∣∣∣∣∂n+1C(γ, t)

∂xn+1

∣∣∣∣∣ ≤K1, max
(x,t)∈[0,1]

∣∣∣∣∣∂n+1C(x, τ)

∂tn+1

∣∣∣∣∣ ≤ K2,

and

max
(x,t)∈[0,1]

∣∣∣∂2n+2C(γ′, τ ′)

∂xn+1∂tn+1

∣∣∣ ≤K3.

Now to minimize the factor
∏n
i=0(x− xi), we proceed in the following way

min
xi∈[0,1]

max
(x,t)∈[0,1]

∣∣∣ n∏
i=0

(x− xi)
∣∣∣ = min

xi∈[0,1]
max

(x,t)∈[0,1]

∣∣∣Ln+1(x)
∣∣∣,

where Ln+1(x) is the Lucas polynomial of degree (n + 1). Now from the
inequality of Lucas polynomial

|Ln(x)| ≤ 2σn,

where σ = 1+
√

5
2 is known as golden ratio. Now from the above inequalities,

we get

||C(x, t)− C̃(x, t)|| ≤ K1 × 2σn+1

(n+ 1)!
+
K2 × 2σn+1

(n+ 1)!
+
K3 × 4σ2n+2

(n+ 1)!2
,

which is the required upper bound for the absolute error between analytical
and numerical results. Therefore numerical approximation leads to the exact
solution.
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6 Numerical Examples

To validate the effectiveness of the approach, we have applied our proposed
approach to three existing problems and have compared the obtained approx-
imate solution with their analytical results. To evaluate the accuracy of the
method, the Root-Mean-Square error (RMSE) are used through the formula√

1
N

∑N
i=1 |C(xi)− Cexact(xi)|2.

Example 1. Consider FDE equation with variable coefficient as

∂αC(x, t)

∂tα
= (x2+t+1)

∂2C(x, t)

∂x2
−t2ex ∂C(x, t)

∂x
+

2t2−α

Γ(3− α)
−2(x2+t)+2t2xex−2,

where 0 ≤ x ≤ 1, t > 0,
having initial condition

C(x, 0) = x2,

and boundary conditions

C(0, t) = t2,

C(1, t) = t2 + 1,

whose exact solution is C(x, t) = t2 + x2 given in [17].

Table 1: The Root mean square (RMS) error for n=7 and α = 0.2, 0.6, for
Example 1

α = 0.2 α = 0.6

t
y Our method at n=7 [17] at n=11 Our method at n=7 [17] at n=11

0.2 5.1819 × 10−16 2.5257 × 10−6 6.2789 × 10−16 4.7226 × 10−5

0.4 2.8210 × 10−16 2.3959 × 10−6 3.0519 × 10−16 4.3875 × 10−5

0.6 2.5134 × 10−16 2.2295 × 10−6 4.2020 × 10−16 4.0071 × 10−5

0.8 6.7896 × 10−16 2.0723 × 10−6 5.6392 × 10−16 3.6685 × 10−5

1.0 1.5651 × 10−14 1.9307 × 10−6 1.5599 × 10−14 3.3755 × 10−5

Table 1 shows the RMSE between the exact and approximate solutions.
It is shown that RMS error obtained by using our proposed method for the
order of the operational matrix n = 7 at α = 0.2 and α = 0.8 are much higher
compared to meshless method given in [17]. The error can be decreased by
increment in the value of n.

Example 2. Consider the problem

∂αC(x, t)

∂tα
=

∂

∂x

(
C(x, t)

∂βC(x, t)

∂xβ

)
− ∂C(x, t)

∂x
+ C(x, t) + f(x, t),
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(a) Exact solution (b) Numerical solution

Figure 1: Behaviour of exact and numerical solution at n = 7 for α = 0.6 for
Example 1 .

with the initial condition
C(x, 0) = 0,

and boundary conditions

C(0, t) = 0, C(1, t) = t2.

The analytical solution of the present time-space fractional nonlinear problem
for α = 0.6 and β = 0.8 for the appropriate choice of f(x, t), is given by
C(x, t) = x2t2. In Table 2, the maximum absolute error (MAE)
L∞= max

0<x,t≤1
|C(x, t)− C̃(x, t)| for various n and x values is presented at t =

0.5.

Table 2: The maximum absolute error for n = 4 and n = 5 at t = 0.5 for
Example 2

 L∞ L∞
x
y n = 4 n = 5

0.2 2.7062× 10−16 4.8752× 10−17

0.4 1.0825× 10−15 2.7756× 10−17

0.6 1.4710× 10−15 5.8287× 10−16

0.8 1.2212× 10−15 9.9920× 10−16

1.0 6.3726× 10−14 7.8381× 10−14

It is found that the error reduces due to increase in n. It is also observed
that even for n = 5, the error is of order 10−17 for our proposed method.
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(a) Exact solution (b) Numerical solution

Figure 2: Behaviour of Exact and Numerical solutions at n = 4 for Example
2.

Example 3. Consider the nonlinear PDE

∂C(x, t)

∂t
=
∂2C(x, t)

∂x2
+
∂C(x, t)

∂x
C(x, t) + (1− C(x, t))C(x, t),

with the conditions

C(x, 0) =
1

2
tanh

(x
4

)
+

1

2
,

C(0, t) =
1

2
tanh

(
5t

8

)
+

1

2
,

C(1, t) =
1

2
tanh

[
1

4

(
1 +

5t

2

)]
+

1

2
,

which has the analytical solution as C(x, t) = 1
2 tanh

[
1
4

(
x+ 5t

2

)]
+ 1

2 .

Table 3: The maximum absolute error L∞ for n = 3 and n = 4 for Example 3

 L∞ L∞
x
y n = 3 n = 4

0.2 7.5843× 10−4 2.6815× 10−5

0.4 6.3607× 10−4 4.4925× 10−6

0.6 6.6367× 10−4 2.5863× 10−5

0.8 8.1003× 10−4 4.6403× 10−5

1.0 1.0508× 10−3 7.0425× 10−5

For the above nonlinear problem, it is seen from Table 3 that the absolute
error defined in Example 3 is decreased with the increase in n. Thus for a
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(a) Exact solution (b) Numerical solution

Figure 3: Behaviour of Exact and Numerical solution at n = 4 for Example 3.

nonlinear problem, for a less value of n, the numerical results obtained by our
proposed approach are similar to the analytical solution, which clearly show
that the proposed numerical scheme is very accurate and effective even for
solving nonlinear PDEs.

7 Results and discussion

The present section attempts to solve the considered model using our proposed
method for distinct values of α, β, v and k as initial and boundary conditions

C(x, 0) = (1− x)x,

and
C(0, t) = 0, C(1, t) = 0.

The residual with prescribed initial and boundary conditions are given in equa-
tions (22)-(25). Now varying i from 1 to n− 1 and j from 1 to n the residual
(26) along with equations (27)-(29) already discussed in Section 4 gives a sys-
tem of algebraic equations of order (n+ 1)× (n+ 1), which has been solved by
using Newton method with the help of Wolfram Mathematica software version
11.3 for n = 3.
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Figure 4: Variations of C(x, 0.5) vs. x for various values of β at α = 1 ,v=1.0,
and t=0.5 for non-conservative system with f(x, t) = xt+ 1.

Figure 5: Variations of C(x, 0.5) vs. x for various values of β at α = 1 ,v=1.0,
and t=0.5 for conservative system with f(x, t) = xt+ 1.
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Figure 6: Variations of C(x, 0.5) vs. x for various values of α at v=1.0, β = 1,
and t=0.5 for non-conservative system with f(x, t) = xt.

Figure 7: Variations of C(x, 0.5) vs. x for various values of α at v=1.0, β = 1,
and t=0.5 for conservative system with f(x, t) = xt.
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Figure 8: Variations of C(x, 0.5) vs x at α = 1, β = 1, v = 1.0, and t = 0.5 for
conservative and non-conservative systems with f(x, t) = xt+ 1.

Figure 9: Variations of C(x, 0.5) vs. x for various v at α = 1, β = 1, and
t = 0.5 for non-conservative system with f(x, t) = xt+ 1.



An approximate solution of a nonlinear FRADE 113

Figure 10: Variations of C(x, 0.5) vs. x for various v at α = 1, β = 1, and
t = 0.5 for conservative system with f(x, t) = xt+ 1.

The variations of the solute concentration due to the change in spatial order
derivative β for temporal derivative α = 1 and advection coefficient v = 1.0 for
non-conservative system and conservative system are depicted through Figures
4-5. It is seen from the figures that due to increase in the order of the derivative
β, the concentration is decreasing. Similarly, the variations in concentration
due to increase in the order of the temporal derivative α for β = 1, v = 1.0 for
non-conservative and conservative systems, respectively are shown in Figures
6-7. Here also the solute concentration profile decreases with the increase in
α. The effects on the solute concentration due to the presence / absence of the
reaction term are depicted through Figure 8. In contrast to the conservative
system (k = 0), the solute profile in presence of the source (k = 1) and the
sink (k = −1) terms is higher and lower, respectively. Figures 9-10 are drawn
to observe the effects on solute profile due to the change in the advection
coefficient for non-conservative and conservative systems, respectively. It is
found that the concentration of the solute decreases rapidly with the increase
in the velocity of the concentration.
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8 Conclusion

In this article, the spectral collocation method with the aid of the Lucas OM is
applied to solve the nonlinear time-space FRADE. The beauty of the method
is that it reduces the problem to simultaneous algebraic equations which are
solved by using Newton’s method. The error analysis has been done to show
the effectiveness and efficiency of the method while applying it to existing
problems having analytical solutions. The important feature of the study is
the error estimation of the numerical scheme which is applied to the proposed
model. The most important point of the research is the graphical presentations
of variations of the concentration due to the effect of temporal and spatial
fractional order parameters and also due to the presence / absence of advection
and reaction terms.
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