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Solving Single Nesting Problem Using a
Genetic Algorithm
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Abstract

Since the Bin Packing Problem (BPP) has application to industry
and supply chain management problems (to mention only the most im-
portant ones), it attracted attention from its formulation. The Single
Nesting Problem treated here is a particular case of this optimization
problem, which different methods, mainly combinatorial, can solve. In
this article, we propose using a genetic algorithm for solving the single
nesting problem formulated in a previous article by the authors. The
results comparisons prove that this approach is an excellent alternative
to the combinatorial ones.

1 Introduction

The Bin Packing Problem (BPP) is one of the most studied problems in Com-
binatorial Optimization. Exact and heuristics methods have been proposed
for solving it after the '80s, even if they have been studied much earlier (from
the ’30s) [21].

The idea of BPP is to consider some bins with the same capacity, ¢, and
n items, each of them with an integer weight w;,j = 1,n(0 < w; < ¢), and to
distribute the items in a minimum number of bins such that the total size of
the items in a bin is less than ¢ [19].
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Let consider the bins numbered from 1 to m, m € N* being the minimum
number of bins necessary to pack all the items,

1, the item j is packed into the bin % . .
Tij = . .. . .. Z:]-vmvj:]-vn (1)
0, the item j is not packed into the bin ¢

1, the bin ¢ is utilized in the solution .
0, the bin 7 is not utilized in the solution
Find
minZyi (3)
i=1
such that
ijwij <cyi,i=1,m (4)
j=1
inj =1,7=1,n
i=1
yi=0,1,i=1m
Ti5 = 717i:17m7j:17n (5)

So, the constraints ensure that each item must be packed into a single bin
and the capacity of each bin must not be exceeded. The optimization aim may
be described by the inequality.

A generalization of BPP is the Cutting Stock Problem [7]. A particular
case of BPP and different approaches for finding approximate solutions are
presented in [22]. Among the exact algorithms employed for this goal, the
most used are the Enumerative algorithm [15], Branch-and-bound [18], MTP
[22], DP-flow [8]. For a review of these approaches, the reader may refer to
[9],[25].

Last period, artificial intelligence and hybrid methods have been employed
for solving BPP problems, to improve the solutions found by other algorithms,
or to decrease the computational time required for running these algorithms
[1],12],[16],[23],[24]. Furthermore, statistical methods such as time series analy-
sis, fitting, classification, Bayesian methods or density estimation, to mention a
few, were used to address many challenges in artificial intelligence. They were
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applied for solving different practical applications, to further better assess-
ment of important features, uncover hidden patterns in data and, ultimately,
improve understanding [3],[4],[5],[6],[10],[11],[12],[14].

In the presented context, we propose a genetic algorithm for solving the
single-nesting problem that is a one-dimensional case of BPP.

Following this introduction, the proposed approach for solving the single-
nesting problem is presented in Section 2. In Section 3, analysis of the results
of the proposed method is provided. Finally, conclusions are discussed in
Section 4.

2 Methodology and Data

2.1 Formulation of the Single Direction Nesting (SDN) problem

The formulation of the SDN problem is: Find the best arrangement of n bars
with different lengths into m standard bars, each of them with a fixed length,
[b. The goal is to determine the best combination that has all the pieces placed
into the set of bars such that

> (ipi); < b (6)

K3
where (Ip;)ic1,....n € N is the length of the piece ¢ placed into the bar j,
7 =1n.
The best arrangement is the one that provides smallest sum of residual.

2.2 Evolutionary Approach of the SDN Problem

A genetic algorithm (GA) is a heuristic search process for optimization, which
has been widely applied to solve combinatorial problems. GAs are designed to
use the concept of evolutionary computation that employs techniques inspired
by evolutionary biology, such as natural selection and reproduction.

The fundamental concept of GA is to encode the decision variables of the
problem as a finite length string, called chromosomes, and to calculate their
fitness. The chromosomes with a high fitness level have a higher probability
of survival.

The evolution generally starts from an initial population of randomly gen-
erated chromosomes and happens in generations. In each generation, multiple
individuals are selected from the current population based on their fitness,
and, through the crossover and mutation process, are modified to form the
next generation. When a satisfactory fitness level has been reached or the
stop criterion has been met, the best chromosome found across all the gener-
ations is chosen as the final problem solution [26].
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Designing a GA means establishing the encoding scheme of variables, the
fitness function, and the genetic operators.

In the present model, a chromosome is coded as a string of n positive
integers, which are referred to as genes. Each gene (g;) i—T7 holds the number
of the bar,j = 1, m, on which the piece i should be placed. For example, given
the chromosome in Table 1, the layout of the SDN problem should be the
following: pieces 1, 4, and 7 are set on bar 1, pieces 2, 5, and 6 are set on bar

2, and pieces 3 and 8 are set on bar 3.

(t[2]3[1]2]2[1]3]

Table 1: Chromosome of the coding scheme

The objective of the SDN problem is to minimize the sum of allowed loose
per bar:

foby =miny_ |lb =" Ipilgs = j| (7)
j=1 i=1
where the notation [.] implies the Iverson bracket, defined by

0, if M is false
[M] = e (8)
1, if M is true

where M is a mathematical statement.
Since the chromosomes may not satisfy the inequality constraints from
(6), hj(x) = 1b— > (Ip;);, penalty functions must be added to the objective

i

function.

fovj (), if € feasible region

fovj(x) + P(x), otherwise (9)

fovj(z) = {

Further on, a dynamic penalty function described by [20], which changes
as the GA proceeds, is used to design the penalty function.
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P(z,a, B) = pi x SVC(B, x) (10)
pr=Cxk (11)
j=1
0, hy(x) > 0
pi(r) = > (Ipi);, otherwise (13)

2

where «, 8, C are parameters of the method, and k is the number of the
current generation considered. The parameters of the method were empirically
tuned, the best results being obtained with C =1, =1 and 8 = 10.

The fitness function evaluates the performance of the chromosomes. A
GA performs best when a feasible solution maximizes the objective function.
Therefore, a function inversion scaling was applied to model the fitness func-
tion of the GA. Thus, a minimization problem was converted into an equivalent
maximization one.

1
fovj ()

GAs are recognized as powerful methods to generate solutions very close
to optimal with less time compared to other tools [17] due to the choice of
well-designed genetic operators and optimal parameters.

The selection operator drives the search process towards the regions of the
best individuals. Chromosomes with higher fitness values are more likely to
be selected for the mating pool, becoming the parents of the new generation.
Here, tournament selection is used [27].

The crossover operator is based on the concept that the exchange of in-
formation between good individuals will generate even better offspring. In-
dividuals are selected from the mating pool with a user-definable probability,
called ”crossover rate”. The standard one-point crossover operator is applied
to the selected pair of parents by recombining their genes and producing two
offspring [26].

The mutation operator randomly modifies, with a user-definable probabil-
ity called ”mutation rate”, one or more genes of a chromosome, thus increasing
the structural diversity of the population and avoiding premature convergence.
In this paper, a random resetting operator is applied: a random value from
the set of permissible values ([1,m]) is assigned to a randomly chosen gene.
In order to have feasible chromosomes and preserve the stochastic character-
istics of the genetic algorithm, the constraints from (6) are then imposed only

fitness(x) (14)
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for the bar affected by the mutation operator, by applying a procedure that
distributes the surplus to the other bars on the chromosome.

A GA has several configuration parameters that must be considered to
increase the accuracy of the results: population size, crossover rate, and mu-
tation rate. These parameters are problem-specific, and there is no best global
value for them. A large population would lead to a better exploration of the
search space, but also an increase in the runtime of the algorithm [26]. Re-
garding the crossover and mutation rates, if they are too high then the search
will pass over good solutions, and if they are too low then the search will pass
over the entire regions of solution space. Most studies in the field of GAs
recommend a population size between 20 and 100 individuals, a crossover rate
over 60%, and a mutation rate of at most 10%. In this paper, to set the most
suitable parameters, multiple tests were configured and ran, each test being
repeated ten times and the results being averaged to increase their precision.

2.3 Data Series

The data we are working with in order to validate the proposed approach of
the SDN problem is the first case discussed in [13] (SDN1 - Table 2).

n 40
m 12
b 100

Pieces: No./Length 1/30; 2/50; 3/10; 4/20; 5/60;
6/30; 7/5; 8/10; 9/20; 10/60;
11/14; 12/50; 13/10; 14/20; 15/10;
16/30; 17/25; 18/10; 19/15; 20/60;
21/30; 22/50; 23/10; 24/45; 25/35;
26/30; 27/23; 28/10; 29/78; 30/2;
31/10; 32/20; 33/10; 34/30; 35/50;
36/10; 37/15; 38/60; 39/30; 40/50

Table 2: The parameters of the problem from [13] - SDN1

Further on, for evaluating the efficiency of the proposed algorithm with the
tuned parameter set, it was applied to a test problem of higher scale, randomly
generated, illustrated by Table 3.
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n 160
m 92
b 2000
Total Bars Length 149301
Valid Bars Combinations 719391
1/767;2/278;3/1293;4/917;5/1518;

Pieces: No./Length

6,/1340;7/442;8/981;9/809;10/1198;
11/1104;12/898;13,/1124;14/823;15/1294;
16/1243;17/1611;18/797;19/1431;20/1375;
21/754;22/696;23/1117;24/1279;25/1011;
26/717;27/929;28/1318;29/1416;;
30/1116;31/1186;32/520;33,/907;34,/1195;35/1395;
36,/1134;37/923;38/602;39/427;40/1476;
41/1184;42/1266;43/280;44/872;45/418;
46/1459;47/1081;48/1448;49/571;50/1524;
51/85652/596;53/1003;54,/1206;55/853;
56/1317;57/1592;58,/281;59,/435;60,/1050;
61/543;62/772;63,/334;64,/881;65,/1193;
66/1197;67/1084;68,/414;69,/736;70/1216;
71/1488;72/1012;73/1445;74/478;75 /948;
76/733;77/870;78/872;79/1542;80/1514;
81/1202;82/480;83/1157;84,/965;85/361;
86,/1038;87/265;88/1586;89,/1448;90/1136;
91,/1089;92/813;93/638;94/967;95/565;
06/684;97/1537;98,/1489;99/263;100/926;
101/1090;102/1189;103/1450;104/1273;105/327;
106,/938;107,/942;108,/1009;109,/286;110,/828;
111/699;112/278;113/1124;114/526;115,/274;
116/1113;117/1482;118/975;119/949;120/517;
121/1135;122/1329;123/703;124/1343;125/513;
126/329;127/804;128,/773;129/1534;130,/1199;
131/583;132/578;133,/760;134/391;135,/1498;
136,/1295;137/1520;138/395;139,/1013;140/370;
141/1140;142/402;143/1206;144/475;145/621;
146/1342;147/336;148/1285;149/586;150/1281;
151/626;152/476;153/426;154/515;155/1040;

156/480;157/256;158,/874;159/528;160/1538

Table 3: The parameters of the test problem - SDIN2
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3 Solution of the SDIN problem

3.1 GA algorithm for finding the solution of the SDIN problem

The designed genetic algorithm is presented in the following.

Input: The number and the length of the nesting length bars (m and [b,
respectively), the number of pieces (n), the length of each piece (Ip;).
Output: The best solution (x), which gives us the combination of pieces for
which the sum of the lengths is closer to the length of the bar they are placed
on.

Begin

1. Initialize a random population of chromosomes, which are represented
as positive integers strings of length n

2. Evaluate each chromosome in the population according to its fitness
value

3. Select some chromosomes and create a mating pool by applying the
selection operator

4. Create the offspring through crossover
(a) Select some chromosomes from the mating pool (the number of

selected individuals is defined by the crossover rate)

(b) Apply the crossover operator described in 2.2 to generate new
offspring

(c) Copy the remaining chromosomes (that were not recombined) to
the next generation

5. Modify some chromosomes by applying the mutation operator (the
number of selected individuals is defined by the mutation rate)

6. If the maximum number of generations is reached or most of the popu-
lation (97%) has the same fitness value then stop, else go to step 2

End
The GA for this study was coded in MATLAB R2015a on a Windows 8,
Intel i5 1.7 Ghz, 10 GB RAM computer.

3.2 Determination of the best parameters in the proposed GA for
solving the problem 2.3

The issue of setting the appropriate values of configuration parameters of
an evolutionary algorithm is crucial for good performance. Hence, multiple
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settings of the GA configuration parameters were tested. In the following we
shall present the stages of solving the problem presented in 2.3.

Assertion 3.1. The optimal population size is 60.

Proof. To choose the proper population size, the crossover rate was set to 0.75,
and the mutation rate to 0.01. Running the algorithm with the population
size between 20 and 100, we found that the highest fitness value had been
obtained for a size of 60, as it it is presented in Fig. 1.

The proof is complete. O

001

0.009 A

AN

[ N/
A A

0.005

o/
/

0.003 T T T T T T T T 1
20 30 40 50 60 70 80 90 100

Population Size

Fitness

Figure 1: The effect of population size over the fitness function

Next, we perform a grid search to determine the optimal crossover and
mutation rates.

Assertion 3.2. The optimal crossover rate is 0.6.

Proof. The tests were run using the population size previously determined
(60), and varying the crossover and mutation rates from 0.6 to 0.95, and
0.01 to 0.1, respectively. The highest fitness value has been determined for a
crossover rate of 0.6. The assertion is proved. O

Assertion 3.3. The optimal mutation rate is 0.05.

Proof. The tests were run using the population size previously determined
(60), whilst the crossover and mutation rates took values from 0.6 to 0.95,
and 0.01 to 0.1, respectively. The highest fitness value has been recorded for
a mutation rate of 0.05. O
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Mutation Crossover rate
Rate 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0.01 0.0095 | 0.0032 | 0.0063 | 0.0095 | 0.0111 0.008 | 0.0111 0.0048
0.02 0.0095 | 0.0095 | 0.0095 | 0.0095 | 0.0063 0.01 0.0063 | 0.0063
0.03 0.0095 | 0.0095 | 0.0032 | 0.0127 | 0.0127 0.01 0.0095 | 0.0127
0.04 0.0063 0 0.0127 | 0.0111 0.0095 | 0.011 0.0063 | 0.0095
0.05 0.0127 | 0.0095 | 0.0095 | 0.0079 | 0.0048 | 0.011 0.0063 | 0.0063
0.06 0.0127 | 0.0063 | 0.0032 | 0.0111 0.0095 0.01 0.0079 | 0.0095
0.07 0.0032 0 0 0.0048 | 0.0048 | 0.002 0.0032 | 0.0079
0.08 0.0032 0 0 0.0016 0 0 0 0
0.09 0 0 0 0 0 0 0 0
0.1 0 0 0 0 0 0 0 0

Table 4: The effect of crossover and mutation rates over the fitness function

Pop. Cross. . Fitness Fitness
Size Rate Mut.Rate | Time (s) (Max) (Mean)
60 0.60 0.05 3.73 0.0159 0.0111

Table 5: The fitness and parameters settings of the proposed GA

Remark. Table 4 shows the fitness values, given the two rates. One can see
that the fitness varies from 0 (which means that the fitness value was very
low, due to wviolation of the inequality constraints from (1)) to 0.0127. The
latter value is obtained two times with a crossover rate of 0.6, which leads us
to choose the rates as following: the crossover rate as 0.6 and the mutation
rate as 0.05. These values reassure that there is a good genetic diversity and
that the search will explore much of the solutions space.

3.3 Solution of the problem SDN1

Firstly, we apply the implemented algorithm on the problem illustrated by
Table 2. Table 5 shows the parameters used to implement the proposed genetic
algorithm (determined in the previous section to be the best point of view of
the fitness value), the execution time (column 4), and the best and average
fitness (columns 5 and 6).

Tables 6 and 7 show the results from the present and the previous study.
Both algorithms were run on the same machine. We remark that the total
residual sum has been kept the same (63 c¢m, in this example), whilst the GA
takes less time to perform.

3.4 Solution of the problem SDN2

We consider that the set of parameters determined in Section 3.2 (columns 1,
2 and 3 in Table 5), is the most adequate one to get the best arrangement of n
bars with different lengths into m standard bars, thus, the proposed Genetic
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Present study [13]

Bar No. Pieces Sum of Lengths Pieces ISA.Ialrl;ztcl)li
1 12, 40 100 2,12 100
2 2,22 100 22, 35 100
3 17, 19, 38 100 1, 33, 38 100
4 5, 15, 39 100 8, 13, 14, 15, 17, 27,30 100
5 14, 21, 35 100 4,6, 7,18, 23, 36, 37 100
6 4,18, 20, 33 100 3, 9, 16, 28, 31, 32 100
7 24, 27, 34 98 11, 25, 40 99
8 8,9, 16, 28, 36, 37 95 19, 29 93
9 6, 10 90 20, 39 90
10 23, 29, 30 90 5, 34 90
11 13, 25, 26, 31 85 10, 26 90
12 1,3, 7, 11, 32 79 21,24 75

Table 6: The results of the proposed GA applied on the first case from [13]

Process duration times [13] ’?;Zseflst) Study
Generation 3 -
Sorting 9 -
Selecting 1 -

Total 13 3.73

Table 7: Comparison of the nesting time

Algorithm may be used to solve other instances of the SDN problem. We
applied it on the problem SDN2, given by Table 3.

The test problem SDIN2 was also solved by using the algorithm introduced
in [13]. The results of this computational experiment are presented in Tables
8 and 9. The total residual sum has been kept the same (34699 cm), and the
running time of the GA is better. We also notice that there are more bars with
smaller residual in the arrangement computed with the proposed GA than in
the one assessed with the algorithm in [13]. Moreover, the implemented GA
solution reveals that most bars are filled more with fewer pieces, which, in
some practical applications, may be more efficient.

Results [13] Present Study
Total residual sum 34699 34699
Number of bars with residual > 1000 1 0
Number of bars with residual € [500, 1000] 40 33
Number of bars with residual < 500 51 59
Number of pieces / bar (average) 2.10 1.74

Table 8: Comparison of the results
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4

Process duration times [13] ’?;Zseglst) Study
Generation 5 -
Sorting 30 -
Selecting 2 -

Total 37 30.17

Table 9: Comparison of the nesting time

Conclusion

The proposed algorithm shows to be a good competitor for the classical one,
due to its flexibility and efficient implementation. It provides a computation-
ally viable approach for those who need a fast and good solution to the SDN
problem. From the computational viewpoint, the proposed GA performs faster
than the algorithm from [13]. Furthermore, it is designed to provide an easy
way to be applied to similar problems only by changing the input data. In
future work, we shall apply this algorithm in the case when a technological
loss is also allowed.
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