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Ellipses surrounding convex bodies

Tudor Zamfirescu

Abstract

If, for a double normal xx∗ of a convex body K, an ellipse E 3 x, x∗

is included in K, we say that E is surrounded by the boundary of K. If,
instead, in the plane of E, K is included in the convex hull of E, then we
say that E is surrounding K. In this paper we investigate surrounding
and surrounded ellipses, particularly circles. We do this for arbitrary
convex bodies, for polytopes, for convex bodies of constant width, and
for most convex bodies (in the sense of Baire categories).

Introduction

We work in R3, and start with some definitions and notation.
For distinct points x, y ∈ R3, let xy denote the line-segment from x to y,

and xy the line through x, y.
For any compact set M ⊂ R3, let M mean the affine hull of M , convM

the convex hull of M , intM the relative interior of M (i.e., in the topology
of M), bdM the relative boundary of M , and ρ(x,M) = miny∈M ‖x− y‖ the
distance from x ∈ R3 to M .

Denote by Sn the n-dimensional unit sphere, by Bn the n-dimensional
compact unit ball, and by Br(x) the closed ball of radius r and centre x ∈ R3.

A polytope is the convex hull of a finite set. Its extreme points, i.e. bound-
ary points not in the relative interior of any line-segment included in the
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polytope, are called vertices. A polytope is called inscribable if all its vertices
lie on some sphere.

For convex surfaces, a lower and an upper curvature can be defined, as
follows (see [4]). Consider a smooth, strictly convex body K, a point x on its
boundary and a tangent direction (unit vector) τ at x. Take the 2-dimensional
half-plane H containing x+τ with the normal at x as relative boundary. Then,
for any point z ∈ H ∩ bdK different from x, there is exactly one circle with
its centre on the normal line, containing both x and z. Let r(z) be the radius
of this circle. Then

γτi (x) = 1/limsupz→xr(z), γτs (x) = 1/liminfz→xr(z)

are called the lower and upper curvature of bdK at x in direction τ .
If they are equal, the common value γτ (x) is the curvature of bdK at x in

direction τ .

The space K of all convex bodies equipped with the Pompeiu-Hausdorff
metric h is Baire.

In a Baire space, we say that most of its elements have property P if those
not enjoying P form a set of first Baire category. For example, most convex
bodies are smooth and strictly convex, as Klee proved in [6]. Surveys about
properties of most convex bodies are [5], [10].

For results in Convexity, many books are good. One of the best is Schnei-
der’s [8].

Let K be a convex body, and a, b ∈ bdK. The line-segment ab is called
a chord of K; ab is a double normal of K (or of its boundary bdK), if the
planes through a, b orthogonal to ab are supporting K. A circle or an ellipsoid
C with ab as a diameter or axis is said to surround K if K ∩ C ⊂ convC. If,
moreover, K ∩ C = {a, b}, then we say that it is a simple surrounding circle
or ellipsoid.

So, if C is a sphere, it is circumscribed to K. But, obviously, not for every
K, the sphere circumscribed to K surrounds K. By a theorem in [9], for most
convex bodies K, the circumscribed sphere has exactly 4 contact points with
K. From its proof it can be easily deduced that those circumscribed spheres
are not surrounding K.

The points x, x∗ ∈ bdK are called opposite if some supporting plane
through x is parallel to and distinct from some supporting plane through
x∗. Generalizing the notion of a surrounding circle, we say that E is a sur-
rounding ellipse (or a weakly surrounding ellipse) of K, if there exists a double
normal xx∗ (respectively opposite points x, x∗ ∈ bdK), such that x, x∗ ∈ E
and K ∩ E ⊂ convE.
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The circle C is said to fix K if each continuous and rigid move of C during
which C does not meet int K is a rotation keeping C fixed as a set. For results
on circles and other frames fixing convex bodies, see [3].

If the convex body K admits a surrounding sphere, then it also admits
many surrounding circles. But the converse is not true. The regular tetrahe-
dron has many surrounding circles, but no surrounding sphere. So, is it true
that most convex bodies admit no surrounding circle? This question remains
open.

In case, for a double normal xx∗ (or for two opposite points x, x∗ ∈ bdK),
an ellipse E 3 x, x∗ is included in K, we say that E is surrounded (respectively
weakly surrounded) by bdK. Surrounded and surrounding ellipses are treated
in the following sections.

The subspace K′ of K of all convex bodies admitting a surrounding circle
is Baire. Indeed, its closure clK′ is complete, and (clK′)\K′ is nowhere dense.
We investigate in a further section the behaviour of most elements of K′.

Surrounded ellipses

Theorem 1. If P is a point-symmetric polytope, then
1) it has a surrounding sphere and infinitely many simple surrounding cir-

cles,
2) it has a surrounded sphere,
3) every point which is interior to a facet is an endpoint of the long axis

of a weakly surrounded ellipse,
4) there exists a weakly surrounded ellipse the long axis of which has an

endpoint on an edge of P .

Proof. Let P be a polytope symmetric about the origin 0.
1) Choose a vertex v of P with largest ‖v‖. Then the sphere S with

diameter v(−v) surrounds P . There might be more vertices of P on S, but
all circles with diameter v(−v) avoiding those vertices are simple surrounding
circles.

2) The largest sphere of centre 0 included in P is a surrounded sphere.
3) Take an arbitrary facet F of P , and x ∈ intF . The facets F and −F are

parallel. Consider the plane Π 3 x orthogonal to x, and the line L = Π ∩ F .
In the plane determined by L and −L we obviously have an ellipse weakly
surrounded by bdP with x(−x) as long axis.

4) Let x be a point on the boundary 1-skeleton of P closest from 0. This
point is interior to some edge J of P . Moreover, −x ∈ int− J , and the points
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x,−x are opposite. There obviously exists a weakly surrounded ellipse with
long axis x(−x) in the plane J ∪ −J . �

Theorem 2. Most convex bodies admit no weakly surrounded ellipse.

Proof. Assume that a convex body K has a weakly surrounded ellipse E
through the opposite points x, x∗. Then, in both tangent directions τ,−τ of
E at x, the surface bdK satisfies the inequalities

γ±τs (x) <∞, γ±τs (x∗) <∞,

by Meusnier’s Theorem (see [4]).
However, on most convex bodies there is no pair of opposite points x, x∗

and no tangent direction τ at x, such that both inequalities

γτs (x) <∞, γτs (x∗) <∞,

hold, by Theorem 4.1 in [1]. �

Despite of Theorem 2, the following holds.

Theorem 3. The subspace K[ of K consisting of all convex bodies admit-
ting a surrounded ellipsoid is dense.

Proof. Let K ∈ K. We approximate K by a polytope P in K[.
Consider the points a, b realizing the diameter of K. Approximate K by a

polytope P having two facets Fa, Fb such that a ∈ intFa, b ∈ intFb, and both
Fa and Fb are orthogonal to ab . This polytope obviously admits a surrounded
ellipsoid with ab as long axis. �

Surrounding ellipses

Theorem 4. Every inscribable polytope admits surrounding circles.

Proof. Take a polytope P with all vertices on S2.
Let v, v′ be vertices of P , with ‖v + v′‖ minimal. Assume v′ 6= −v. Then

vv′ is a double normal of P . Indeed, consider the planes H 3 v, H ′ 3 v′

orthogonal to vv′. Both components of S2 \ conv(H ∪H ′) have diameter equal
to ‖v + v′‖, and contain therefore no vertices of P .

Among the circles on S2 through v, v′, one has vv′ as diameter (or all of
them if v′ = −v). These are surrounding circles of P . �
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It is rather evident that point-symmetric convex bodies, like polytopes,
have a surrounding sphere. This remark can be strengthened for most point-
symmetric convex bodies.

Theorem 5. Most point-symmetric convex bodies admit a simple sur-
rounding sphere.

Proof. Let K◦ be the space of all point-symmetric convex bodies.
TakeK ∈ K◦, and choose x, y ∈ K realizing the diameter ofK. Clearly, the

sphere S of diameter xy surrounds K. For some ε > 0, S∩K ⊂ Bε(x)∪Bε(y).
Let Kn be the set of all K ∈ K◦, for which the above inclusion is not true

with ε = 1/n. We show that Kn is nowhere dense.
Let O ⊂ K◦ be open, and consider K ∈ O. Let S be the sphere surrounding

K. Approximate K by a polytope P ⊂ convS, which meets S at x and y only,
these points realizing the diameter of K, such that P ∈ O. For a whole
neighbourhood N of P in O, S ∩K ⊂ B1/n(x)∪B1/n(y) for all K ∈ N. Hence,
N ∩Kn = ∅, whence Kn is nowhere dense.

The set of those point-symmetric convex bodies which do not admit a
simple surrounding sphere equals ∪∞n=1Kn, which is of first category. �

Theorem 6. Every polytope admits a surrounding ellipsoid. Also, for
every vertex of a polytope, there exists a weakly surrounding ellipse passing
through it.

Proof. Let K◦ be the space of all point-symmetric convex bodies.
Take K ∈ K◦, and choose x, x′ ∈ K realizing the diameter of K. Denote

by SK the sphere circumscribed to K. Clearly, the sphere of diameter xx′

surrounds K and equals SK .
Let Kn be the set of all K ∈ K◦, for which there exist two pairs of points

x, x′ and y, y′ both realizing the diameter of K, with ‖x − y‖ ≥ 1/n and
‖x′ − y′‖ ≥ 1/n. We show that Kn is nowhere dense.

Let O ⊂ K◦ be open, and consider K ′ ∈ O. Approximate K ′ by a polytope
P admitting a single diameter xx′, such that P ∈ O. For a whole neighbour-
hood N of P in O, SP ∩K ′′ ⊂ B1/(2n)(x)∪B1/(2n)(x

′) for all K ′′ ∈ N. Thus, if
K ′′ admits a second diameter yy′, then ‖x−y‖ ≤ 1/(2n) or ‖x−y′‖ ≤ 1/(2n).
Hence, N ∩Kn = ∅, whence Kn is nowhere dense.

The set of those point-symmetric convex bodies which do not admit a
simple surrounding sphere equals ∪∞n=1Kn, which is of first category. �

It looks very probable that many, perhaps most, convex bodies admit no
surrounding circles. Good candidates appear to be convex bodies of constant
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width. However, our efforts of finding such convex bodies using Baire cate-
gories remained unsuccessful, as we detail in the next section. Even finding a
single convex body without surrounding circles is less trivial than we initially
thought.

Theorem 7. There exist convex bodies without any surrounding circles.

Proof. We construct a convex body without any surrounding circle.
Let K ⊂ S2 be compact. There exists a convex body BK with differentiable

boundary, such that BK ⊂ B3 and BK ∩ S2 = K. This can be shown, for
example, by taking

S = {y ∈ 0x : x ∈ S2 ∧ ‖x− y‖ = ρ(x,K)2},

and then BK = convS. Let now M ′ be the union of n equidistant meridians
on S2, joining (0, 0, 1) with (0, 0,−1), where n is odd. Let M equal M ′ minus
a small open spherical disc on S2 about (0, 0,−1). Let E be the equator of S2
with E orthogonal to the x3-axis. Take a large number κ. Each point x of S2
will be rotated (in the same sense) about the x3-axis by an angle κρ(x,E). Let
rκ be this mapping from S2 to S2. If n and κ are large enough, rκ(M) meets
every circular arc on S2 of length at least 9π/10, and the width of convrκ(M)
is larger than 9/5.

We now take K to be rκ(M). We show that BK has no surrounding circle.
Assume, it has such a circle C. Let ab be the double normal of BK , which
is a diameter of C. We observe that a, b cannot be both on S2. Indeed, if
they were, they would be antipodal on S2. But M has no pair of antipodal
points, and this remains true for K. So, at least one half of C, say C∗, lies
inside of S2 (possibly except for one endpoint). The width of BK is larger than
the width of convrκ(M), so it is larger than 9/5. This yields ‖a − b‖ > 9/5,
whence the length of C∗ is larger than 9π/10. The projection of C∗ onto S2
from the centre of C has a fortiori length larger than 9π/10, and therefore
meets rκ(M). But then, C cannot be a surrounding circle of BK . �

About convex bodies of constant width

Let us turn now to convex bodies of constant width. We remark that,
in the case of convex bodies of constant width, ”surrounding” and ”weakly
surrounding” are equivalent notions.

Those convex bodies of constant width obtained by rotating a Reuleaux
polygon admit of course a surrounding circle. But what happens for most of
them? We do not know.
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One can strongly believe that most convex bodies of constant width contain
no surrounding circles. To prove this, we thought that known curvature results
about the boundaries of most convex bodies of constant width could help.

By Theorem 6.2 in [2], most convex bodies K of constant width 1 have the
following property. At any point x ∈ bdK,

(i) γτi (x) = 1 for all tangent vectors τ at x, or
(ii) γτs (x) =∞ for some tangent vector τ at x.
In case (i) there is no surrounding circle with diameter xx∗, since the circle

has radius 1/2.
Suppose now that case (ii) holds. Since the lower Dupin indicatrix at x is

convex, it follows that it contains 0 as a boundary point, and γτs (x) = ∞ for
all τ in a whole open half-circle C+ ⊂ S1 of tangent directions at x.

By projecting orthogonally K onto a plane parallel to τ and to the di-
ametral chord xx∗, we obtain a planar convex body of constant width 1. By
Theorem 1 in [11],

γτi (x)−1 + γ−τs (x∗)−1 = 1,

for any convex body of constant width 1 and for any x and τ .
It follows that, in our case, γ−τi (x∗) = 1 for all τ ∈ C+.
If γ−τi (x∗) = 1 for all τ , then there is no surrounding circle with diameter

xx∗, as in case (i). If not, then the same conclusion holds, for every τ ∈
C+∪−C+, hence for every τ ∈ S1 except for a single direction and its opposite.

Unfortunately, this leaves open the existence of a surrounding circle in
those directions. But we dare to formulate the following.

Conjecture. Most convex bodies of constant width admit no surrounding
circle.

Convex bodies with a given line-segment as double normal

To simplify matters, we shall consider the space K′ restricted to those
convex bodies admitting a surrounding circle with a fixed double normal ab
as diameter, the same double normal for all convex bodies.

We also consider the space K∗ of all convex bodies with ab ∈ R3 as double
normal. Thus, K′ ⊂ K∗.

A first step would be, of course, to detect convex bodies of constant width
without surrounding circles.

Theorem 8. Most convex bodies from K∗ admit no surrounding ellipse
with ab as an axis.
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Proof. Assume that a convex body K ∈ K∗ has a surrounding circle C
of diameter ab. Then, in both tangent directions τ,−τ of C at a and b, the
surface bdK satisfies the inequalities

γ±τi (a) ≥ 2/‖a− b‖, γ±τi (b) ≥ 2/‖a− b‖.

If K has just a surrounding ellipse, then still

γ±τi (a) > 0, γ±τi (b) > 0.

However, on most convex bodies from K∗, for every tangent direction τ at
a, we have

γτi (a) = γτi (b) = 0,

by Theorem 9 in [7]. �

Now, we turn our attention to the space K′.
Take, for example, the regular tetrahedron. It belongs to K′, and possesses

both simple (infinitely many) and non-simple surrounding circles. What is the
situation for other convex bodies in K′?

Theorem 9. Most convex bodies from K′ have a single surrounding circle
of diameter ab, which is simple.

Proof. Let Kn be the subspace of all K ∈ K′ which admit two surrounding
circles C1, C2 of diameter ab with h(C1, C2) ≥ 1/n or a surrounding circle C
with h(K ∩ C, {a, b}) ≥ 1/n. We prove that Kn is nowhere dense.

Let O ⊂ K′ be open, and consider K ∈ O. Let C be a circle surrounding K
having as a diameter the double normal ab of K. By the definition, K ∩ C ⊂
convC. Approximate K by a polytope P ⊂ ab ∪ intK, with a, b ∈ P . Let
H+, H− be the two closed half-spaces determined by C in R3.

Put P+ = P ∩ H+ and P− = P ∩ H−. Let x̃1xn be a small arc of C
with a as midpoint. Let x2, ..., xn−1 divide x̃1xn in n − 1 congruent subarcs.
The tangent lines at xi and xi+1 meet at yi (i = 1, ..., n − 1). Consider the
broken lines A+ = y1y3y5, ... and A− = y2y4y6... Also, consider the symmetric
broken lines B+ and B− at b. Take Q+ = conv(P+ ∪ A+ ∪ B+) and Q− =
conv(P− ∪A− ∪B−). If ‖x1 − xn‖ < 1/2n is small enough, Q+, Q− ∈ O.

Now, let τ be orthogonal to C and with ‖τ‖ small. We translate Q+, Q−,
obtaining R+ = Q+ + τ , R− = Q− − τ . Take P ′ = conv(R+ ∪ R−). Still
P ′ ∩C ⊂ convC. Denoting by Πa,Πb the planes through a, b orthogonal to ab,
we consider

P ∗ = P ′ ∩ conv(Πa ∪Πb),
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which means taking off P ′ the parts not between Πa and Πb. Now, C surrounds
P ∗. If ‖τ‖ is small enough, then still P ∗ ∈ O.

The polytope P ∗ fixes C. Since ‖x1 − xn‖ < 1/2n, there exists a neigh-
bourhood N ⊂ O of P ∗, such that h(K ∩ C ′, {a, b}) < 1/n for all K ∈ N and
any circle C ′ surrounding K. Moreover, h(C1, C2) < 1/n for any pair of circles
C1, C2 surrounding K, with ab as diameter. This yields N ∩Kn = ∅, whence
Kn is nowhere dense.

Hence, the set of convex bodies from the statement has the set ∪∞n=1Kn of
first category as complement. �
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