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Negative clean rings

Abstract

A ring is called negative clean if the negative (i.e., the additive in-
verse) of each clean element is also clean. Clean rings are negative clean.

In this paper, we develop the theory of the negative rings, with
special emphasis on finding the clean matrices which have (or have not)
clean negatives. Many explicit results are proved for 2 X 2 matrices and
some hard to solve quadratic Diophantive equations are displayed.

Grigore Calugareanu and Horia F. Pop

1 Introduction

All rings below are associative with identity.

An element in a ring is called clean if it a sum of an idempotent and a unit.
When we want to emphasize the idempotent, that is, a = e + u with e?> = e
and unit u, we say that a is e-clean. If e € {0,1} (the trivial idempotents),
then a is called trivially clean. Otherwise, it is nontrivially clean. A clean
element is strongly clean if eu = ue, respectively uniquely clean if it has only
one clean decomposition. We denote by U(R) the set of units of R, by Id(R)
the set of idempotents of R, by N(R) the set of nilpotents of R, by cn(R) the
set of clean elements of R, by scn(R) the set of strongly clean elements and
by J(R) the Jacobson radical of R.

It is well-known that if a is e-clean, then 1 — a is (1 — e)-clean. However,
the negative (i.e. the additive inverse) of a clean element may not be clean.
As examples show, the negative of a strongly (or uniquely or both strongly and
uniquely) clean element may also be not clean.
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Motivated by this, we introduce the following natural

Definition. A ring is called negative clean if the negative of each clean
element is also clean (equivalently, —cn(R) C en(R) and so cn(R) = —cn(R)).
Obviously, clean rings are also negative clean. Since cn(Z) = {-1,0,1,2}, Z
is mot negative clean.

In this paper, we develop the theory of the negative rings, with special
emphasis on the determination of the clean matrices which have (or have not)
clean negatives. Many explicit results are given for 2 x 2 integral matrices.

As in many other studies which involve integral 2 x 2 matrices, some prob-
lems reduce to hard to solve Number Theory problems.
2Z+1 27

27, 2L +1 }’_(Iﬁ
U) is not (nontrivially) clean, it is far more difficult to obtain such results for
units in 2;%; 1 QZQZ 1 . Computer aid largely supports to state and try

to prove the following (surprising)

While it is easy to show that for any unit U € [

Conjecture. For an integer n and units U, = { —2n —2n+1 ];

—2n—1 —2n
—(Iz + U,) is not (nontrivially) clean, for n < =7, n = =2 and n > 4.
Equivalently, only for n € {—6,—5,—4,-3,—1,0,1,2,3}, —(Is+U,) is (non-
trivially) clean.

In order to keep our exposition fluent, the results regarding this conjecture
are relocated in Appendix 1. Appendix 2 contains some well-known reductions,
available in Number Theory for quadratic Diophantine equations, applied to
the equations associated to the nontrivially clean matrices whose negative is
not nontrivially clean, and some examples.

2 Negative clean rings

To simplify the writing, cng(R) denotes all the clean elements of R whose
negative is not clean, and cng (R) denotes all the clean elements of R whose
negative is clean. Clearly, cn(R) = cng(R)Ucng (R) and cng(R) Neny (R) = @.

With these notations, a ring is negative clean iff —cn(R) = cn(R) = cng (R)
(or eng(R) = &). Equivalently, for every pair (e,u) € Id(R) x U(R), there is
a pair (f,v) € Id(R) x U(R), such that e + u = —(f + v).

Since cn(R) is not in general closed under addition, c¢ny (R) may not be an
additive subgroup of (R, +).

It is easy to give examples of clean elements whose negatives are clean.
Recall that an element a in a ring R is strongly m-regular if for some n > 0,
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a" € a""'R N Ra™*! and it is a tripotent if a = a® (see also [5]). If a is
strongly m-regular, so is —a. Hence

Lemma 1. Strongly m-regular elements (are strongly clean and) have clean
negatives. In particular, tripotents and more special, idempotents and minus
idempotents have clean negatives. Units, nilpotents and elements in the Ja-
cobson radical have clean negatives.

Therefore
Tri(R) UU(R) U N(R) U J(R) C smreg(R) C cny(R)

where Tri(R) denotes the set of the tripotents of R and smreg(R) denotes the
set of the strongly w-regular elements of R.

Notice that every strongly m-regular element is strongly clean, so all exam-
ples above are strongly clean. However scn(R) € cn(R). To give an example,
over a commutative ring such that 2 and 3 are not units (e.g., over Z), con-
sider the matrix A = { g 8 ] =1, + [ (1) —Ol }, which is (Iy-)clean (and
so strongly clean) but its negative is not clean. Indeed, —A is not trivially
clean (here det(—A — Iz) = 3) and [ _02 8 } - { 1—;_% —yx } (the RHS is
a nontrivial idempotent, so has trace 1 and zero determinant x? +x +yz = 0)
has determinant —2z, so is not a unit whenever 2 is not a unit.

Remark. In order to give examples of negative clean rings, observe that
any ring R for which the above union, or just a part of it, equals the whole ring
R, gives an example of negative clean ring. As an example recall (see [11]) that
for a ring R, Id(R)UU(R) = R iff R is a division ring or R is a Boolean ring.
Or, if U(R) U N(R) = R then R is local. Or, if U(R) UId(R) U —Id(R) = R
for a commutative ring R (see [1]) then R is any of (1) a field, (2) a Boolean
ring, (3) Zs x B where B is a Boolean ring, or (4) Z3 x Zs.

As seen above, strongly w-reqular rings are negative clean.

Negative clean rings have different features compared to clean rings. In
the sequel we mention three of these.

F1. It is well-known that a polynomial ring is not clean (unless over the
zero ring), as the indeterminate is not clean. However, if R is any commutative
or reduced negative clean ring then R[X] is also negative clean (as for the
reduced case see [13], Corollary 1.7).

However, the polynomials over a field - or a reduced or commutative ring
- contain no idempotents not belonging to the base ring and therefore only
clean elements of this type. For a "better” example see F3.
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F2. Since the polynomial rings over a nonzero exchange rings are mever
exchange rings (see [10]), negative clean rings need not be exchange (just take
any nonzero clean ring).

F3. As mentioned before, clean rings are both exchange and negative
clean. In order to show that the converse fails, we can use [16] (Example 3.1,
starting with a field F' of characteristic 2). Indeed, there exists an exchange
ring of characteristic 2 that is not clean, but is negative clean.

F4. 1t is well-known that ring homomorphic images of clean rings are
clean. However, ring homomorphic images of negative clean rings need not be
negative clean. Such an example, constructed by G. Bergman, is presented
here with his kind permission.

As seen before, any polynomial ring k[X7, X, ...] over a field k is negative
clean. A homomorphic image of k[X1, X»] is k[X, X 7], the ring of Laurent
polynomials. In this ring, 1 + X is clean, since X is a unit; but if the charac-
teristic of k is not 2, then its negative, —1 — X, is not clean, since the results
of subtracting from —1 — X the idempotents, 0 and 1, are respectively —1 — X
and —2 — X, neither of which is a unit (the units are aX™ for some integer n
and a # 0).

For a (unital, i.e. f(1) = 1) ring homomorphism f : R — S we say
idempotents (or units) lift modulo f, if for any f(a) € 1d(S) (resp. f(a) €
U(S)), there exists e = e € R (resp. u € U(R)) such that f(a) = f(e) (resp.
fa) = f(u)).

Notice that if R is negative clean and idempotents and units lift modulo f
(e.g., f is a retraction), then f(R) is negative clean.

Proposition 2. (i) Let a =e+u € cn(R). If 1+u € U(R) then —a € cn(R)
and so a € cny (R).

(#) en(R) Nnen(R) C eny (R), if nen(R) denotes the nil-clean elements of
R

(iii) If 2 € J(R) (e.g. 2 € N(R) or char(R) = 2) then R is negative clean.

(iv) If I is a nil ideal in R and R is negative clean, so is R/I. If R is not
negative clean, and I is an ideal, R/I may be (negative) clean.

(v) Direct products of rings are negative clean iff all components are nega-
tive clean.

(vi) A ring with only trivial idempotents is negative clean iff (U(R) — 1)U
(U(R) —2) C{0}UU(R).

(vii) Subrings of (negative) clean rings need not be (negative) clean.

(viii) cng(R) and cny(R) are closed under conjugations.
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Proof. (i) Indeed, —a=—c—u=(1—¢)— (1+u) € cn(R).

(ii) Indeed, if @ € nen(R) then a = e+t with €? = e and ¢t € N(R). Hence
—a=(1—-e)—(1+t) € cn(R).

(iii) The inclusion 1 + J(R) C U(R) is well-known and it implies U(R) +
J(R) =U(R). Suppose a = e+u € cn(R). Then —a = —e—u = —(u+2e)+e €
cn(R) because if 2 € J(R), u+2e € U(R) + J(R) = U(R).

(In particular, 2 = 0 implies e = —e for any idempotent and so —(e +u) =
e —u € cn(R)).

(iv) This follows easily from the paragraph before this proposition, since
idempotents and units lift modulo nil ideals.

Finally, Z is not negative clean, but every proper factor ring is finite, so
clean and so negative clean.

(v) Obvious.

(vi) If Id(R) = {0,1} then cn(R) = U(R)U (U(R) + 1). While —U(R) =
U(R), —(UR)+1) CUR)U(U(R)+1) is equivalent to (U(R)—1)U(U(R) —
2) C{0}UU(R).

(vii) For example, Q, the field of all rational numbers, is an (negative)
clean ring but the subring Z, the integer of integers, is not (negative) clean.

(viii) Since idempotents and units are invariant to conjugations, so are the
clean or not clean elements. Clearly u=!(—a)u = —u~tau, for any unit u and
element a of R. O

Remark. Related to (iii): Ahn, Anderson ([1], 2006) introduced (in the
commutative case) the following definition: a ring R is weakly clean if every
a € R can be written as a = u+e or a = u—e where u € U(R) and e € Id(R).

Clearly, since negatives of units are also units, R is weakly clean iff for every
a € R, at least one of a or —a is clean. Equivalently, cn(R) U (—cn(R)) = R.
In the paper, it is proved that if R is weakly clean and 2 € J(R) then R is
clean.

We can slightly generalize this: every weakly clean and negative clean ring
is clean. Indeed, in this case cn(R) U (—en(R)) = cn(R) = R.

While images of negative clean rings may not be negative clean, we have
the following converse

Proposition 3. Let I be an ideal of R such that I + U(R) C U(R) and
idempotents lift in R modulo I. If R/I is negative clean then so is R.

Proof. Let a = e+ u be clean in R. Then @ is clean in R/I, so by hypothesis,
—a = f + v with idempotent f and unit ¥ in R/I. Since idempotents lift
modulo I, we may assume that f2 = f in R. We can also assume v is a
unit in R. Indeed, if 7w = wo = 1 then vw = 1 + iy, wv = 1 + iy for some
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11,79 € I. By hypothesis, both vw, wv are units so both v, w are units.
Therefore —a = f 4+ v+ for some ¢ € I, is clean since v+ is a unit in R. O

Corollary 4. If idempotents lift in R modulo J(R) and R/J(R) is negative
clean then R is negative clean.

If R is a commutative ring and T,,(R) denotes the ring of upper triangular
matrices over R, we can prove the following

Proposition 5. T, (R) is negative clean iff R is negative clean.

Proof. Let a = e+ u € cn(R). Then al, = el, + ul, € cn(T,(R)) and
so —al, = E+ U € cn(T,(R)), by hypothesis. Then —a = e1; + ui; €
cn(R). Conversely, suppose A = E + U is clean in T, (R). Then a; =
eii + u;; are all clean in R for 1 < ¢ < n. Hence, by hypothesis, —a;; =

fitv —aiz - —an,
0 fatuv2 o0 —ag,
fi+wv; are also clean in R. Then —A = ) . . =
fi 0 -0 v —aiz o —Qip
0 fo -+ 0 0 vy - —ag,
. L+ ) ) € en(T2(R)). O
0 0 - fu 0 0 - v,

Similarly one proves

Proposition 6. For a ring R and an R—R-bimodule M , the trivial extension

{ 10% R ] is negative clean iff R is negative clean.
Remark. Since T, (R) over any ring R # 0 is not right self-injective, this
also shows that right self-injective rings need not be negative clean.

Next, a result for some (full) matrix rings.

Following P. M. Cohn [7], a ring R is called projective-free, if every finitely
generated projective R-module is free of unique rank. By [7] (Proposition
4.5), a ring R is projective-free precisely when R has invariant basis number
and every nontrivial idempotent matrix over R is similar to a matriz of the
I O
0 O
Corollary 5.5).

form , 1 < k < n. Projective-free rings include local rings (see [7],
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Theorem 7. Let R be a projective-free ring. M, (R) is negative clean iff for

every unit U € M,,(R), U — I, and all differences U — { Ié 8 }, 1<k<n,
are clean.

. . . I, O .
Proof. One way is immediate since —U + 0o o |ae clean, for every ring

R (not necessarily projective-free).
Conversely, as mentioned above, the idempotents are similar to [ Iy 8 } .

0
Let A= E — U be clean with E? = E and unit U.
If E=0,, —A=U isclean. If E = I,, then (by hypothesis), —A=U —1I,
is clean. Finally, if F is a nontrivial idempotent, —A = U — F is clean

iff so is any similar matrix. If V-1EV = [ I(;“ g }, then —A is clean iff
V1AV = V-V — [ % g ] is clean. This is our hypothesis. O

It follows that matriz rings over negative clean rings may not be negative
clean.

Example. Consider My (R[X]), for a commutative (negative) clean ring R
such that 2,3 ¢ U(R). As seen before, R[X] is (commutative) negative clean
(but not clean) and U(R[X]) = U(R), cn(R[X]) = cn(R). Take the matrix
A= [ (2) 8 ] € My (R[X]), which is clean but —A is not clean.

In [9], it was proved that split extensions of clean rings are clean. The
previous example shows that an analogous result fails for negative clean rings.

Finally for formal power series we have

Proposition 8. R[[X]] is negative clean iff R is negative clean.

Proof. Notice that cn(R[[X]]) = en(R) + X R[[X]]. Hence R[[X]] is negative
clean whenever R is negative clean. Conversely, as mentioned in Proposition 2
(iii), images of negative clean rings are negative clean if idempotents and units
lift modulo the given ring homomorphism. In our case, we take ¢ : R[[X]] —
R, ¢(a+bx +cx® + ...) = a, a retraction, such that idempotents and units lift
modulo ¢. O

Regarding corners and centers of negative clean rings, two questions re-
main open.

Stated in [9] as an open question, it was a hard task (and took 11 years)
to find a clean ring with a nonclean corner (see [16], Example 3.1).

Should this corner be also not negative clean, the same example would
show that corners of negative clean rings need not be negative clean.
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The final (simple) argument in the clean example is that every idempotent
and every unit in this corner is upper triangular (ignoring the first finitely
many rows) and so the matrices that are nonzero below the main diagonal
(ignoring the first finitely many rows) cannot be written as a sum of an idem-
potent and a unit in the corner. Unfortunately, this does not work in the
negative clean case where an upper triangular clean matrix would be neces-
sary, whose negative is not clean. We were not able to find it.

In [4], an example of clean ring with a nonclean center was given. Should
this center be also not negative clean, the same example would show that
centers of negative clean rings need not be negative clean. The example relies
on the property that homomorphic images of clean rings are clean. Since this
property fails for negative clean rings, the example is not suitable for this
purpose.

In closing this section we mention three directions for further study.
1) Are Abelian (i.e., with central idempotents) negative clean rings, clean

2) Clean endomorphisms of modules are characterized by the so-called
ABCD-decomposition property (that is, if ¢ € End(Mpy) then ¢ is clean iff
there are right k-module decompositions M = A @ B = C ® D such that ¢|
maps A isomorphically to C' and (1 — ¢)|p maps B isomorphically to D). Can
we find an analogue for negative clean endomorphisms of modules ?

3) Find more special properties for elements in cni(R) (or cng(R)).

3 Clean 2 x 2 matrices with not clean negatives

The goal of this section is to describe, as much as possible, the clean 2 x 2
integral matrices whose negative is (not) clean.

Notice that if the negative of a clean matrix is not clean, so are its transpose
and the matrix obtained by interchanging the (main) diagonal entries.

To see the latter, conjugation by { ? (1)

We also mention that many results in this section hold in more general
conditions, that is, commutative rings and/or GCD domains (a domain is
GCD if every two elements have a greatest common divisor).

] and transpose will do.

Since nontrivially clean 2 x 2 integral matrices are characterized by sys-
tems of equations, we have to deal separately with Is-clean matrices and with
nontrivially clean matrices.

More precisely, we have to answer four questions
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(A) which are the I5-clean matrices whose negative is not Is-clean;

(B) which are the I>-clean matrices whose negative is not nontrivially clean;

(C) which are the nontrivially clean matrices whose negative is not I-clean;

(D) which are the nontrivially clean matrices whose negative is not non-
trivially clean.

Recall that nontrivially clean matrices are characterized by

Theorem 9. A 2 x 2 integral matriz A = [ Z Z } is nontrivially clean iff
any of the systems

> +r4+yz=0 (1)
(a—d)x+cy+bz+det(Ad) —d==+1 (£24)

with unknowns x,y, z, has at least one solution over Z. If b # 0 and any of
(£24) holds, then (1) is respectively equivalent to

ba? — (a — d)xy —cy®? +br+ (d —det(A) £ 1)y =0  (£3,4).

Corollary 10. Ifdet(A) = 0 then A is nontrivially clean iff — A is nontrivially
clean.

Proof. Indeed, since det(A) = det(—A), if both are zero, the systems (1),
(£24) and (1), (£2_4) coincide. O

3.1 Diagonal and zero second row matrices

We have already seen that the negative of a clean diagonal matrix may not be
clean: 215 = Is + I5 is clean but —2I5 is not clean. However we can describe
the diagonal matrices in cng(Msy(Z)).

Proposition 11. Let A = { 8 2
(i)a=d=2;

(ii) a—d is odd, d(d—1) = £1 (mod(a—d)) but d(d+1) #Z +1 (mod(a—d)).

} be clean. Then —A is not clean iff

Proof. This follows immediately from Theorem 4, [6]. O
5 0 -2 2 T =2 . 5 0 |.
Example[ 0 21=1| -3 3 }—i—[ 3 _1 } is clean but — { 0 2 } is

not clean (2-3 # +1 (mod 3).

Clean integral matrices with zero (second) row (see [12]) provide some
examples of clean matrices with not clean negative.
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ops b . . ,
Proposition 12. Let A = 8 0 be a clean integral matriz. Its opposite

—A is also clean iff a # 2, or, a =2 and b is odd.

Proof. Having zero determinant, the matrix A = {

(el

] is not 0y-clean and
0
0

b

0
is Io-clean iff @ € {0, 2} and arbitrary b. If a =0, —A = { _Ob } is nilpotent
so clean for any b, and, for a = 2, the matrices —A = { _02 _Ob are clean
iff b is odd. Since det(A) = 0 we just use Corollary 10 in the nontrivially clean
case. O

3.2 I)-clean integral matrices

Proposition 13. (A) For a unit U, an Is-clean matriz Is+U has an Iy-clean
negative iff any of the following holds

(i) Tr(U) = =3 and det(U) =1,

(i) Tr(U) = =2, and det(U) € {£1},

(ii) Tr(U) = —1 and det(U) = —1.

Proof. Let U = [u;;] be any 2 x 2 unit. The I-clean matrix Iy + U has an

I>-clean negative iff —I; — U = Iy — V with a unit V, that is, V = U + 2I5.
Since det(U + 2I3) = det(U) + 2Tr(U) + 4 and det(U) € {£1}, clearly, V

is not a unit if Tr(U) ¢ {—3,—2, —1} and is a unit in the cases stated. O

a—3 b

Remark. The units in the above proposition are: (i) { . L } with
a—2 b

c —a

ala — 3) + bc = —1, (ii) { } with a(a —2) + bc € {£1} and (iii)

a—1

] with a(a — 1) + be = 1.
¢ —a

Ccl Z ] be a unit with b # 0 and det(U) =

ad —bc=1. Then —A = —(Iy + U) is nontrivially clean iff the system

Proposition 14. (B) Let U = {

br? — (a—d)zy —cy? +br+ (a+2d+3+£1)y=0 (£3_4)
(a—d)x+cy+bz—a—2d—3=+1 (£2_,)
ad—bc=1

has (integer) solutions for the unknowns x, y, z.
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Proof. Using Theorem 9, for the cleanness of —A we reach the system

br? — (a —d)zy —cy?> +br + (d+ 1+ det(A) £ )y =0 (£3_4)
(a—d)x+cy+bz—det(Ad) —d—1==+1 (£2_4) ‘

Since det(A) = Tr(U) +det(U) + 1 = Tr(U) + 2 = a + d + 2 we can rewrite
the system as stated. O

2Z +1 27

Corollary 15. For any unit U € 97, 27 +1 |’

—(Is + U) is not
(nontrivially) clean.

Proof. Indeed, £A := +(Is + U) € M3(2Z) and so the equations (£2_4)
reduce to 2k = +1, for some k, with no integer solutions. Hence A is I5-clean
and —A is not nontrivially clean. O

Remarks. 1) As mentioned in the Introduction, the negative of a strongly
(or uniquely, or both strongly and uniquely) clean element need not be clean.
An example deduced from the above corollary is the both strongly and uniquely

clean matrix A = [ _02 i } =1+ { :; g } Indeed, —A is not trivially

clean nor nontrivially clean since (+2_4) are 2(2z +y — z+4) = £1, with no
integer solutions.

A is obviously strongly clean and it is also uniquely clean since it is not
0z-clean nor nontrivial clean: (+£24) are 2(—2z —y + z) = %1, with no integer
solutions.

2) If for a unit U = [ (Cl Z } we take b € {£1}, then (£2_4) have always

solution for z for any given z, y. Hence, since (£3_4) have always at least
the solutions (0,0) and (—1,0), it follows that —(I3 + U) is nontrivial clean.
Actually, more generally, if an entry on the secondary diagonal is a unit, the
matrix is clean.

3.3 A conjecture

Notice that any unit in Ms(Z) may have only one or two even entries (0 or

3 or 4 even entries yield even determinant). One, in any position, but two,

only on diagonals. Excepting the matrices in the previous corollary, we can
27 2Z+1

consider the units U € 27 41 97,

For such matrices the above corollary fails. For the unit U = [ :; :g } ,
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. 1 3 0 2
A—I2—|—U15]2—cleanand—A—{5 7}—{0 1]4—{

trivially clean.

1 is non
6 S non-

(a0

It is difficult to prove results starting with such units. Using computer aid
we were able to state the following

Conjecture 16. For an integer n and units U, = { —2n —2n 1 ],

—2n—1 —2n
—(I2+Uy,) is not (nontrivially) clean, forn < =7, n = —2 and n > 4. Equiva-
lently, only forn € {—6,—5,—-4,—-3,-1,0,1,2,3}, —(Ix+U,) is (nontrivially)
clean.

The proof of this statement reduces to some hard to solve quadratic Dio-
phantine equations with parametric coefficients. The partial results we were
able to obtain are given in Appendix 1.

3.4 Nontrivially clean matrices

Proposition 17. (C) For a nontrivially clean matriz A, the negative —A is
not Iy-clean iff det(A) + Tr(A) + 1 ¢ {£1}.

Proof. —A is not Iy-clean iff —I, — A, or equivalently, I + A is not a unit.
Indeed, this holds iff det(l + A) = det(A) + Tr(A) + 1 ¢ {£1}. O

2 0
0 1
A and A — I, are not units). Since det(A)+Tr(A)+1 =15, —A is not I>-clean.

L 3 2 5 -2
However, it is clean: —A = { 3 9 } + [ A ) ]

Example. A = = F11 + I is clean, but not trivially clean (both

3.5 The D case

According to Proposition 2, (ii), since every nontrivial idempotent is similar
to E11, up to similarity, it suffices to characterize the Fqi-clean 2 x 2 integral
matrices whose opposite is not nontrivially clean.
a b
d
FE11 + U, respectively —A = —FE7; — U. Since —U is also a unit, we just have
to characterize the units U such that B = U — E11 s not nontrivially clean.
Observe that det(B) = det(U) — d = £1 — d, so that using Theorem 9, we
obtain

Therefore we can start with any unit U = } and consider A =
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Proposition 18. Suppose det(U) = ad—bc = 1. Then U — E11 is nontrivially
clean iff the system

b —(a—d—1Nzy—cy’* +br+ (2d—1+1)y=0 (+3p_g,)
(a—d—1Dzx+cy+bz=2d—1+1 (X2py_pg,)
ad—bc=1

has integer solutions.

Proposition 19. Suppose det(U) = ad —bc = —1. Then U — E; is nontriv-
tally clean iff the system

br? —(a—d—1Nzy—cy’? +br+ (2d+1+1)y=0 (+3p_g,)
(a—d—1Dzx+cy+bz=2d+1+1 (X2p_pg,)
ad —bec= -1

has integer solutions.

It is easy to discard the trivially clean cases.

Lemma 20. If det(U) = 1, U — E1; is 0z-clean iff d € {0,2} and Iz-clean
iff a+2d € {2,4}. If det(U) = —1, U — Eq; is Og-clean iff d € {—2,0} and
Iy-clean iff a + 2d € {0,2}.

Also recall that if b € {1} or ¢ € {£1} then U — Ey; is clean.
Using the previous propositions, it is easy to check

Lemma 21. All 2 x 2 (integral) units U with one or two zeros, yield clean
matrices U — Eqq.

Proof. The two zeros on the diagonal case is easy. As for the upper triangular
units (including, two zeros on the secondary diagonal), notice that for units

of form U = (1) 11) ], U — E1; is idempotent, so clean. For units of form

{ 701 _bl } , we get clean decompositions

-2 b | _[3-2b 20> -5b+3 2b—5 —2b>+6b—3
0 —-1]| | -2 2b —2 2 1—-2b

0 1 0 —1
zero entry, are also easy. The lower triangular case is analogous.

Analogously for [ —Lb } or { Lo ] The remaining cases: (1,1) or (2,2)

a

Lemma 22. All units U = [ p

U-FEqn.

Z } with det(U) = d, yield clean matrices
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Proof. If det(U) = d then det(U — F11) = 0. Since Ey; — U is always clean,
so is U — Fq1, by Corollary 10. O

Therefore, it only remains to describe the units U without zero entries (and
with b,c ¢ {£1}).
Example. For U_5 = é Z } we have proved in case (B) that —I5 —

U_5 is not clean. However, U_o — F1; = { g Z } = [ i :g }-ﬁ-{ :} ? ]

is clean.

It was easy to write a code which, given a unit U, subtracts a nontrivial
. 1 . .
idempotent [ xi _y (with 22 + 2 4+ yz = 0) and checks whether this

difference has determinant +1. With the entries x,y, z bounded by 100, the
computer provided some 16,700 candidates of units U such that U — Ey; is
not nontrivially clean.

We were able to prove the following results.

3n—1 3n

Proposition 23. (a) Consider the units V,, = [ 3 3n4l

, for any
integer n % —1. Then V,, — F11 is not clean.

(b) Consider the units Wy, = [ Z Z } with b ¢ {+1}, d ¢ {0,2}, a+2d ¢
{2,4} and ad = b*> — 1 (i.e., det(W}) = —1 and both Wy, — Ey1, Wy — Eq1 — Iy
are not units). If b divides a —d — 1 and 2d + 1 then W, — Eq1 is not clean.

The case ad = b*>+1 (i.e., det(W},) = 1), and the case c = —b are analogous.

(c) Consider the units W = a Z such that none of W — E11, W —

Eqi1 — I is a unit and § = ged(b;c) # 1. If 6 divides a—d —1 and 2d+1 then
W — Eq1 is not clean.

Proof. (a) Since for n # —1, det(V,, — E11) = —(3n+2) ¢ {£1} and det(V,, —
Ey —I3) = —9n ¢ {£1}, the matrices V;, — F1; are not trivially clean. These
are also not nontrivially clean since for these (£2) is 3(—z+ny+nz—2n—1) =
+1, with no integer solutions.

(b) The condition d ¢ {0,2} assures W}, — Ej; is not a unit, and the
condition a+ 2d ¢ {0,2} assures W), — E11 — I5 is not a unit. In the remaining
case, (£2) is (a —d — 1)z + by + bz — (2d — 1) = £1, with no integer solutions
since b ¢ {£1} divides a —d — 1 and 2d + 1.

(¢) Analogous with case (b). O
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Remark. One could argue that requiring ¢ € {+b} is already a very strong
condition. Actually, it is not: out of 282 units U with U — E711 not nontrivially
clean (for entries z,y,z < 17), 122 have ¢ € {£b}, that is, more than 43% !

More details and examples on the (D) case appear in Appendix 2.

4 Appendix 1

This section includes our results regarding the Conjecture 16, which we recall
as

Theorem 24. For an integer n and units U, = —2n —2n 1 ,
—2n—1 —2n
—(Is + U,) is not (nontrivially) clean, for n < =7, n = =2 and n > 4.

Equivalently, only for n € {—6,—5,—4,-3,-1,0,1,2,3}, —(I2+ U,) is (non-
trivially) clean.

The n € {—6,-5,—4,-3,—1,0,1,2,3} cases are covered by simply giving

o 2n—-1 2n-1
clean decompositions for these 4,, := —(Io + U,) = o+l 2m—1 } .
__6.'—13 B[4 6 ] |17 19 ]
T 13T 2 -3 -9 10 |’
[ 11 -1 4 6 —15 —17
=g 11}_{2 3}+{7 8}’
-9 -9 1 4 —-10 —13
n=—d g —9}_{0 0}“{—7 —9}
-7 =7 1 4 -8 —11
n=-d s —7}{0 0}*{—5 —7]’
[ )8 [ 4 -
[ S . O -1 -3 |
[ -1 -1 10 -2 -1
=01 1}_[2 0]+[1 1]’
(11 (1 0], [0 1]
Cal s R el PR B O |
(3 3 (1 2] [2 1]
n=2 05 35005 3 )
s[5 5] 2] 4 3]
"Il r s T o075

Next, observe that det(4,) = —2(2n — 1), so A, is not a unit, and so is
A, — Iy since det(A,, — I5) = det(A4,,) —Tr(A,)+1=—-4(2n—1)+1= —8n+5



NEGATIVE CLEAN RINGS 78

(because —8n+5 = +1 has no integer solutions). Hence all A,, are not trivially
clean.

Therefore, the proof of this theorem reduces to

. . 2n—1 2n-—-1
Theorem 25. For integers n, the matrices ol 21 are not non-

trivially clean forn < —=7, n= -2 and n > 4.

We further reduce the proofs of these theorems to the following

Theorem 26. For any integer n ¢ {—6,—5,—4,-3,—1,0,1,2,3}, consider
the parametric Pell equations

(+) 82— (4n?—1)t>=32n2—24n+5
(=) s%—(4n? — 1)t? = 32n% — 48n + 17

with unknowns s, t.
12n3 —10n? —n+1+s

For any solution s of the (+) equation, denote ki o=

4n2 -1 ’
12n° — 14 2+
and for any solution s of the (—) equation denote ki 5 = n’ 4n —|—1n + i

Then none of these four k’s is an integer.

Proof. Using Theorem 9 for nontrivially clean 2 x 2 integral matrices, we have
to show that none of the systems

(+1) (2n—1)2? — 2n+ 1)y  + 2n— Dz +2Bn— 1)y =0
2n+1y+2n—1)2—2B8n—-1)=0

(—) (2n —1)2? — 2n+ 1)y? + (2n — Do +2(3n —2)y =0
! 2n+1Dy+2n—1)2-23n—-2)=0

has integer solutions for n ¢ {—6,—5,—-4,—-3,—1,0, 1,2, 3}.
We first refer to the linear Diophantine equations.
Since

Cn+1)(1-n)+2n—-1n=1

we deduce that 2n + 1, 2n — 1 are coprime, so both linear equations have
solutions, namely,

(y,2) = (2(3n — 1)(1 —n) + k(2n — 1),2(3n — 1)n — k(2n + 1)) for some
k € Z, for the (4) equation, and

(y,2) = (2(83n —2)(1 —n) + k(2n — 1),2(3n — 2)n — k(2n + 1)) for some
k € Z, for the (-) equation.
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We have to show that, excepting the values in the hypothesis, the quadratic
(4) equation has no integer solutions for y = 2(3n—1)(1—n)+k(2n—1), and
the quadratic (-) equation has no integer solution for 2(3n—2)(1—n)+k(2n—1).

We view both quadratic equations as degree 2 equations in x, that is,

(+) 2n—122+2n -1z —2n+1)y* +2B3n—1)y =0

and
() (2n—1a®+ (2n— 1)z — (2n+ 1)y* +2(3n — 2)y = 0.
Computing A = (2n — 1)2 +4(2n — 1)[(2n + 1)y? — 2(3n — 1)y] for y =
2(3n —1)(1 —n) + k(2n — 1) we obtain

A = (2n—1)%[4(4n* —1)k*—8(12n>—10n> —n+1)k+16n(9n> — 1502 +7Tn—1)+1],

respectively,

A, = (2n—1)2[4(4n*—1)k?—8(12n® —14n*+n+2)k+16n(9n® —21n? +16n—4)+1],

computed for y =2(3n —2)(1 —n) + k(2n — 1).
+

——= __ — 2 as degree two equations in k, which gives
(2n —1)2

‘We solve

Af =16(32n% — 24n + 5 + (4n® — 1)t?)

and
A} =16(32n% — 48n + 17 + (4n® — 1)t2).

For both 32n2 — 24n + 5 + (4n? — 1)t and 32n? — 48n + 17 + (4n? — 1)2
there exist integers ¢ such that these are squares.

If F+GV4n? — 1 = (2 |n|+1v4n2 — 1)™ then 32n% —24n+5+(4n?—1) =
36n? — 24n +4 = [2(3n — 1)]? and so at least

1. For 32n? — 24n + 5 + (4n? — 1)t? = 52, solutions are (¢,s) = ((£1)F +
(2(3n —1))G, (2(3n — 1))F + (£(4n* — 1))G)

and

2. For 32n? —48n + 17 + (4n? — 1)t? = 52, solutions are (t,s) = ((£1)F +
(2(3n — 2))G, (2(3n — 2))F + (£(4n? — 1))G).

The resolvent equation u? — (4n? — 1)v? = 1 has the least positive solu-
tion (2|n|,1) and the only solutions (u,v) = (G, F) with F 4+ Gv4n? —1 =
+(2|n| + 1v4n? — 1)™. As for the roots k1,2 we have in the (+) case,

4(12n3 —10n® —n+1)+4s  12n3 —10n® —n+1+s

) - =
1.2 4(4n% — 1) 4n? — 1




NEGATIVE CLEAN RINGS 80

and, in the (-) case,

P 4(12n° —14n? +n+2)+4s  12n° —1dn® +n+2+s
12— 4(4n% — 1) B 4n? —1 ’

which completes the proof. O

Both Pell equations in the previous statement belong to the hyperbolic
case. Hence these have finitely many solution classes. We succeeded proving
the following special case

Theorem 27. The hyperbolic Pell equations (+) and (—) are always solvable.
For any integer n ¢ {—6,—5,—4,-3,—1,0,1,2,3}, if the Pell equations have
only two class solutions, then the corresponding k’s are not integers.

Proof. Tt is readily seen that (¢,s) = (1,2(3n — 1)), is a fundamental solution
for (+) and (¢,s) = (1,2(3n — 2)) is a fundamental solution for (—).
Moreover, if these Pell equations have only two solution classes, (1,2(3n —
1)) and (—1,2(3n—1)) are the fundamental solutions for (+) and (1,2(3n—2))
and (—1,2(3n—2)) are the fundamental solutions for (—). The k’s correspond-
ing to these solutions are
12n% — 10n2 4+ 5n — 1

1207 2100 —nt 1200 1) P — B
1,2 an2 — 1 12n% — 10n? — Tn + 3
; 4n2? — 1
3n — > + " 2
= 2 4n2—11 and
3 — — JE—
s R T
12n3 —14n2 + Tn — 2
- _120° —Un® +n4+24£208n-2) an? —1 B
1,2 n2 — 1 12n3 — 14n? — 5n + 6
" 4n? — 1
3 _ P
_)nma T an? 1
Mt oy
In general, if (F,G) is given by F 4+ Gv4n? —1 = (2n + v4n? — 1)™,

and so F = (2n)™ + C2,(2n)™2(4n? — 1) + CL 2n)™ 4 (4n? - 1)’ + .., G =
CL(2n)m=t +C3 (2n)™3(4n? — 1) + C3,(2n)™>(4n? — 1) + ..., we have to
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replace in the k’s formulas given in the previous theorem, s = (2(3n — 1))F +
(£(4n? — 1))G), for the k*’s, and s = (2(3n — 2))F + (£(4n? — 1))G) for the
k™’s.

For the k™’s, since s = 2(3n — 1)(2n)™ + (4n* — 1)q for some integer g, we

12n* —10n* —n 414+ 2(3n — 1)(2n)™
just have to check when ki, = r " Z—z 1 (Bn = 1)(2n) is an
, n2 —

integer. Finally, since (2n)? = (4n? — 1)+ 1, we have to check this by replacing
(2n)™ with 1 or 2n.

12n% —10n? —n + 1 £ 2(3n — 2)(2n)™
4n? — 1
being an integer, and, as in the previous case, it suffices to check this by
replacing (2n)™ with 1 or 2n.
When checking whether the k’s are integers with (2n)™ replaced by 1, it
suffices to check when 4n? — 1 divides any of 16n — 7, 1 — 8n, 20n — 11 or
5 — 4n. Clearly this cannot happen for large n.

For the k~’s, we deal with kiQ =

16n —7 8n —1
More precisely, % <1liff n < =5 and n > 4; |4:2 _1| < 1 iff
[20n — 11| . .
n < -3 and n > 3; o1 < 1liff n < —6 and n > 5 (here 4,5 are outside
n2 —
.. |4n — 5| .
the ”positive” area); ——— < 1 iff n < -2 and n > 1.
4n? —1

Hence for n ¢ {—6,—5,—4,—-3,—1,0,1,2,3}, no k’s corresponding to the
solutions (£1,2(3n — 1)) and (£1,2(3n — 2)) respectively, are integers, ex-

ting k- =3n— - + ——=
cepting 3n 5 =+ 21
However, it is not because 63 does not divide 69, nor 89.

The replacement of (2n)™ by 2n amounts to

which could be integer only for n € {4, 5}.

1203 +2n2 —3n+1

o+ :12n3—10n2—n+1:|:4n(3n—1): an? — 1 _
1,2 n2 — 1 12n3 — 22n? +5n + 1
3 4n? —1
1 2
3n+ -+
= 2 4712_%) , and
n— —
2 4n2 -1
) 12n3 — 2n2 — Tn + 2
ke, = 12n° — 14n® + n+ 2+ 4n(3n —2) _ an? —1 _

4n? —1 12n3 — 26n2 + 9n + 2
4n? — 1
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3
—4n + -
In—s+-— 2
= 2 dn® — 19 and we finally have to check when 4n? — 1
s e

divides any of 3, 16n — 9, 8n — 3, 24n — 9. As in the first replacement ((2n)™

by 1), comparing fractions with 1, we obtain the range n < —7, n > 3 with

6n—9 24n -9
three exceptions: 471271 for n =4 and # for n € {4,5}. However, 63

does not divide 55 nor 87 and 99 does not divide 111.

All the above, completely covers the two class solutions whose fundamental
solutions are (1,2(3n—1)), (—1,2(3n—1)) in the (+) case, and by (1,2(3n—2)),
(—1,2(3n — 2)) in the (—) case. O

Final comments.

A) If we get an integer k such that ¢ is an integer, there are no problems
in ”coming back” to (integer) x and y.

Indeed, y = 2(3n—1)(1—n)+k(2n—1) orelse y = 2(3n—2)(1—n)+k(2n—1),
—(2n—1) £ VA, 1+t

2(2n — 1) 2
(£) cases, t? and so t is odd.

and for x; o = , it remains to notice that, in both

B) What remains uncovered is the answers to the following questions;

How many other solution classes has each of the equations 32n? — 24n +
54 (4n? — 1)t? = s% and 32n? —48n + 17 + (4n? — 1)t2 =52 ?

Which are their fundamental solutions 7

Notice that if (a, %) is a fundamental solution of any (other) solution class
K for the (1) equations, we just have to perform the same verification as above,
for i, — 12n —10n? —n+1 iﬁiand Kk, = 12n3 — 10n? —n + 1 £ 2np*

4n? —1 4n? —1 ’
respectively.

Notice that 8 solution classes is also possible for these Pell equations:
the fundamental solutions are (0,v/N) and (&1,2(3n — 1)), (£1,2(3n — 2)),
respectively. Unfortunately, there is no integer formula for v/N. When 32n2 —
48n + 17 = ¢?, there is a formula for g of form ¢ = Aa™ 4+ BB" + C, where A,
B, C, a, and § are algebraic numbers, but not necessarily rational or integral
(this follows from the general theory of linear recurrence relations).

C) We can still develop our information on the solutions of the Pell equa-
tions (4) and (—), by using the following recent characterization obtained in
[15].
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Theorem 28. Suppose (x1,y1) is the least positive solution of Pell equation
22 — Dy? =4 and let

v U)_{ (v/AN(z, —2)/D,\/AN(z; +2)/D  if N >0
)T (VAN (e +2)/D. /AN (11— 2)/D) if N <0

(a) If N > 0, then an integer pair (u,v) satisfying Au® + Buv +Cv? = N,
with D = B? — 4AC, is a fundamental solution iff one of the following holds:

(i)0<v<V.

(i) v =0 and u = /N/A.

(i) v=V and w= (U — BV)/(24).

(b) If N < 0, then an integer pair (u,v) satisfying Au? + Buv+Cv? = N,
s a fundamental solution iff one of the following holds:

(i) \JAA|N| /D <v < V.

(i) v=V and u= (U — BV)/(24).

In our case, D = 4(4n? — 1) and so (4n, 1) is the least positive solution
of Pell equation 22 — 4(4n? — 1)y? = 4. For both equations A = 1, B = 0,
C=—(4n?-1)

N
Notice that for both possible (positive) N, U = m Since both
n —
U-BV U
N are odd, U ¢ Z and A — 3 ¢ Z. Therefore, case (iii) in the previous
theorem cannot happen.
N N
MoreOVer, V = 5(4” - 2) = m
Hence:
1. For the (4) equation, since N is no square (N = 5 mod 8), only
N
the (i) case, in the previous theorem can happen. Here V = m =

&n — 10 4 ——2>
" 22n+ 1)

25
Unfortunately, in the (i) case, 0 < v < /8 — 10+ m permits no

conclusion on the possible fundamental solutions or on the number of solution
classes.

2. For the (—) equation, N = 32n? — 48n + 17 can be a square. The
equation 3222 — 48z + 17 = y? has fundamental solutions (1,1) and (2,7)
together with recurrences x,,+1 = 17z, + 3y, — 12, yp11 = 962, + 17y, — 72
(see [14]).

As examples, for (z,y) = (1,1) we get (8,41), for (x,y) = (2,7) we get
(43,239) and for (8,41) we get (247,1393).
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Therefore, the case (i) (v = 0, u = v/N) in the previous theorem, can hap-

N 49
pen for the (—) equation. Here V = \/2(2714‘1) = \/Sn — 16+ 202n+1)
4
As in the (+) case, in the (i) case, 0 < v < \/Sn —16 + 2(2n7?|—1) per-

mits no conclusion on the possible fundamental solutions or on the number of
solution classes.

According to quadratic Diophantine equations experts, (so far) we also
cannot answer (excepting brute force over a range of n) the question:

What are the values of n for which (any of) these two equations has pre-
cisely two solution classes (and so exactly with fundamental solutions (+1, 2(3n—
1)) and (£1,2(3n — 2)), respectively) ?

D) We checked these equations for n € {—23,—-22,...,—1,1,...,23,24} us-
ing [14].

We have 3 solution classes only for n € {2,8}, and this happens whenever
32n% — 48n + 17 = ¢? is a square (and then (4¢,0) is a solution for the (—)
equation).

For n = 1 we have only 1 solution class.

We have 4 solution classes for n € {—17,—-11,—-10,—-8,—5,3,17,20} and
for all the other 36 values we have 2 solution classes. We have also 2 solution
classes for n € {£31,+40, +50, £60, £70, £80, 90, +100}). Hence, at least
to this extent, there are no more that 4 solution classes and the 2 solution
classes case is predominant.

In the 4 solution classes, there is no (general) formula giving the other two
fundamental solutions (i.e., those different from (£1,2(3n—1)) and (£1,2(3n—
2))).

Examples. For the (—) equation: n = —6, (+1,40) and also (£7,92), or,
n = —8, (£1,52) and also (£8,137), n = —7, (£1,46) and also (£4,71).

For the (4) equation: n = —5, (£1,32) and also (£6,67), or, n = —10,
(£1,62) and also (£2,71), n = 3, (%1, 16) and also (£2,19).

5 Appendix 2

In this section we mention two well-known reductions for the quadratic Dio-
phantine equations displayed in Proposition 18. One deals with those in Propo-
sition 19, in a similar manner.

Suppose U = [ CCL Z ] and det(U) = 1. Then (see Proposition 18), the
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equations (£3y_g,,) are
ba? — (a —d—1)ay —cy® +br+ (2d — 1+ 1)y = 0.

We first focus on (+3).
Recall that any quadratic Diophantine equation

Az®> + Bay+Cy  + Da+ Ey+F=0 (%)
can be reduced to a Pell equation
X2 _DY?+44AA =0,

using the transformations X = Dy + 2AE — BD,Y = 2Ax + By + D, where
D = B? — 4AC and A = 4ACF + BDE — AE? — CD? — FB>.

Coming back to our notations, A=D =b, B=—(a—d—1),C = —¢, E =
2d, F=0,D = (a—d—1)?>+4bc = (a—d—1)>+4(ad—1) = (a+d)>—2a+2d—3
and
A =-2(a—d—1)bd —4bd*® + b’c = b[-2(a — d — 1)d — 4d* + bc] =
= b(—2ad — 2d? + 2d + ad — 1) = —b(ad + 2d* — 2d + 1) and so
X =[(a+d)?—2a+2d—3ly+3bd+bla—1),Y =2bx —(a—d—1)y+b

Hence

a

Proposition 29. Suppose U = { . and det(U) = 1. The equation

b

d

(+3u—E,, ) is solvable for x, y over the integers iff the Pell equation
X2 —[(a+d)? —2a+2d—3]Y? = b*(ad 4 2d* — 2d + 1)

has integer solutions and the equations X = [(a + d)? — 2a + 2d — 3]y + 3bd +
bla—1),Y =2bx — (a—d— 1)y + b are solvable for x, y over the integers.

Another reduction (and this is how [14] is constructed, with the same D)
is by using transformations Dx = X + «, Dy = Y + 8 with (the general
notations from (*) above) « = 20D — BE, § = 2AE — BD. This way, another
special quadratic equation is obtained (with the same degree two coefficients),

namely
AX? + BXY +CY? = N,

which has several methods of solving over the integers, well-known in Number
Theory. Here —N = Aa? + Bafi + Cp? + D(Da + EfS + FD).

Coming back again to our notations (for (+3y_g,,)), @ = 2(1 —d — d?)
and 8 = b(a+ 3d — 1) and so N can be accordingly computed (we skip the
complicated formula). Hence
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a

Proposition 30. Suppose U = { . and det(U) = 1. The equation

b

d

(+3u—E,, ) is solvable for x, y over the integers iff the equation
bX? —(a—d—1)XY —cY? =N

has integer solutions and the equations [(a + d)? —2a+2d — 3]z = X +2(1 —
d—d?), [(a+d)? —2a+2d—3)y =Y +bla+3d—1) are solvable for z, y over
the integers.

For (—3y—_g,,) we just replace above E by 2(d — 1) instead of 2d.
Similar computation covers the det(U) = —1 case.

Examples ([14] was used) with D > 0 (i.e., the hyperbolic case) and
det(U) = 1. Since for a large amount of units U, and especially for those
with ¢ € {£b}, the quadratic Diophantine equations (+3y_g,, ) have infinitely
many solutions, given by two recurrence relations, it is another hard task to
check if at least one, satisfies the corresponding equation (+£2y_g,,). This
partly explains, the hard work necessary for proving special cases of the con-
jecture stated in the Subsection 3.2.

H)IU = { g }(7) } (det(U) = 1) then for U — Eq; we have:

(4+3) the coefficients (10, 15,—5,10,34,0), D = 425, « = —610, 8 = 530,
4252 = X —610, 425y = Y +530 and we solve 10X24+15XY —5Y2 = —2533000
(or the primitive equation 2X2 + 3XY — Y2 = —506600).

The solution recurrences: x,4+1 = —39129z,, — 69680y,, + 30732, y,11 =
—139360x,, —248169y,,+109460, respectively, x,, = —248169x,,11+69680y,, 11—
443092, y,, = 139360x,,+1 — 39129y,,+1 + 248820.

For (-3): (10,15,—5,10,32,0), o = —580, B = 490, 425z = X — 580,
425y = Y + 490 and we solve 10X? + 15XY — 5Y2 = —2099500 (or the
primitive equation 2X2 + 3XY — Y? = —419900).

The solution recurrences: x,+1 = —39129z, — 69680y, + 26936, y,11 =
—139360x,, — 248169y, + 95940 respectively x, = —248169x,, 1 + 69680y, 11 —
419016, y, = 139360x,+1 — 39129y, +1 + 235300.

However, (£2): 5(—3x + y + 2z) = 33 £ 1 has no integer solutions, so
U — Eq; is not (nontrivially) clean.

2)IfU = _37 ;67 } (det(U) = —1) then for U — Ey; we have:

(+3) (=7,14,7,-7,34,0), D = 392, a = —574, 8 = —378, 392z = X —574,
392y = Y —378 and we solve —7X?+14XY +7Y?2 = 1731464 (or the primitive
equation —X?2 + 2XY + Y2 = 247352).
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The solution recurrences: z,1 = 5741z, — 13860y, — 4960, y,4+1 =
—13860zx,, + 33461y,, + 11970, respectively, z,, = 33461z, 41 + 13860y,,4+1 +
62360, y, = 13860xy,+1 + 5741y, 11 + 25830.

(=7,14,7,-7,32,0), « = —546, 8 = —350, 3922 = X —546, 392y = Y —350
and we solve —7X? + 14XY + 7TY? = 1446088 (or the primitive equation
—X24+2XY +Y? =206584).

The solution recurrences: xz,y+1 = 5741z, — 13860y, — 4380, yp4+1 =
—13860x,, + 33461y,, + 10570, respectively, z,, = 33461x,41 + 13860y,+1 +
58980, y,, = 13860x,,4+1 + 5741y, +1 + 24430.

However (+2): 7(—2z —y—z) = 33+ 1 has no integer solutions, so U — E1;
is not (nontrivially) clean.

There are two cases, when we can easily decide the noncleanness of U — E1;.

In the elliptic case, i.e., D < 0, and whenever D is a square (incl. D = 0).
In both cases, the equations (+3y_g,,) have finitely many solutions, so we
can check for each of these (£2y_g,,) and decide. We mention that (at least
statistically) these are rare.

From a total of 109335 nonclean matrices U — Eq; (with z,y, z bounded
by 127), only 1604 (i.e., 1.47%) have D < 0, and 3550 (i.e., 3.25%) have a
square D (incl. 88, i.e., 0.88% with D = 0). Therefore, in order to decide the
cleanness, hard work is necessary for some 95.2% of the candidates given by
computer (including the two examples above). By hard work, we mean (as
already done in Theorem 26, Appendix 1), we start with the linear Diophantine
equations (+2) and replace their solutions into the corresponding (£3).

17 —24

Examples. 5) If U = 12 17

(+3) (—24,-33,—-12,-24,-32,0) D = —63, « = —480, § = 744, —63z =
X — 480, —63y = Y + 744 and we solve —24X? — 33XY — 12Y2 = —387072
(or the primitive equation —8X?2 —11XY —4Y?2 = —129024). Three solutions:
(0,0), (—1,0) and (16,24). None verifies (+2).

(-3) (—24, 33, —12, —24,-34,0) D = —63, & = —546, B = 840, —63z =
X — 546, —63y = Y + 840 and we solve —24X2 — 33XY — 12Y2 = —486864
(or the primitive equation —8X?2 — 11XY — 4Y?2 = —162288). Five solutions:
(0,0), (—=1,0), (18,—27), (14,—18), (10, —12). None verifies (-2).

then for U — E1; we have:

3 4

(+3) (=9,12,-3,-9,10,0) D = 36, @ = —66, § = —72, 36z = X —
66, 36y = Y — 72 and we solve —9X? — 12XY — 3Y?2 = 2268, i.e. (—X +
Y)(—3X +Y) = 2268. Only two solutions: (0,0), (—1,0) solutions. None
satisfies (+2y_p,,): 3(—4dx+y—32—-3) = 1.

6) IfU = [ T ] then for U — Ey; we have:
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(-3) (—9,12, —3,~9,8,0)— 922+ 122y —3y> — 92+ 8y = 0 D = 36, o = —42,
B =—36, 36z = X — 42, 36y =Y — 36 and we solve —9X2 + 12XY —3Y? =
—1620, i.e. (=X +Y)(—3X +Y) = 540. Only two solutions: (0,0), (—1,0)
solutions. None satisfies (—2y_g,,): 3(—4x +y —32—3) = —1.

2 -3

NIU = [ 3 _5

(+3) (—3,—6,—3,—3,-8,0) D = 0 and we have four families of solutions:
(i) * = 60w? + 44w + 7, y = —60w? — 54w — 12, (i) z = 60w? — 4w — 1,
y = —60w? — 6w, (iii) = 60w? — 64w + 16, y = —60w? + 54w — 12 and (iv)
z = 60w? — 16w, y = —60w? + 6w, with arbitrary integer w.

Analogously for (-3): also four families of solutions.

However, (£2) 3(2x + y — 2z + 3) = %1, have no integer solutions.

then for U — F¢1 we have:

Remark. More can be proved for strongly clean matrices in all cases, since
FE11U = UEq; forces the unit U to be diagonal with entries +1. In order not
to further lengthen this paper, we leave this for the reader.

In closing we introduce two subclasses of negative clean rings.

A ring is called sum clean if sums of clean elements are also clean (equiva-
lently, cn(R) + en(R) C en(R)). Obviously, clean rings are also sum clean. In
a sum clean ring, sums of idempotents and sums of units are clean.

Using the fact that —e = (1 —e) + (—1) € cn(R) for every idempotent e,
we can deduce that sum clean rings are negative clean. Indeed if a = e + u
then —a = —e — u € cn(R) + cn(R) C cn(R). In a sum clean ring, cng(R) is
an additive subgroup of (R,+).

A ring is called product clean if products of clean elements are also clean
(equivalently, cn(R) - cn(R) C cn(R)). Obviously, clean rings are also product
clean. Since —1 € U(R) C cn(R), product clean rings are negative clean.

Since unit-regular elements can be represented as products eu with e? = e
and u € U(R), in a product clean ring, unit-regular elements are clean.

As already noticed for negative clean rings, sum (or product) clean rings
need not be exchange,

Sum clean and product clean rings will be addressed elsewhere.
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