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Abstract

To model statistical data coming from two different distributions,
Cooray and Ananda [1] introduced a composite (two-spliced) Lognormal-
Pareto model, that was further extended by Scollnik [9] and fitted to
insurance data. Inspired by these studies, more general three-spliced
composite models are considered in this work, built by joining three
different distributions. In particular, the study is focused on the three-
spliced Exponential-Lognormal-Pareto distribution. The main charac-
teristics of this model, as well as statistical inference are discussed. The
parameters estimation is illustrated on random generated data.

1 Introduction

A spliced distribution is built of different distributions in subdivided intervals,
providing hence more flexibility in capturing the behavior within distinct re-
gions. Therefore, spliced distributions have the potential to better capture
tails of loss distributions, from where they have a wide range of applications
in general insurance, health insurance, life insurance etc. Klugman et al. [5]
introduced splicing as a method for creating new distributions. Starting with
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[1], two-component spliced distributions, also called composite distributions,
are most studied in the literature in connection with skewed loss data. See, for
example, the comprehensive analysis of composite models on a real insurance
data set (the Danish fire losses) provided in [4].

However, spliced distributions with more than two components are not so
studied, possibly because the thresholds where a spliced distribution changes
shape are difficult to estimate. Particular three-spliced regression models were
considered by [2] (describing fractional response variables with unignorable ze-
ros and ones) and [3] (with a first component containing zeros). In this paper,
a more general three-spliced model is considered, having as first component an
exponential distribution, as second component a lognormal distribution, while
the third component is Pareto. The aim of such distributions is to better
capture some behavior specific to e.g., actuarial data (but not only), where
many small and medium claims are recorded, but also some very large claims
consistent with a heavy-tailed distribution.

The structure of the paper is as follows: Section 2 first recalls the two-
component spliced (composite) distribution, then defines the three-component
spliced model, presents some properties, discusses parameters estimation and
associated challenges. Subsection 2.2 concentrates on the particular case of
the three-spliced Exponential-Lognormal-Pareto distribution. A numerical il-
lustration of its parameters estimation is provided in Section 3. Conclusions
and some future research plans are presented in Section 4.

2 Three-component spliced distributions

2.1 General model

Recall the form of a general two-component spliced (composite) probability
density function (pdf)

f(x; θ) =

{
r f1(x)
F1(θ) , x ≤ θ

(1− r) f2(x)
1−F2(θ) , x > θ

, (1)

where f1, f2 are two pdfs, F1, F2 are the corresponding cumulative distribution
functions (cdfs), θ is the threshold and r ∈ [0, 1] is a normalizing constant.

In a similar way, the three-component spliced pdf is defined by

f(x) =


r1

f1(x)
F1(θ1) , x ≤ θ1

r2
f2(x)

F2(θ2)−F2(θ1) , θ1 < x ≤ θ2

r3
f3(x)

1−F3(θ2) , x > θ2

, (2)
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where fi, i = 1, 2, 3 are three pdfs, Fi, i = 1, 2, 3 are the corresponding cdfs,
θ1 < θ2 are the thresholds and ri ∈ [0, 1], i = 1, 2, 3 are normalizing constants
such that r1 + r2 + r3 = 1. Note that (2) can be rewritten as

f(x) =


r1f
∗
1 (x), x ≤ θ1

r2f
∗
2 (x), θ1 < x ≤ θ2

r3f
∗
3 (x), x > θ2

, (3)

where f∗1 , f
∗
2 , f

∗
3 are, respectively, the right truncation of f1, the left-right

truncation of f2 and the left truncation of f3.

2.1.1 Some model properties

To obtain a smooth pdf, continuity and differentiability conditions are imposed
at both θ1 and θ2, leading to the following result:

Proposition 1. a) By imposing continuity conditions at θi, i = 1, 2, it results
that:

r1

r2
=

f2(θ1)

f1(θ1)
· F1(θ1)

F2(θ2)− F2(θ1)
, (4)

r2

r3
=

f3(θ2)

f2(θ2)
· F2(θ2)− F2(θ1)

1− F3(θ2)
. (5)

b) If, moreover, differentiability conditions are imposed at θi, i = 1, 2, the
following restrictions must hold:

f ′1(θ1)

f1(θ1)
=

f ′2(θ1)

f2(θ1)
, (6)

f ′3(θ2)

f3(θ2)
=

f ′2(θ2)

f2(θ2)
. (7)

Proof. The proof of (a) is immediate, hence omitted.
b) The first relation is proved below, the second resulting in a similar way.
The differentiability condition at θ1 yields:

r1
f ′1(θ1)

F1(θ1)
= r2

f ′2(θ1)

F2(θ2)− F2(θ1)
⇒ r1

r2
=
f ′2(θ1)

f ′1(θ1)
· F1(θ1)

F2(θ2)− F2(θ1)
,

which combined with relation (4) gives formula (6). This completes the
proof.�
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Remark 1. From relations (4) and (5), the following formulas of r1, r2, r3

are obtained:

r2 =

(
1 +

f2(θ1)

f1(θ1)
· F1(θ1)

F2(θ2)− F2(θ1)
+
f2(θ2)

f3(θ2)
· 1− F3(θ2)

F2(θ2)− F2(θ1)

)−1

,

r1 = r2 ·
f2(θ1)

f1(θ1)
· F1(θ1)

F2(θ2)− F2(θ1)
,

r3 = r2 ·
f2(θ2)

f3(θ2)
· 1− F3(θ2)

F2(θ2)− F2(θ1)
.

In Figure 1, several three-component spliced pdfs satisfying all continuity
and differentiability conditions are plotted, while Figure 2 displays similar pdfs
which do not satisfy the differentiability condition in θ1. Note the variety of
shapes.

Figure 1: Exponential-Lognormal-Pareto three-component spliced pdfs (with
differentiability conditions)

Let Mf (t) = E(etX) denote the moment generating function (mgf) of the
random variable (rv) X and let En(f) = E(Xn) denote its initial moment
of order n. Some properties of the three-component spliced distribution are
given in the following:
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Figure 2: Exponential-Lognormal-Pareto three-component spliced pdfs with-
out differentiability condition in θ1

Proposition 2. a) The cdf of (2) is

F (x) =


r1

F1(x)
F1(θ1) , x ≤ θ1

r1 + r2
F2(x)−F2(θ1)
F2(θ2)−F2(θ1) , θ1 < x ≤ θ2

r1 + r2 + r3
F3(x)−F3(θ2)

1−F3(θ2) , x > θ2

. (8)

b) Its mgf is
Mf (t) = r1Mf∗

1
(t) + r2Mf∗

2
(t) + r3Mf∗

3
(t).

c) Its initial moment of order n is

En(f) = r1En(f∗1 ) + r2En(f∗2 ) + r3En(f∗3 ).

Proof. a) Three cases are identified:

- If x ≤ θ1 then F (x) = r1

∫ x
−∞

f1(y)
F1(θ1)dy = F1(x)

F1(θ1) ;
- If θ1 < x ≤ θ2 then

F (x) = r1

∫ θ1

−∞

f1(y)

F1(θ1)
dy + r2

∫ x

θ1

f2(y)

F2(θ2)− F2(θ1)
dy,

which yields the second formula of F ;
- If x > θ2 then

F (x) = r1

∫ θ1

−∞

f1(y)

F1(θ1)
dy + r2

∫ θ2

θ1

f2(y)

F2(θ2)− F2(θ1)
dy + r3

∫ x

θ2

f3(y)

1− F3(θ2)
dy,
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and the third formula of F is obtained.
b) Using the spliced pdf formula (3) gives

Mf (t) = r1

∫ θ1

−∞
etxf∗1 (x)dx+ r2

∫ θ2

θ1

etxf∗2 (x)dx+ r3

∫ ∞
θ2

etxf∗3 (x)dx

= r1Mf∗
1
(t) + r2Mf∗

2
(t) + r3Mf∗

3
(t).

c) Results similarly to (b). �

Remark 2. Assuming that F1, F2 and F3 admit inverse functions, the above
cdf can be used to generate random values from the three-component spliced
pdf (2) by using the inversion method.

2.1.2 Parameters estimation

Estimating the parameters is already a difficult problem for two-spliced distri-
butions because the threshold where the spliced distribution changes shape is
assumed to be a parameter. For three-spliced distributions, the estimation be-
comes even more challenging due to the necessity to estimate both thresholds
in addition to the parameters of f∗1 , f

∗
2 , f

∗
3 .

Let x = (x1, ..., xn) be a random data sample and let δ1, ...δs, θ1, θ2 denote
the parameters of pdf (2), with s ∈ N. Also, assume that the data sample is
ordered, i.e., x1 ≤ ... ≤ xn. If the unknowns parameters θi ∈ [xmi , xmi+1] , i =
1, 2, then the corresponding likelihood function is

L (x; δ1, ...δs, θ1, θ2) =

m1∏
i=1

r1f
∗
1 (xi)

m2∏
i=m1+1

r2f
∗
2 (xi)

n∏
i=m2+1

r3f
∗
3 (xi) . (9)

Similarly to the usual maximum likelihood estimation (MLE) based algorithm
used for a two-spliced distribution, which consists in sorting the data set and
looking for the MLE solution with the threshold in-between each two consec-
utive data, the following algorithm is proposed:

Step 1. For i = 1 to n− 2

For j = i+ 1 to n− 1

Evaluate δ1, ...δs, θ1, θ2 as solutions of the optimization problem:

max logL (x; δ1, ...δs, θ1, θ2) ,

under the constraints: θ1 ∈ [xi, xi+1] , θ2 ∈ [xj , xj+1], continuity and
differentiability.
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Step 2. Among the solutions obtained at Step 1 choose the one that maximizes
the log-likelihood function.

Unfortunately, this algorithm proved to be very time consuming. For ex-
ample, for only n = 100 data, this algorithm implemented in MATLAB using
the fmincon function took about 30 minutes. Therefore, other methods can be
considered to reduce the searching intervals of i and j at Step 1. For example,
some empirical quantiles or a combination with the method of moments (e.g.,
with the expected value) can be used, provided that the resulting systems of
equations are tractable (depending on the distributions involved).

Another alternative is, as described by [8], to use the mean excess plot to
detect different parts of the distribution by viewing where a transition from
one part of the distribution to another part is suitable. For example, a Pareto
tail could be detected if a point t beyond which the mean excess plot is linearly
increasing can be found.

The mean excess plot consists of estimates for the mean excess values

e(u) = E(X − u |X > u ) =
1

1− F (u)

∫ ∞
u

(1− F (x))dx,

where u = Xn−k,n = Q̂
(
n−k
n+1

)
, k = 1, ..., n−1 are order statistics, the cdf F is

estimated by the empirical cdf and Q̂ is the corresponding empirical quantile
function.

2.2 Particular case: Exponential-Lognormal-Pareto spliced distri-
bution

The first well studied two-component spliced distribution was the composite
Lognormal-Pareto distribution, see [1], [9], [7] or [6]. Starting from this distri-
bution, in the following, the three-component spliced Exponential-Lognormal-
Pareto distribution is proposed, obtained as a particular case of (2), where
f1 is the exponential Exp(λ) pdf, f2 is the Lognormal LogN(µ, σ2) pdf, while
f3 is the Pareto type I Pa(α, θ2) pdf, λ, σ, α > 0, µ ∈ R. Therefore, pdf (2)
becomes in this particular case

f(x) =


r1

λe−λx

1−e−λθ1 , x ≤ θ1

r2
ϕ(ln x;µ,σ)

x(Φ( ln θ2−µ
σ )−Φ( ln θ1−µ

σ ))
, θ1 < x ≤ θ2

r3
αθα2
xα+1 , x > θ2

, (10)

where ϕ(·;µ, σ) denotes the pdf of the normal distribution N(µ, σ2) and Φ the
cdf of the standard normal distribution N(0,1).
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When imposing the continuity conditions, the normalizing constants r1, r2, r3

are obtained from Remark 1. Moreover, the differentiability conditions lead
to the following result:

Proposition 3. By imposing differentiability conditions to the Exponential-
Lognormal-Pareto pdf (10) the following restrictions must hold:

i)λθ1 = 1 +
ln θ1 − µ

σ2
,

ii)α =
ln θ2 − µ

σ2
.

Proof. It holds that:

f1(x) = λe−λx ⇒ f ′1(x) = −λ2e−λx = −λf1(x),

f2(x) =
1

xσ
√

2π
e
− (ln x−µ)2

2σ2 ⇒ f ′2(x) =
1

σ
√

2π
e
− (ln x−µ)2

σ2

[
− 1

x2
− 1

x2
2(lnx− µ)

2σ2

]
= − 1

x

(
1 +

lnx− µ
σ2

)
f2(x),

f3(x) =
αθα2
xα+1

⇒ f ′3(x) = −α(α+ 1)
θα2
xα+2

= −α+ 1

x
f3(x).

Therefore,

f ′1(θ1)

f1(θ1)
= −λ, f

′
2(θ1)

f2(θ1)
= − 1

θ1

(
1 +

ln θ1 − µ
σ2

)
,
f ′3(θ2)

f3(θ2)
= −α+ 1

θ2
,

which inserted in (6) yields formula (i) and inserted in (7) yields (ii).�

In Figures 1 and 2, several Exponential-Lognormal-Pareto pdfs satisfying
all continuity and differentiability conditions and, respectively, not satisfying
the differentiability condition in θ1 are plotted.

In next proposition, formulas for the cdf and the expected value of the
Exponential-Lognormal-Pareto distribution are presented.

Proposition 4. The cdf and expected value of the Exponential-Lognormal-
Pareto distribution are, respectively, given by:

i)F (x) =


r1

1−e−λx
1−e−λθ1 , x ≤ θ1

r1 + r2
Φ( ln x−µ

σ )−Φ( ln θ1−µ
σ )

Φ( ln θ2−µ
σ )−Φ( ln θ1−µ

σ )
, θ1 < x ≤ θ2

r1 + r2 + r3

(
1−

(
θ2
x

)α)
, x > θ2

;
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ii)E1(f) =
r1

λ

(
1− λθ1e

−λθ1

1− e−λθ1

)
+ r2e

µ+σ2

2

Φ
(

ln θ2−µ−σ2

σ

)
− Φ

(
ln θ1−µ−σ2

σ

)
Φ
(

ln θ2−µ
σ

)
− Φ

(
ln θ1−µ

σ

)
+

r3αθ2

α− 1
, α > 1.

Proof. Formula (i) results by inserting the corresponding cdfs (exponential,
lognormal and Pareto) into formula (8).
ii) From (c) in Proposition 2, it is known that

E1(f) = r1E1(f∗1 ) + r2E1(f∗2 ) + r3E1(f∗3 ),

hence each part must be calculated separately. For the truncated exponential
it holds that:

E1(f∗1 ) =

∫ θ1

0

x
λe−λx

1− e−λθ1
dx =

1

1− e−λθ1

[
−xe−λx

∣∣θ1
0
−
∫ θ1

0

(−e−λx)dx

]

=
1

1− e−λθ1

[
−θ1e

−λθ1 − e−λx

λ

∣∣∣∣θ1
0

]

=
1

λ (1− e−λθ1)

(
−λθ1e

−λθ1 + 1− e−λθ1
)

=
1

λ

(
1− λθ1e

−λθ1

1− e−λθ1

)
.

To calculate E1(f∗2 ), note the fact that f∗2 is the pdf of a r.v., say Y , hav-
ing a doubly truncated lognormal distribution with truncation limits θ1, θ2.
Therefore, it is well known that Z = lnY follows a doubly truncated normal
distribution with the same parameters as Y and truncation limits ln θ1, ln θ2.
Moreover, E1(f∗2 ) = E(Y ) = E

(
eZ
)

= LZ(−1), where LZ denotes the Laplace
transform of Z, which, for the truncated normal distribution N(µ, σ2; a, b) is
given by

LZ(t) = e−tµ+ t2σ2

2

Φ
(
b−µ+tσ2

σ

)
− Φ

(
a−µ+tσ2

σ

)
Φ
(
b−µ
σ

)
− Φ

(
a−µ
σ

)
It follows that

E1(f∗2 ) = eµ+σ2

2

Φ
(

ln θ2−µ−σ2

σ

)
− Φ

(
ln θ1−µ−σ2

σ

)
Φ
(

ln θ2−µ
σ

)
− Φ

(
ln θ1−µ

σ

) .
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For the Pareto distribution it is well known that for α > 1,

E1(f∗3 ) =
αθ2

α− 1
.

By inserting the three expectations into the above expression of E1(f), formula
(ii) is obtained.�

Generating random values from the Exponential-Lognormal-Pareto
distribution. This can be done by using the inversion method based on the
cdf given in the previous theorem as follows: generate u a uniform U(0, 1)
value, then

• If u ≤ r1 then solve for x the equation u = r1
1−e−λx
1−e−λθ1 ;

• If r1 < u ≤ r1+r2 then solve for x the equation u = r1+r2
Φ( ln x−µ

σ )−Φ( ln θ1−µ
σ )

Φ( ln θ2−µ
σ )−Φ( ln θ1−µ

σ )
;

• If r1 + r2 < u then solve for x the equation u = r1 + r2 + r3

(
1−

(
θ2
x

)α)
.

The resulting x is an Exponential-Lognormal-Pareto random value.

3 Numerical illustration

In this section, simulated data are used to check the estimation procedure for
the Exponential-Lognormal-Pareto distribution. Using the inversion method
described above, n = 1000 values were simulated from (10) with parameters
λ = 0.08, µ = 1, σ = 0.5, α = 2, θ1 = 2.213, θ2 = 4.482 and r1 = 0.519, r2 =
0.324, r3 = 0.157. Note that these parameters values satisfy the continuity
and differentiability conditions given in Proposition 3. The main descriptive
statistics of the generated data sample are given in Table 1.

Min 1st Qu. Median Mean 3rd Qu. Max. St.Dev. Var.

0.005 1.004 2.163 3.051 3.571 70.247 4.390 19.275

Table 1: Descriptive statistics for the simulated data set

In Figure 3, the histogram of the generated data together with the true
Exponential-Lognormal-Pareto density are plotted. Note how well the true
density fits the histogram.

To estimate the parameters by the algorithm presented in Section 2.1.2, the
running time becomes prohibitive (for only 100 data, it took almost 30 min on
a PC i7-8550U CPU, 16 GB RAM, SSD). Therefore, from the plot of the mean
excess, it can be noted that there is a significant shape change around t = 2.1,
see Figure 4. Unfortunately, this plot does not give any visual information
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Figure 3: Histogram with true Exponential-Lognormal-Pareto pdf

about a second change of shape. Therefore, in a first step, the search of θ1

was limited around the value of t; then, in a second step, the search of θ2 was
restricted around the same value. This procedure significantly reduced the
computing time, but still, each step lasted a couple of hours.

The estimated parameters resulting by the described procedure are given
in the last line of Table 2. They were obtained in the first step (i.e., choice of
θ1 around t) according to the best MLE value from both steps.

λ µ σ α θ1 θ2 r1 r2 r3

True 0.08 1 0.5 2 2.213 4.482 0.519 0.324 0.157

Estimated 0.093 1.024 0.473 1.903 2.338 4.262 0.538 0.281 0.181

Table 2: True parameters of simulated data (first line) and estimated param-
eters (second line)

Even more, other models were fitted to the same data, i.e., the exponen-
tial distribution, the lognormal distribution and two composite distributions:
exponential-lognormal and lognormal-Pareto. The best fist is provided by the
Exponential-Lognormal-Pareto model, as it can be seen from Table 3, where
several goodness-of-fit measures are displayed (for each one, minimum value
means best model). Recall the formula of each such measure, with k the
number of free parameters and n the sample size:

• Negative Log-Likelihood: NLL = − logL.
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Figure 4: Mean excess plot for simulated data

• Akaike’s Information Criterion: AIC = −2 logL+ 2k.

• Bayesian Information Criterion: BIC = −2 logL+ k lnn.

• Hurvich and Tsai’s Criterion: AICc = −2 logL+ 2nk
n−k−1 .

• Bozdogan’s criterion: CAIC = −2 logL+ k(lnn+ 1).

Model NLL AIC BIC AICc CAIC

Exponential 2115.56 4233.12 4234.12 4233.12 4235.12

Lognormal 2141.65 4287.31 4289.31 4287.32 4291.31

Lognormal-Pareto 2851.25 5708.5 5711.5 5708.52 5714.5

Exponential-Lognormal 2067.06 4140.12 4143.12 4140.15 4146.12

Exponential-Lognormal-Pareto 2050.71 4109.43 4113.43 4109.47 4117.43

Table 3: Goodness-of-fit measures for models comparison

Further on, two goodness-of-fit tests were applied: Kolmogorov-Smirnov
and Chi-square. Kolmogorov’s distance was calculated using the formula

Dn = max
i=1,...,n

|F ∗n(xi)− F (xi)| ,

where F ∗n denotes the empirical cdf of the data and F the Exponential-
Lognormal-Pareto cdf given in (i) Proposition 4. For the simulated data, the
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value
√
nDn = 0.174 was obtained, which is less than the 95% Kolmogorov

quantile q95% = 1.358, hence the hypothesis that the Exponential-Lognormal-
Pareto distribution (with the estimated parameters) fits the data is accepted.

To apply the Chi-square test, the generated data were divided into r = 9
intervals, as it can be seen from Table 4, where the theoretical (denoted by
ni) and empirical frequencies (npi) calculated for each interval are displayed.
The chi-square distance obtained with the formula

X2 =

r∑
i=1

(ni − npi)2

npi
,

is X2 = 0.9095. This is smaller than the chi-square quantile q4,95% = 9.488,
where the number of the degrees of freedom is calculated as 4 = r − 1 − j,
where j is the number of estimated parameters (j = 4 in this case, the other
parameters being related as in Proposition 3). Hence, according to the Chi-
square test, the Exponential-Lognormal-Pareto distribution also fits the data.

Intervals
Empirical
freq.,ni

Theoretical
freq.,npi

(ni−npi)2
npi

0.0 - 0.5 123 125.047 0.033

0.5 - 1.0 126 119.372 0.368

1.0 - 1.5 112 113.954 0.033

1.5 - 2.1 125 129.939 0.188

2.1 - 2.7 125 121.803 0.084

2.7 - 3.5 131 129.390 0.020

3.5 - 5.0 123 127.062 0.130

5.0 - 10 100 97.749 0.052

10 - 70.25 35 34.810 0.001∑
1000 X2 dist. = 0.9095

Table 4: Chi-square test

4 Conclusions and future work

Starting from the composite distributions, with the purpose to better model
some real data, three-component spliced distributions were introduced in this
work. As seen from the plots, these distributions have flexible shapes that
can capture some specific data behavior. The study focused on the particular
Exponential-Lognormal-Pareto distribution, for which some close-type formu-
las were obtained and an estimation procedure was discussed, with accent
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on its challenges. The estimation procedure was illustrate on a generated
data set. Unfortunately, due to the fact that the thresholds where the spliced
distribution changes shape are assumed to be parameters, hence making the
estimation more challenging, the proposed estimation algorithm turned out to
be very time consuming for the 1000 generated data; therefore, as future work,
the intention is to look for a faster estimation method. Also, other particular
three-spliced distributions can be studied and fitted on some real data sets.
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