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Are There Any Natural Physical
Interpretations for Some Elementary

Inequalities?
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Abstract

We inquire whether there are some fundamental interpretations of
elementary inequalities in terms of curvature of a three-dimensional
smooth hypersurface in the four-dimensional real ambient space. The
main outcome of our exploration is a perspective of regarding the natural
substance of some mathematical inequalities, which represent important
physical quantities.

1 Presenting the Challenge

We encounter elementary inequalities in various mathematical contexts, from
the problems proposed in journal of elementary interest, e.g. the American
Mathematical Monthly, Gazeta matematică, or the Mathematics Magazine,
to analytic inequalities serving as arguments in various proofs. Some of them
seem at the first sight rather intricate and their proof could present a challenge,
reminding us of Harald Bohr’s saying, cited in [2], p.12: “All analysts spend
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half heir time hunting through the literature for inequalities which they want
to use but cannot prove.” Definitely the inequalities serving as arguments in
a proof are natural assertions, since they serve the just cause.

Besides the use of certain inequalities in real analysis, there is another way
of regarding certain inequalities as natural, and this interpretation is not en-
tirely obvious. The key point is that some symmetric functions (whose detailed
study dates back to L.-A. Cauchy at the beginning of the 19th century) admit
an interpretation as geometric quantities representing curvature. In several
recent works, e.g. [4, 5, 18] certain symmetric polynomials are interpreted as
curvature invariants and explorations of their geometric meaning are pursued.
The present work aims to expand at a more profound level this reflection.

The strategy of our presentation is the following. We choose an example
of an elementary inequality that is not at all obvious, then we comment on
its interpretation in terms of curvature. In consequence, the main result in
this note is not a theorem, but rather a way of regarding the nature of a
fundamental algebraic statement. Basically, we show that in an algebraic
statement involving three real numbers a, b, c, the sum a+ b+ c represents the
idea of tension, a2+b2+c2 the Casorati curvature (or the square of the Hilbert-
Schmidt norm), ab+ bc+ ca represents the scalar curvature (more will be said
about it in section 5), while abc represents pointwise the Gauss-Kronecker
curvature of a smooth hypersurface lying in the four-dimensional Euclidean
ambient space. As a consequence, any elementary statement relating these
quantities can be envisioned in the spirit of these geometric quantities. And
some of them do have important physical meaning.

As it is well-known, in 1905, Albert Einstein published a series of works
that established the special theory of relativity, which was an experimentally
well-confirmed physical theory regarding the relationship between space and
time. A very important feature of this theory is the four-dimensional space
endowed with a special metric. It is quite natural to consider three-dimensional
objects as subspaces of a four-dimensional real space. For our exploration, we
discuss a few fundamental properties of the four-dimensional Euclidean space.

2 An Example

We could deepen our discussion by using an example from any of the aforemen-
tioned journals, e.g. the American Mathematical Monthly, Gazeta matematică,
or the Mathematics Magazine, as this thought could be conveyed in many ways.
For the sake of a precise illustration, we pick up a sample package of funda-
mental inequalities from the interesting reference [10], where we find many
elementary examples that could serve our goal. Take e.g. Problem 73, p. 190,
stating the following.
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Exercise 1. Let x, y, z be positive real numbers such that x2 + y2 + z2 = xyz.
Prove the following inequalities: (i) xyz ≥ 27; (ii) xy + yz + zx ≥ 27; (iii)
x+ y + z ≥ 9; (iv) xy + yz + zx ≥ 2(x+ y + z) + 9.

Does this exercise have any hidden meaning? Is there anything we don’t
see here at the first sight? We restate the same assertion in a different way.

Proposition 1. Let M3 ⊂ R4 by a smooth strictly convex hypersurface with
the property that the Casorati curvature equals the Gauss-Kronecker curvature,
i.e. at every point the principal curvatures satisfy x2 + y2 + z2 = xyz. Then
between the scalar curvature scal and the mean curvature H the following
inequality holds:

scal ≥ 6H + 9.

The equality holds at umbilical points where all the principal curvatures take
value 3.

It is the same assertion, just the second time formulated as a differential
geometry statement. From this intermediate stage, we can further provide

The Physical interpretation: For smooth strictly convex hypersurfaces
in R4 with Casorati curvature equal to the Gauss-Kronecker curvature, the
Lagrangian density for the Einstein-Hilbert action exceeds by much the tension
H (this is the interpretation of the term 6H + 9).

In the next sections we justify this interpretation. Furthermore, there is
an additional interpretation. The Minkowski spheres either in the de Sitter or
in the Anti de Sitter spaces admit parametrizations in which the Weingarten
matrix has 1

a on the diagonal and 0 in all other entries. These Minkowski
spheres are examples of universes in which the absence of the ordinary matter,
we shall describe below.

For the case n = 3, the equation 1
a2 + 1

a2 + 1
a2 = 1

a3 admits a solution,
which means that in the case n = 3 we do have a de Sitter sphere as well as an
Anti de Sitter sphere, which match the situation hereby described, i.e. a = 1

3 ,
thus x = y = z = 3.

3 Classical curvature quantities

We are ready now to define mathematically the Gaussian curvature and Sophie
Germain’s mean curvature. Consider a smooth surface S lying in R3, and an
arbitrary point P ∈ S. Consider NP the normal to the surface at P.
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Consider the family of all planes passing through P that contain the line
through P with the same direction as NP . These planes yield a family of curves
on S called normal sections. Consider now the curvature κ(P ) of the normal
sections, viewed as planar curves. Then κ(P ) has a maximum, denoted κ1,
and a minimum, denoted κ2. The curvatures κ1 and κ2 are called the principal
curvatures. The Gaussian curvature [15] is defined as K(P ) = κ1(P ) · κ2(P ),
and Sophie Germain’s mean curvature is defined [16] by the arithmetic mean
H(P ) = 1

2 [κ1(P ) + κ2(P )] .
Complementing over a century of investigations on what the correct defi-

nition for curvature should be (if we count the timeline since Leonhard Euler’s
first investigations on the geometry of surfaces), Casorati introduced in 1890
[8] what is today called the Casorati curvature. In his paper, Casorati ar-
gues that there are important geometric reasons why one should investigate
C(P ) = 1

2

[
κ21(P ) + κ22(P )

]
. Some authors choose to refer as Casorati cur-

vature to the sum of the squares of the principal curvatures. In the recent
year there is a growing interest in the study of Casorati curvature and its
applications (see e.g. [6, 11, 12, 19, 20]).

4 Principal Curvatures of a Hypersurface

We discuss a more general case, the context of a smooth hypersurface embed-
ded in an Euclidean ambient space. Namely, for an open set U in the usual
topology of Rn, let σ : U ⊂ Rn → Rn+1 be a hypersurface given by the smooth
map σ. Let p be a point on the hypersurface. Denote by σk(p) = ∂σ

∂xk
, for all

k from 1 to n. Consider {σ1(p), σ2(p), ..., σn(p), N(p)}, the Gauss frame of the
hypersurface, where N denotes the normal vector field.

We denote by gij(p) the coefficients of the first fundamental form and by
hij(p) the coefficients of the second fundamental form:

gij(p) =< σi(p), σj(p) >, hij(p) =< N(p), σij(p) > .

The Weingarten map (defined as the derivative of the Gauss map) is Lp =
−dNp ◦ dσ−1

p : Tσ(p)σ → Tσ(p)σ. Weingarten’s map is linear, which allows us
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to denote by (hij(p))1≤i,j≤n the matrix associated to Weingarten’s map, that
is at every point p:

Lp(σi(p)) =

n∑
k=1

hki (p)σk(p).

It is well-known that Weingerten’s operator is self-adjoint, which implies
that the roots of the algebraic equation

det(hij(p)− λ(p)δij) = 0

are real. The eigenvalues of Weingarten’s linear map are called principal cur-
vatures of the hypersurface. They are the roots k1(p), k2(p), ..., kn(p) of this
algebraic equation. The mean curvature at the point p is H(p) = 1

n [k1(p) +
...+ kn(p)], and the Gauss-Kronecker curvature is K(p) = k1(p)k2(p)...kn(p).

If M is a submanifold of a Riemannian manifold M , and if their sectional
curvatures are sec and sec, respectively, then from the Gauss equation (see
e.g. [13], pg.131) we have:

sec(ei ∧ ej)− sec(ei ∧ ej) = kikj .

If the ambient space is Euclidean, then sec(ei ∧ ej) = 0 at every point, in
every planar direction. This means that the scalar curvature of a hypersurface
in Euclidean ambient space at point p ∈Mn is

scal(p) =
∑
i<j

sec(ei ∧ ej) =
∑
i<j

kikj .

Bearing this in mind, we can return to the thought presented in our in-
troduction, and interpret three real numbers a, b, c ∈ R as the principal cur-
vatures k1 = a, k2 = b, k3 = c at a point of a smooth hypersurface lying in
the four-dimensional real space endowed with the canonical Euclidean met-
ric. Hence, the sum a + b + c represents three times the mean curvature,∑

1≤i<j≤3 kikj = ab + bc + ca represents the scalar curvature, as a direct
consequence of Gauss’ equation, while abc represents pointwise the Gauss-
Kronecker curvature.

Denote now by M (q,p) the real Minkowski (q + p)-dimensional space with
coordinates (x0, x1, ..., xq−1, xq, xq+1, ..., xq+p−1) endowed with the Minkowski
product

〈a, b〉M :=

q−1∑
α=0

aαbα −
q+p−1∑
α=q

aαbα (2.1)

Therefore, we choose to work with signature (+ + ... + − − ...−), where +
appears q times and − appears p times. A vector x = (x0, x1, ...., xq+p−1) is a
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space-like vector if 〈x, x〉M < 0.

Consider a hypersurface f of this real Minkowski (q+p)-dimensional space.
The difference between this ambient space and the case when the hypersurface
is embedded in a real Euclidean (q + p) space appears when we identify the
coefficients of the Gauss formulas. To see this, we have to consider the case
when the normal to the hypersurface vector N satisfies 〈N,N〉M = −1, that
is when N is a space-like vector. These class of surfaces, called space-like
surfaces, are important in physical theories since they can contain time-like
geodesics, which describe the phenomenon of motion.

We investigate the case when the normal to the surface is a space-like
vector. It is natural to inquire whether there are the same Gauss formulas as
in the Euclidean case, namely

∂2f

∂xi∂xk
(x) = Γsik(x) · ∂f

∂xs
(x) +N(x) · hik(x).

In this ambient space we have 〈N,N〉M = −1, therefore the expressions of the
coefficients of the second fundamental form has to change. It turns into

hMij (x) := −
〈
N (x) ,

∂2f

∂xi∂xj
(x)

〉
M

=

〈
∂N

∂xi
(x) ,

∂f

∂xj
(x)

〉
M

.

This means that, in order to preserve the formula which relates the coefficient
of the second fundamental form to the coefficients of the first fundamental form
through the coefficients of the Minkowski-Weingarten matrix, hMij = hsi g

M
sj ,

we need to consider a modified formula for Minkowski-Weingarten coefficients,
more specifically

∂N

∂xi
= hsi

∂f

∂xs
.

By using Gauss’ formulas and Weingarten’s formulas, we obtain Minkowski-
Gauss’ equations in the modified form

Rijkl = −
(
hMik h

M
jl − hMil hMjk

)
.

Finally, by considering

KM =
R1212

det gMij
,

we define the Minkowski-Gauss curvature by the formula

KM := −
dethMij
det gMij

= −dethji .
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The rest stands the same as in the Euclidean case.
To further see an example where this theory works, we pursue the compu-

tations of the Minkowski-Gauss curvature of the affine sphere

X2
0 −X2

1 −X2
2 = −a2.

By the previous notations, we are working in a 3-dimensional real Minkowski
space M (1,2) with signature is (+,−,−). The parametrization of this space-
like Minkowski sphere is f : R× (−π, π) −→M(1,2),

f(t, x1) = (a sinh t, a cosh t cosx1, a cosh t sinx1).

After a straightforward computation, we derive the metric

ds2 = a2dt2 − a2 cosh2 t dx21.

The non-zero Christoffel symbols are

Γ1
01 = Γ1

10 = tanh t, Γ0
11 = cosh t sinh t

and

R0
101 =

∂Γ0
11

∂t
− ∂Γ0

10

∂x1
+ Γ0

s0Γs11 − Γ0
s1Γs10 = cosh2 t.

It follows thatR0101 = g00R
0
101 = a2 cosh2 t, therefore we obtained the Minkowski-

Gauss curvature as KM
f = − 1

a2
.

Since
∂f

∂t
(t, x1) = (a cosh t, a sinh t cosx1, a sinh t sinx1)

and
∂f

∂x1
(t, x1) = (0,−a cosh t sinx1, a cosh t cosx1),

in this case we see that the normal vector is

N(t, x1) = (sinh t, cosh t cosx1, cosh t sinx1) =
1

a
f(t, x1).

The second fundamental form has the coefficients hij =
1

a
gij , therefore the

Minkowski-Weingarten matrix is W = (hij) =

 1

a
0

0
1

a

 .

Without considering the formulas with the modifications suggested by the
space-like nature of the Minkowski-Gauss normal vector, the Minkowski-Gauss
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curvature would have been obtained with different sign, instead of the value

− 1

a2
. Therefore,

KM := −
dethMij
det gMij

= −dethji = − 1

a2

We call this 2-surface the 2-de Sitter spacetime and we denote it by dS(2, 3).
It can be observed that dS(2, 3) ⊂M (1,2). The eigenvalues of the Minkowski-
Weingarten map W can be called Minkowski principal curvatures of the sur-
face; the definition can furthermore be extended to space-like hypersurfaces.

Now consider the 2-surface

X2
0 +X2

1 −X2
2 = −a2

which is a space-like Minkowski sphere in the form f : R× (−π, π) −→M (2,1),

f(t, x1) = (a sinh t cosx1, a sinh t sinx1, a cosh t).

We call this surface the anti de Sitter spacetime and we denote it by AdS(2, 3).
Some computations leads to the Riemannian metric

ds22 = a2dt2 + a2 sinh2 t dx21.

The non-vanishing Christoffel symbols are

Γ1
01 = Γ1

10 = coth t, Γ0
11 = − sinh t cosh t

and

R0
101 =

∂Γ0
11

∂t
− ∂Γ0

10

∂x1
+ Γ0

s0Γs11 − Γ0
s1Γs10 =

∂Γ0
11

∂t
− Γ0

11Γ1
10 = − sinh2 t.

It results R0101 = g00R
0
101 = −a2 sinh2 t, that is KM

f = − 1

a2
.

The Minkowski normal is in fact, as in the previous example,

N(t, x1) =
1

a
f(t, x1)

and this can be directly derived from the null Minkowski products〈
f,
∂f

∂t

〉
M

;

〈
f,

∂f

∂x1

〉
M

.
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By the theory of surfaces in Minkowski spaces when the normal is a space-
like vector, the second fundamental form coefficients are

hij =

〈
∂N

∂xi
,
∂f

∂xj

〉
M

=
1

a
gij ;

and the Minkowski-Gauss curvature is calculated by the formula KM
f :=

−dethij
det gij

= − 1

a2
.

In M (2,1) we consider both the space-like unitary sphere

X2
0 +X2

1 −X2
2 = −1

and the unit disk described by all (u, v, 1) such that u2 + v2 ≤ 1.
A line

X0

u
=
X1

v
=
X2

1

intersects the unit space-like sphere at the point(
u√

1− (u2 + v2)
,

v√
1− (u2 + v2)

,
1√

1− (u2 + v2)

)
.

The transformation of coordinates{
u = tanh t cosx1
v = tanh t sinx1

provides inside the disk the metric

ds2 = dt2 + sinh2 t dx21,

the same as for the unitary AdS(2, 3) spacetime.

We remark that this is a Riemannian metric with constant negative Gaus-
sian curvature, K = −1. This metric was naturally induced by a Minkowski
metric. If we choose the geometric transformations{

x = tanh t/2 cosx1
y = tanh t/2 sinx1

we obtain the following formulas

dx =
cosx1

2 cosh2 t/2
dt− tanh t/2 sinx1dx1,
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dy =
sinx1

2 cosh2 t/2
dt+ tanh t/2 cosx1dx1,

that is the old metric becomes

ds2 =
4

(1− x2 − y2)2
(dx2 + dy2),

which is the Poincaré metric of the disk. The Anti de Sitter AdS(2, 3) space
represents an example of a non-Euclidean geometry described starting from a
Minkowski metric.

We reached the point when we can increase the dimension, by considering
the description of the Anti de Sitter AdS(4, 5) spacetime as

X2
0 +X2

1 −X2
2 −X2

3 −X2
4 = −a2,

that is a hypersurface in the 5-dimensional Minkowski M (2,3) space. We pur-
sue the ideas presented above and compute all geometric quantities related
to a given parametrization. We have a two-fold phenomenon here, as both
geometry and physics are involved. We find out that Einstein’s field equations
are satisfied. This is a nice exercise proposed to the reader; in the following
presentation we display similar computations for the situation of a de Sitter
spacetime. A very good question is: can light travel in this AdS(4, 5) space-
time? It is enough to investigate a de Sitter spacetime included into AdS(4, 5)
because in such spaces there is a light cone at each point (see [3]). If we
consider X1 = 0 and the parametrization

X0 = a sinh t
X2 = a cosh t cosx2
X3 = a cosh t sinx2 cosx3
X4 = a cosh t sinx2 sinx3

(7.17)

for the surface
X2

0 −X2
2 −X2

3 −X2
4 = −a2,

which is a de Sitter spacetime, we can denote dS(3, 4) whose ambient space is
a Minkowski M (1,3) space, whose signature is (+−−−).
The metric attached to this parametrization is

ds2 = a2dt2 − a2 cosh2 tdx22 − a2 cosh2 t sin2 x2 dx
2
3.

Some extra computations lead to

Rij +
2

a2
gij = 0,
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that is the de Sitter spacetime presented above satisfies the Einstein field
equations in geometric coordinates

Rij −
1

2
R gij + Λ gij = 8πGTik

for R = − 6

a2
, Λ = − 1

a2
and Tij = 0. Therefore we are looking at an example

of Universe without any ordinary matter inside it.
Finally, we can guess that the ideas presented above work at each dimension

both for the de Sitter spacetime as well as for the Anti de Sitter spacetime.
Therefore there exist parametrizations f such that the Minkowski normal to
the hypersurface has the same property as in the above examples, that is

N =
1

a
f.

All the coefficients of the second fundamental form are claculated with the
formula established for the case n = 2,

hij =

〈
∂N

∂xi
,
∂f

∂xj

〉
M

,

therefore

hij =
1

a
gij .

Since 〈N,N〉M = −1 < 0, we have

Rijkl = − (hikhjl − hilhjk) ,

i.e.

Rijkl = − 1

a2
(gikgjl − gilgjk) , i, j, k, l ∈ {0, 1, ..., n− 2}.

Therefore each Minkowski sectional curvature is − 1

a2
. We are naturally lead

to

Rij = −n− 2

a2
gij

, i.e.

R = −(n− 1)(n− 2)
1

a2
.

Since

Rij +
1

2
(n− 1)(n− 2)

1

a2
gij −

(n− 2)(n− 3)

2

1

a2
gij = Rij +

n− 2

a2
gij = 0
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it results that, if we choose

Λ = − (n− 2)(n− 3)

2

1

a2
,

the previous metric satisfies the Einstein field equations

Rij −
1

2
R gij + Λ gij = 8πGTij

in the absence of matter, that is with Tij = 0. For such parametrizations, we
have a diagonal Minkowski-Weingarten’s map, therefore we have Minkowski
principal curvatures. The main difference is the formula of Gauss-Kronecker
curvature: K(p) = −k1(p)k2(p)...kn(p).

Bearing all these examples in mind, we can think at a similar (to the
Euclidean case) theory of general space-like surfaces in Minkowski type spaces.

5 Physical interpretation of curvature quantities

Bearing in mind the facts described in the previous section, we are ready to
discuss the meaning of the curvature invariants, as we aimed to do. The mean
curvature H is proportional to the tension field see e.g. [14], or [1], p.71;
both references explain that the tension field, usually denoted in literature as
τ(φ)(x), is exactly the unnormalized mean curvature vector nH (where n =
dimension).

In what concerns the scalar curvature, the meaning is very interesting, and
could be summarized as follows.

• The Ricci tensor in relativity theory is related to the matter content of
the universe via Einstein’s field equation. (The scalar curvature is the
trace of the Ricci tensor.)

• It is the part of the curvature of spacetime that determines the degree
to which matter will tend to converge or diverge in time.

• The scalar curvature is the Lagrangian density for the Einstein-Hilbert
action, proposed originally in [17], that yields the Einstein field equations
through the principle of least action.

With these arguments, we summarized the physical interpretation men-
tioned in Section 2.
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6 The Elementary Proof of the Exercise from [10]

We could not conclude our discussion without presenting the proof of the
example we stated. Remark that the whole discussion is pointwise, at a point
on the hypersurface, all the analysis reduces to relations between real numbers
satisfying some constraints. The assertions are, in the following order.

For (i), by the AM-GM inequality:

xyz = x2 + y2 + z2 ≥ 3 3
√

(xyz)2

Hence (xyz)3 ≥ 27(xyz)2, and we are done. Equality holds for x = y = z.
For (ii), also by AM-GM:

xy + yz + zx ≥ 3 3
√

(xyz)2 ≥ 3
3
√

272 = 3 · 32 = 27.

For (iii), the argument is again AM-GM,

x+ y + z ≥ 3 3
√
xyz ≥ 9.

In all these inequalities the equality case holds whenever x = y = z.
Finally, for (iv), from x2 + y2 + z2 = xyz we derive that x2 < xyz, which

means x < yz. Similarly, y < xz, and z < xy. Thus: xy < yz · zx yields
z2 > 1, and since z is nonnegative, z > 1. Similarly, x > 1, y > 1. Now we
use a substitution: a = x− 1, b = y − 1, c = z − 1. By the previous estimate:
a, b, c > 0. The initial assumption x2 + y2 + z2 = xyz turns into

a2 + b2 + c2 + a+ b+ c+ 2 = abc+ ab+ bc+ ca.

Denote by q = ab+bc+ca and we get immediately a2 +b2 +c2 ≥ q, a+b+c ≥
√

3q, abc ≤
(
q
3

)3/2
= (3q)3/2

27 . By a2+b2+c2+a+b+c+2 = abc+ab+bc+ca. and
these last three inequalities, we have q+

√
3q+2 ≤ a2 +b2 +c2 +a+b+c+2 =

= abc+ ab+ bc+ ca ≤ (3q)3/2

27 + q. That is:
√

3q + 2 ≤ (3q)3/2

27 .
The ingenious argument in [10] starts where we denote

√
3q = A. Then the

last inequality we obtained,
√

3q + 2 ≤ (3q)3/2

27 , is equivalent to A + 2 ≤ A3

27 ,
or, furthermore, A3 − 27A − 2 · 27 ≥ 0. This last inequality factors out as
(A− 6)(A+ 3)2 ≥ 0, i.e.

√
3q = A ≥ 6. This means q ≥ 12. We obtained that

ab+bc+ca ≥ 12. Henceforth, (x−1)(y−1)+(y−1)(z−1)+(z−1)(x−1) ≥ 12,
from which we obtain the original claim xy + yz + zx ≥ 2(x+ y + z) + 9.

7 Conclusion and other references.

In conclusion, some elementary inequalities do “hide” a physical meaning,
which could be more or less natural in function of the physical context of a
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given problem. This physical meaning is supported by the geometric interpre-
tation of symmetric functions, as shown above. We felt that this discussion on
natural statements could be useful to anyone who would like to regard beyond
the elementary appearance of some exercises in fundamental mathematics. For
a similar interpretation, see the final paragraphs in [7].

For a recent thorough explanation of the mathematical foundations of spe-
cial and general relativity, see [3]. For a comprehensive vision of the idea
of curvature and its various interpretations, see the highly useful [9]. As a
consequence of our reflection, some elementary statements, even if they deal
apparently just with symmetric polynomials of n real numbers, could actually
represent something more, in the spirit of the geometric and physical inter-
pretations discussed above.

The authors would like to extend their thanks to the editor and the referee
for their useful feedback while preparing the final version of this paper.
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