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Sombor index of zero-divisor graphs of
commutative rings

Arif GÜRSOY, Alper ÜLKER and Necla KIRCALI GÜRSOY∗

Abstract

In this paper, we investigate the Sombor index of the zero-divisor
graph of Zn which is denoted by Γ(Zn) for n ∈ {pα, pq, p2q, pqr} where
p, q and r are distinct prime numbers. Moreover, we introduce an al-
gorithm which calculates the Sombor index of Γ(Zn). Finally, we give
Sombor index of product of rings of integers modulo n.

1 Introduction

Zero-divisor graphs of commutative rings entered the area of algebraic combi-
natorics by the work of I. Beck [11]. His definition of zero-divisor graph has
vertex set on R and any two elements x, y ∈ R are adjacent whenever xy = 0.
Later, this definition of a zero-divisor graph of a commutative ring was mod-
ified on non-zero zero-divisors by Anderson and Livingston in [9]. After the
introduction of zero-divisor graphs, different types of graphs related to com-
mutative rings emerged such as annihilating-ideal graphs, comaximal graphs,
total graphs [1, 2, 8, 37, 40, 42, 43, 45, 49].

The technique of encoding information using topological molecular descrip-
tors on the molecular structure has a low computational cost and a good pre-
dictive potential. Moreover, these molecular descriptors give ideas about struc-
tural characteristics with easy identification. Hence, the number of topological
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molecular descriptors which are called graph invariants is huge, and they are
mathematical values calculated from a graph representation of a molecule. A
graph invariant is a number that is invariant under graph isomorphisms in
graph theory. The graphical invariant is considered as a structural invari-
ant related to a graph. In molecular graph theory, the topological index is
constructed as a graphical invariant. For this reason, the computing of topo-
logical indices of many graph structures has been an attractive research area
for scientists especially chemists and mathematicians for a long time. Topo-
logical indices play an important role in mathematical chemistry such as the
QSPR/QSAR modeling [26, 44].

The Wiener index which is the oldest topological index and a distance-
based index was studied for zero-divisor graphs in [10, 41, 47]. In 1972, the
first Zagreb index and the second Zagreb index of graph G were suggested by
Gutman and Trinajstić [27]. We attain more recent results on Zagreb index in
[5, 7, 12, 13, 15, 28, 29, 38, 39, 41, 48]. In 1975, Randić introduced the Randić
index of a graph G [34]. Fajtlowicz proposed two topological indices which
are called the harmonic index and the inverse degree index [18]. Furtula and
Gutman introduced the forgotten topological index [21].

In 2021, the Sombor index of a graph G is defined by the mathematical
chemist Ivan Gutman [24]. Then, Cruz et al. examine graphs extremal over
the set of all chemical graphs, connected chemical graphs, chemical trees,
and hexagonal systems using the Sombor index [14]. The Sombor index can
be used successfully on modeling thermodynamic properties of compounds
demonstrated by Redžepović [35]. Alikhani et al. consider Sombor index of
polymer graphs and show that the Sombor index of some graphs is computed
from their monomer units [6]. The Sombor index has attracted important
consideration from researchers within a very short time and many results about
it can be found in [16, 17, 19, 20, 22, 23, 25, 30, 31, 32, 33, 36, 46, 51].

In this paper, we study Sombor index of zero-divisor graphs of some com-
mutative rings. In Section 2, we give fundamental definitions and notions
which will be used rest of the paper. Also, we calculate Sombor index of zero-
divisor graphs of Zn in Section 3. Finally, in Section 4, we calculate Sombor
indices of Γ(Zp×Zq) and Γ(Zp×Zq ×Zr) for distinct prime numbers p, q and
r.

2 Preliminaries

In this section, we recall some basic definitions and notions which will be used
rest of the paper.

Let G = (V (G), E(G)) be an undirected graph. The number of vertices of
G is the order and number of edges of G is the size of G. Let x, y ∈ V (G).
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The degree of a vertex x is the number of vertices adjacent to x and denoted
by dx.

Let Z(R) denote the set of all zero divisors of a commutative ring R. The
zero-divisor graph of R is an undirected graph which has a vertex set on R\{0}
and for any u, v ∈ Z(R)\{0}, and the vertices u and v are adjacent whenever
uv = 0 in R\{0}.

Next, we give definition of Sombor index of a graph which is a novel topo-
logical index.

Definition 2.1. [24] Let G be a graph and u, v ∈ V (G), then the Sombor index
of G is defined by

SO(G) =
∑

uv∈E(G)

√
(du)2 + (dv)2.

Lemma 2.2. [50] Let Γ(Zn) be a zero-divisor graph of a commutative ring
Zn. Then, the vertex set of Γ(Zn) is the disjoint union of vertex subsets of Ai
such that i is a proper divisor of n. Moreover, |Ai| = φ(ni ).

Proposition 2.3. [10] Let n = pα1
1 pα2

2 . . . pαtt where pis are distinct prime

numbers, and t, αi ∈ N for all i. Let d = pβ1

1 pβ2

2 . . . pβtt be a divisor of n with
d 6= n. If u ∈ Ad, then

du =

{
d− 2, if βi ≥ dαi2 e for all i

d− 1, otherwise.

3 Sombor index of zero-divisor graph of Zn

Recently, the zero-divisor graph of the ring Zn is a popular research in spectral
graph and chemical graph theory. Many researchers have studied in this area.
Singh and Bhat have examined adjacency matrix and Wiener index of zero-
divisor graph Γ(Zn) [41]. Later, Asir and Rabikka have studied Wiener index
of zero-divisor graph of Γ(Zn) [10]. Now, we analyze Sombor index of zero-
divisor graph Γ(Zn) in this section.

Theorem 3.1. Let p be a prime number, then followings hold:

(i) If p = 2, then SO(Γ(Zp2)) = 0.

(ii) If p > 2, then SO(Γ(Zp2)) =
√

2
(
p−1

2

)
(p− 2).

Proof. (i) It is clear that Z4 has only one non-zero zero-divisor which is 2.
Then, Γ(Z4) is a one-vertex graph, and the graph has no edge.
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(ii) Γ(Zp2) ∼= Kp−1, and Kp−1 has
(
p−1

2

)
edges with each vertex having

degree p− 2. Therefore, we have SO(Γ(Zp2)) =
√

2
(
p−1

2

)
(p− 2).

Now we are about to calculate Sombor index of zero-divisor graph for
powers of p greater than or equal to 3.

Theorem 3.2. Let p > 2 be a prime number and α ∈ N with α ≥ 3, then
Sombor index of Γ(Zpα) is

SO(Γ(Zpα)) = pα−1(p− 1)

[(
1− 1

p

) bα−1
2 c∑
i=1

i∑
j=1

1

pi−j

√
(pi − 1)2 + (pα−j − 2)2

+ pα−1(p− 1)

α−2∑
i=dα2 e

α−1∑
j=i+1

1

pi+j

√
(pi − 2)2 + (pj − 2)2

+
1√
2

α−1∑
i=dα2 e

(
1− 2

pi

)(
pα−i−1(p− 1)− 1

)]
.

Proof. We demonstrate the zero-divisor sets of Zpα as follows:

A1 = {px | x = 1, . . . , pα−1 − 1, p - x}
.

.

.

Ai = {pix | x = 1, . . . , pα−i − 1, p - x}
.

.

.

Aα−1 = {pα−1x | x = 1, . . . , p− 1, p - x}

The vertex set of the graph Γ(Zpα) =
⋃α−1
i=1 Ai where

⋂α−1
i=1 Ai = ∅. Be-

sides, |Ai| means the number of vertices of Ai. We calculate the number of
vertices of all zero-divisor sets as |A1| = pα−1 − pα−2, |A2| = pα−2 − pα−3,
. . . , |Ai| = pα−i − pα−i−1, . . . , |Aα−1| = p − 1. Moreover, the degree of each
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vertex in these zero-divisor sets can be defined such that

du =

{
pi − 1, i < α/2

pi − 2, i ≥ α/2

for all u ∈ Ai and i = 1, 2, ..., α− 1.
We indicate the proof of this theorem by examining the sub-states of α

such that α is odd and even.
Suppose that p > 2 is a prime number, α ∈ N with α ≥ 3 and α is even.

In this situation, we have three sub-cases as follows:

Case 1:
Each vertex from Ai and each vertex from Aα−j are adjacent where i =
1, 2, . . . , α2 − 1 and j = 1, 2, . . . , i. For any edge e = uv, we have du = pi − 1
and dv = pα−j − 2 where u ∈ Ai and v ∈ Aα−j . So, we get

α
2−1∑
i=1

i∑
j=1

|Ai||Aα−j |
√

(pi − 1)2 + (pα−j − 2)2. (1)

Case 2:
Each vertex from Ai and each vertex from Aj are adjacent where i = α

2 , . . . , α−
2 and j = i + 1, . . . , α − 1. For any edge e = uv, we have du = pi − 2 and
dv = pj − 2 where u ∈ Ai and v ∈ Aj . Hence, we attain

α−2∑
i=α

2

α−1∑
j=i+1

|Ai||Aj |
√

(pi − 2)2 + (pj − 2)2. (2)

Case 3:
Each vertex from Ai is adjacent to each other vertices from Ai where i =
α
2 , . . . , α− 1. For any edge e = uv, we have du = dv = pi − 2 where u, v ∈ Ai.
So, we have

α−1∑
i=α

2

|Ai|(|Ai| − 1)

2

√
(pi − 2)2 + (pi − 2)2. (3)

The Sombor index of Γ(Zpα) is calculated by summing Equations (1), (2),
and (3) where α is even as follows:
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SO(Γ(Zpα)) =

α
2−1∑
i=1

i∑
j=1

|Ai||Aα−j |
√

(pi − 1)2 + (pα−j − 2)2 (4)

+

α−2∑
i=α

2

α−1∑
j=i+1

|Ai||Aj |
√

(pi − 2)2 + (pj − 2)2

+

α−1∑
i=α

2

|Ai|(|Ai| − 1)

2

√
(pi − 2)2 + (pi − 2)2.

Now, we suppose that p > 2 is a prime number, α ∈ N with α ≥ 3 and α
is odd. In this circumstance, we have also three sub-cases including different
boundaries as follows:

Case 1:
Each vertex from Ai and each vertex from Aα−j are adjacent where i =
1, . . . , α−1

2 and j = 1, . . . , i. For any edge e = uv, we have du = pi − 1
and dv = pα−j − 2 where u ∈ Ai and v ∈ Aα−j . From this, we have

α−1
2∑
i=1

i∑
j=1

|Ai||Aα−j |
√

(pi − 1)2 + (pα−j − 2)2. (5)

Case 2:
Each vertex from Ai and each vertex from Aj are adjacent where i = α+1

2 , . . . ,
α− 2 and j = i+ 1, . . . , α− 1. For any edge e = uv, we have du = pi − 2 and
dv = pj − 2 where u ∈ Ai and v ∈ Aj . Hence, we attain

α−2∑
i=α+1

2

α−1∑
j=i+1

|Ai||Aj |
√

(pi − 2)2 + (pj − 2)2. (6)

Case 3:
Each vertex from Ai is adjacent to each other vertices from Ai where i =
α+1

2 , . . . , α − 1. For any edge e = uv, we have du = dv = pi − 2 where
u, v ∈ Ai. So, we have

α−1∑
i=α+1

2

|Ai|(|Ai| − 1)

2

√
(pi − 2)2 + (pi − 2)2. (7)
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The Sombor index of Γ(Zpα) is calculated by using Equations (5), (6), and (7)
where α is odd as follows:

SO(Γ(Zpα)) =

α−1
2∑
i=1

i∑
j=1

|Ai||Aα−j |
√

(pi − 1)2 + (pα−j − 2)2 (8)

+

α−2∑
i=α+1

2

α−1∑
j=i+1

|Ai||Aj |
√

(pi − 2)2 + (pj − 2)2

+

α−1∑
i=α+1

2

|Ai|(|Ai| − 1)

2

√
(pi − 2)2 + (pi − 2)2.

According the Sombor indices in Equations (4) and (8), we represent Sombor
index of the graph Γ(Zpα) in a single form as follows:

SO(Γ(Zpα)) =

bα−1
2 c∑
i=1

i∑
j=1

|Ai||Aα−j |
√

(pi − 1)2 + (pα−j − 2)2 (9)

+

α−2∑
i=dα2 e

α−1∑
j=i+1

|Ai||Aj |
√

(pi − 2)2 + (pj − 2)2

+

α−1∑
i=dα2 e

|Ai|(|Ai| − 1)

2

√
(pi − 2)2 + (pi − 2)2.

Note that |Ai| = φ(αi ) = pα−i − pα−i−1 = pα−i−1(p − 1) by Lemma 2.2.
Hence, we get
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SO(Γ(Zpα)) =

bα−1
2 c∑
i=1

i∑
j=1

|Ai||Aα−j |
√

(pi − 1)2 + (pα−j − 2)2

+

α−2∑
i=dα2 e

α−1∑
j=i+1

|Ai||Aj |
√

(pi − 2)2 + (pj − 2)2

+

α−1∑
i=dα2 e

|Ai|(|Ai| − 1)

2

√
(pi − 2)2 + (pi − 2)2

=

bα−1
2 c∑
i=1

i∑
j=1

pα−i−1(p− 1)pj−1(p− 1)
√

(pi − 1)2 + (pα−j − 2)2

+

α−2∑
i=dα2 e

α−1∑
j=i+1

pα−i−1(p− 1)pα−j−1(p− 1)
√

(pi − 2)2 + (pj − 2)2

+

α−1∑
i=dα2 e

pα−i−1(p− 1)
(
pα−i−1(p− 1)− 1

)
2

√
(pi − 2)2 + (pi − 2)2

=

bα−1
2 c∑
i=1

i∑
j=1

pα−i+j−2(p− 1)2
√

(pi − 1)2 + (pα−j − 2)2

+

α−2∑
i=dα2 e

α−1∑
j=i+1

p2α−i−j−2(p− 1)2
√

(pi − 2)2 + (pj − 2)2

+
1√
2

α−1∑
i=dα2 e

pα−i−1(p− 1)(pi − 2)
(
pα−i−1(p− 1)− 1

)

= pα−1(p− 1)

[(
1− 1

p

) bα−1
2 c∑
i=1

i∑
j=1

1

pi−j

√
(pi − 1)2 + (pα−j − 2)2

+ pα−1(p− 1)

α−2∑
i=dα2 e

α−1∑
j=i+1

1

pi+j

√
(pi − 2)2 + (pj − 2)2

+
1√
2

α−1∑
i=dα2 e

(
1− 2

pi

)(
pα−i−1(p− 1)− 1

)]
.
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In the next theorem, we give Sombor index of a zero-divisor graph Γ(Zpq)
for distinct primes p and q.

Theorem 3.3. Let p and q be prime numbers with p 6= q. Then, Sombor
index of the graph Γ(Zpq) is

SO(Γ(Zpq)) =
√

(p− 1)4(q − 1)2 + (p− 1)2(q − 1)4.

Proof. The graph Γ(Zpq) is a complete bipartite graph. The bipartitions of
Γ(Zpq) are A1 = {px | x = 1, 2, . . . , q − 1} and A2 = {qx | x = 1, 2, . . . , p− 1}.
Since |A1| = φ(pqp ) = q − 1 and |A2| = φ(pqq ) = p − 1, then the size of this

graph is (p− 1)(q − 1). It follows that

SO(Γ(Zpq)) =
∑

uv∈E(Γ(Zpq))

√
du

2 + dv
2

=
∑

uv∈E(Γ(Zpq))

√
(q − 1)2 + (p− 1)2

= |A1||A2|
√

(p− 1)2 + (q − 1)2

= (q − 1)(p− 1)
√

(p− 1)2 + (q − 1)2

=
√

(p− 1)4(q − 1)2 + (p− 1)2(q − 1)4

where u ∈ A1 and v ∈ A2.

Theorem 3.4. Let Γ(Zp2q) be a zero-divisor graph and p and q be distinct
prime numbers. Then, Sombor index of Γ(Zp2q) is

SO(Γ(Zp2q)) = (p− 1)(q − 1)

[
(p− 1)

√
(p− 1)2 + (pq − 2)2

+ p
√

(p2 − 1)2 + (q − 1)2

+
√

(p2 − 1)2 + (pq − 2)2

+
(p− 2)(pq − 2)√

2(q − 1)

]
.

Proof. Since proper divisors of n = p2q are p, p2, q and pq, then the vertex set
can be partitioned as V (Γ(Zn)) = A1 ∪ A2 ∪ A3 ∪ A4 and Ai ∩ Aj = ∅ where
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i, j = 1, . . . , 4, i 6= j and

A1 = {px | x = 1, 2, . . . , pq − 1, p - x, q - x, },
A2 = {qx | x = 1, 2, . . . , p2 − 1, p - x},
A3 = {p2x | x = 1, 2, . . . , q − 1},
A4 = {pqx | x = 1, 2, . . . , p− 1}.

One can calculate the number of vertices of all zero-divisor sets as |A1| =
(p − 1)(q − 1), |A2| = p(p − 1), |A3| = (q − 1), and |A4| = (p − 1). Also, the
degree of each vertex in these zero-divisor sets can be determined as

du =


|A4|, u ∈ A1

|A3|, u ∈ A2

|A2|+ |A4|, u ∈ A3

|A1|+ |A3|+ |A4| − 1, u ∈ A4

.

Note that, any two vertices u ∈ Ai and v ∈ Aj are adjacent in Γ(Zn) if
and only if n divides u · v. This implies that we have the following cases for
any edge e in Γ(Zn):

Case 1:
If e = uv, then u ∈ A1 and v ∈ A4. In this case, du = p− 1 and dv = pq − 2.
The number of edges which has one endpoint in A1 and the other in A4 is
|A1||A4|. So, we have

|A1||A4|
√

(p− 1)2 + (pq − 2)2.

Case 2:
If e = uv, then u ∈ A2 and v ∈ A3. In this case, du = p2 − p and dv = q − 1.
The number of edges which has one endpoint in A2 and other in A3 is |A2||A3|.
Hence, we attain

|A2||A3|
√

(p2 − 1)2 + (q − 1)2.

Case 3:
If e = uv, then u ∈ A3 and v ∈ A4. In this case, du = q − 1 and dv = p − 1.
The number of edges which has one endpoint in A3 and other in A4 is |A3||A4|.
Therefore, we obtain

|A3||A4|
√

(p2 − 1)2 + (pq − 2)2.
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Case 4:
If e = uv, then u, v ∈ A4. In this case, du = dv = p − 2 and the number of

edges which has endpoints are in A4 is |A4|(|A4|−1)
2 . So, we have

|A4|(|A4| − 1)

2

√
(pq − 2)2 + (pq − 2)2.

Thus summing up all these cases respectively, one can conclude that

SO(Γ(Zp2q)) = |A1||A4|
√

(p− 1)2 + (pq − 2)2

+ |A2||A3|
√

(p2 − 1)2 + (q − 1)2

+ |A3||A4|
√

(p2 − 1)2 + (pq − 2)2

+
|A4|(|A4| − 1)

2

√
(pq − 2)2 + (pq − 2)2

= (p− 1)2(q − 1)
√

(p− 1)2 + (pq − 2)2

+ (p2 − p)(q − 1)
√

(p2 − 1)2 + (q − 1)2

+ (p− 1)(q − 1)
√

(p2 − 1)2 + (pq − 2)2

+
(p− 1)(p− 2)

2

√
(pq − 2)2 + (pq − 2)2.

Using this identity, Sombor index of Γ(Zp2q) is

(p− 1)(q − 1)

[
(p− 1)

√
(p− 1)2 + (pq − 2)2

+ p
√

(p2 − 1)2 + (q − 1)2

+
√

(p2 − 1)2 + (pq − 2)2

+
(p− 2)(pq − 2)√

2(q − 1)

]
.

Example 3.5. For the graph Γ(Z75), we have p = 5 and q = 3. Then,
SO(Γ(Z75)) ∼= 1727.24, and the set of zero-divisors can be written as follows:
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Figure 1: The graph Γ(Z75)

A1 = {3, 6, 9, 12, 18, 21, 24, 27, 33, 36, 39, 42, 48, 51, 54, 57, 63, 66, 69, 72},
A2 = {5, 10, 20, 35, 40, 55, 65, 70},
A3 = {15, 30, 45, 60},
A4 = {25, 50}.

Moreover, these sets give rise to the graph which can be shown in Figure
1.

In the next theorem, the relation of Sombor index of Γ(Zpqr) is represented.

Theorem 3.6. Let Γ(Zpqr) be a zero-divisor graph and p, q and r be distinct
prime numbers. Then, Sombor index of Γ(Zpqr) is
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SO(Γ(Zpqr)) = (p− 1)(q − 1)(r − 1)

[√
(p− 1)2 + (qr − 1)2

+
√

(q − 1)2 + (pr − 1)2

+
√

(r − 1)2 + (pq − 1)2

+

√
(pq − 1)2 + (pr − 1)2

(p− 1)

+

√
(pq − 1)2 + (qr − 1)2

(q − 1)

+

√
(pr − 1)2 + (qr − 1)2

(r − 1)

]
.

Proof. Since proper divisors of n = pqr are p, q, r, pq, pr and qr, then the
vertex set can be partitioned as V (Γ(Zn)) = A1 ∪A2 ∪A3 ∪A4 ∪A5 ∪A6 and
Ai ∩Aj = ∅ where i, j = 1, . . . , 6, i 6= j and

A1 = {px | x = 1, 2, . . . , qr − 1, q - x, r - x},
A2 = {qx | x = 1, 2, . . . , pr − 1, p - x, r - x},
A3 = {rx | x = 1, 2, . . . , pq − 1, p - x, q - x},
A4 = {pqx | x = 1, 2, . . . , r − 1},
A5 = {prx | x = 1, 2, . . . , q − 1},
A6 = {qrx | x = 1, 2, . . . , p− 1}.

The number of vertices of all zero-divisor sets can be calculated as |A1| =
(q − 1)(r − 1), |A2| = (p − 1)(r − 1), |A3| = (p − 1)(q − 1), |A4| = (r − 1),
|A5| = (q − 1), and |A6| = (p− 1). Besides, the degree of each vertex in these
zero-divisor sets can be determined as

du =



|A6|, u ∈ A1

|A5|, u ∈ A2

|A4|, u ∈ A3

|A3|+ |A5|+ |A6|, u ∈ A4

|A2|+ |A4|+ |A6|, u ∈ A5

|A1|+ |A4|+ |A5|, u ∈ A6

.

Remark that, any two vertices u ∈ Ai and v ∈ Aj are adjacent in Γ(Zn) if
and only if n divides u · v. This implies that we have six cases as follows for
any edge e in Γ(Zn):
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Case 1:
If e = uv, then u ∈ A1 and v ∈ A6. In this case, du = p − 1 and dv =
(q− 1)(r− 1) + (q− 1) + (r− 1). The number of edges which has one endpoint
in A1 and the other in A6 is |A1||A6|. So, we attain

|A1||A6|
√

(p− 1)2 + ((q − 1)(r − 1) + (q − 1) + (r − 1))2.

Case 2:
If e = uv, then u ∈ A2 and v ∈ A5. In this case, du = q − 1 and dv =
(p−1)(r−1) + (p−1) + (r−1). The number of edges which has one endpoint
in A2 and the other in A5 is |A2||A5|. So, we have

|A2||A5|
√

(q − 1)2 + ((p− 1)(r − 1) + (p− 1) + (r − 1))2.

Case 3:
If e = uv, then u ∈ A3 and v ∈ A4. In this case, du = r − 1 and dv =
(p−1)(q−1) + (p−1) + (q−1). The number of edges which has one endpoint
in A3 and the other in A4 is |A3||A4|. Hence, we get

|A3||A4|
√

(r − 1)2 + ((p− 1)(q − 1) + (p− 1) + (q − 1))2.

Case 4:
If e = uv, then u ∈ A4 and v ∈ A5. In this case, du = (p − 1)(q − 1) + (p −
1) + (q − 1) and dv = (p− 1)(r − 1) + (p− 1) + (r − 1). The number of edges
which has one endpoint in A4 and other in A5 is (q − 1)(r − 1). Accordingly,
we attain

|A4||A5|
√

((p− 1)(q − 1) + (p− 1) + (q − 1))2 + ((p− 1)(r − 1) + (p− 1) + (r − 1))2.

Case 5:
If e = uv, then u ∈ A4 and v ∈ A6. In this case, du = (p − 1)(q − 1) + (p −
1) + (q − 1) and dv = (q − 1)(r − 1) + (q − 1) + (r − 1). The number of edges
which has one endpoint in A4 and other in A6 is (p−1)(r−1). Then, we have

|A4||A6|
√

((p− 1)(q − 1) + (p− 1) + (q − 1))2 + ((q − 1)(r − 1) + (q − 1) + (r − 1))2.

Case 6:
If e = uv, then u ∈ A5 and v ∈ A6. In this case, du = (p − 1)(r − 1) + (p −
1) + (r − 1) and dv = (q − 1)(r − 1) + (q − 1) + (r − 1). The number of edges
which has one endpoint in A5 and other in A6 is (p− 1)(q− 1). Consequently,
we get

|A5||A6|
√

((p− 1)(r − 1) + (p− 1) + (r − 1))2 + ((q − 1)(r − 1) + (q − 1) + (r − 1))2.
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Thus summing up all these cases respectively, one can conclude that

SO(Γ(Zpqr)) = (p− 1)(q − 1)(r − 1)
√

(p− 1)2 + ((q − 1)(r − 1) + (q − 1) + (r − 1))2

+ (p− 1)(q − 1)(r − 1)
√

(q − 1)2 + ((p− 1)(r − 1) + (p− 1) + (r − 1))2

+ (p− 1)(q − 1)(r − 1)
√

(r − 1)2 + ((p− 1)(q − 1) + (p− 1) + (q − 1))2

+ (q − 1)(r − 1)
√

((p− 1)(q − 1) + (p− 1) + (q − 1))2 + ((p− 1)(r − 1) + (p− 1) + (r − 1))2

+ (p− 1)(r − 1)
√

((p− 1)(q − 1) + (p− 1) + (q − 1))2 + ((q − 1)(r − 1) + (q − 1) + (r − 1))2

+ (p− 1)(q − 1)
√

((p− 1)(r − 1) + (p− 1) + (r − 1))2 + ((q − 1)(r − 1) + (q − 1) + (r − 1))2

= (p− 1)(q − 1)(r − 1)
√

(p− 1)2 + (qr − 1)2

+ (p− 1)(q − 1)(r − 1)
√

(q − 1)2 + (pr − 1)2

+ (p− 1)(q − 1)(r − 1)
√

(r − 1)2 + (pq − 1)2

+ (q − 1)(r − 1)
√

(pq − 1)2 + (pr − 1)2

+ (p− 1)(r − 1)
√

(pq − 1)2 + (qr − 1)2

+ (p− 1)(q − 1)
√

(pr − 1)2 + (qr − 1)2.

From this identity, we get

SO(Γ(Zpqr)) = (p− 1)(q − 1)(r − 1)

[√
(p− 1)2 + (qr − 1)2

+
√

(q − 1)2 + (pr − 1)2

+
√

(r − 1)2 + (pq − 1)2

+

√
(pq − 1)2 + (pr − 1)2

(p− 1)

+

√
(pq − 1)2 + (qr − 1)2

(q − 1)

+

√
(pr − 1)2 + (qr − 1)2

(r − 1)

]
.

3.1 Matlab code for determining Sombor index of Γ(Zn)

In this subsection, we give an algorithm for calculating Sombor index of Γ(Zn)
when entering an integer n.
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1 n=input("Enter n for Z n:")
2 Vert=strings(1,n-2);
3 Adj=zeros(n-2);
4 Deg=zeros(1,n-2);
5 for i=2:n-1
6 Vert(i-1)=int2str(i);
7 for j=2:n-1
8 if (i==j), continue, end
9 if mod(i*j,n)==0

10 Adj(i-1,j-1)=1;
11 Deg(i-1)=Deg(i-1)+1;
12 end
13 end
14 end
15 for i=size(Deg,2):-1:1
16 if (Deg(i)==0)
17 Adj(i,:)=[];
18 Adj(:,i)=[];
19 Vert(i)=[];
20 Deg(i)=[];
21 end
22 end
23 si=0;
24 for i=1:size(Deg,2)-1
25 for j=i+1:size(Deg,2)
26 if (Adj(i,j)==1)
27 si= si + sqrt(Deg(i)ˆ2+Deg(j)ˆ2);
28 end
29 end
30 end
31 fprintf("Sombor Index of graph of Z n: %f",si);

In the first four lines of the algorithm, n for Zn is requested, and the
vertex set (Vert), the adjacency matrix (Adj ) and the degree array (Deg) are
initialized. Next, in lines 5-14, all possible vertices in the graph are inserted
to the set, and the adjacency matrix is filled while degree array is calculated
under the condition i · j ≡ 0 (mod n). After that, vertices having no neighbors
are removed from vertex set, degree array and adjacency matrix in lines 15-22.
Finally, in lines 23-31, Sombor index of graph Γ(Zn) is computed and printed
out.

4 Sombor index of zero-divisor graph of products of rings
of integers modulo n

In this section, we calculate Sombor index of the graphs Γ(Zp × Zq) and
Γ(Zp × Zq × Zr) for distinct prime numbers p, q and r.
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The zero-divisor graph of Zp × Zq and some graph theoretical properties
of it have been studied in [4]. In the following theorem, we give Sombor index
of Γ(Zp × Zq).

Theorem 4.1. Let Γ(Zp × Zq) be a zero-divisor graph and p, q be distinct
prime numbers. Then, Sombor index of Γ(Zp × Zq) is

SO(Γ(Zp × Zq)) = (p− 1)(q − 1)
√

(p− 1)2 + (q − 1)2.

Proof. Let x ∈ Zp∗ and y ∈ Zq∗ where x = 1, 2, ..., p− 1 and y = 1, 2, ..., q− 1.
Since (x, 0)(0, y) = (0, 0), the edge set of x ∈ Zp∗ contains only the edges
between the vertices (x, 0) and (0, y).
The graph Γ(Zp × Zq) is a complete bipartite graph which is isomorphic to
Kp−1,q−1. Partitions of vertex set of Γ(Zp × Zq) are

A1 = {(x, 0) | 1 ≤ x ≤ p, x ∈ Zp},

A2 = {(0, y) | 1 ≤ y ≤ q, y ∈ Zq}

such that A1 ∪ A2 = V (Γ(Zp × Zq) and A1 ∩ A2 = ∅. Since |A1| = p− 1 and
|A2| = q − 1, the size of this graph is (p − 1)(q − 1). Also, du = |A2| for all
u ∈ A1 and dv = |A1| for all v ∈ A2. Hence, we obtain

SO(Γ(Zp × Zq)) =
∑

uv∈E(Γ(Zp×Zq)

√
du

2 + dv
2

=| A1 || A2 |
√
| A2 |2 + | A1 |2

= (p− 1)(q − 1)
√

(p− 1)2 + (q − 1)2.

Example 4.2. For zero-divisor graph of Z7×Z11, we attain p = 7 and q = 11.
Then, SO(Γ(Z7 × Z11)) ∼= 699.71, and the set of zero-divisors as follows:

A1 = {(1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0)},
A2 = {(0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7), (0, 8), (0, 9), (0, 10)}.

These sets give rise to the graph depicted in Figure 2.

Akgunes and Nacaroglu have studied some properties of zero-divisor graph
of Zp × Zq × Zr [3]. Moreover, they have calculated irregularity index and
Zagreb indices of this graph. We obtain Sombor index of Γ(Zp × Zq × Zr) in
the following theorem.
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Figure 2: The graph Γ(Z7 × Z11)

Theorem 4.3. Let Γ(Zp × Zq × Zr) be a zero-divisor graph and p, q, r be
distinct prime numbers. Then, Sombor index of Γ(Zp × Zq × Zr) is

SO(Γ(Zp × Zq × Zr)) = (p− 1)(q − 1)(r − 1)

[√
(pq − 1)2 + (r − 1)2

+
√

(pr − 1)2 + (q − 1)2

+
√

(qr − 1)2 + (p− 1)2

+

√
(pq − 1)2 + (pr − 1)2

(p− 1)

+

√
(pq − 1)2 + (qr − 1)2

(q − 1)

+

√
(pr − 1)2 + (qr − 1)2

(r − 1)

]
.
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Proof. We divide the vertex set of Γ(Zp × Zq × Zr) into six subsets such that

V (Γ(Zp × Zq × Zr)) =
⋃6
i=1Ai and Ai ∩ Aj = ∅ where i = 1, 2, ..., 5 and

j = i+ 1, ..., 6. We show that these vertex subsets are as follows:

A1 = {(x, 0, 0) | 1 ≤ x < p, x ∈ Zp},
A2 = {(0, y, 0) | 1 ≤ y < q, y ∈ Zq},
A3 = {(0, 0, z) | 1 ≤ z < r, z ∈ Zr},
A4 = {(0, y, z) | 1 ≤ y < q, 1 ≤ z < r, y ∈ Zq, z ∈ Zr},
A5 = {(x, 0, z) | 1 ≤ x < p, 1 ≤ z < r, x ∈ Zp, z ∈ Zr},
A6 = {(x, y, 0) | 1 ≤ x < p, 1 ≤ y < q, x ∈ Zp, y ∈ Zq}.

The number of vertices of all zero-divisor sets can be calculated as |A1| =
(p−1), |A2| = (q−1), |A3| = (r−1), |A4| = (q−1)(r−1), |A5| = (p−1)(r−1),
and |A6| = (p− 1)(q − 1). Moreover, the degree of each vertex in these zero-
divisor sets can be determined as

du =



|A2|+ |A3|+ |A4|, u ∈ A1

|A1|+ |A3|+ |A5|, u ∈ A2

|A1|+ |A2|+ |A6|, u ∈ A3

|A1|, u ∈ A4

|A2|, u ∈ A5

|A3|, u ∈ A6

.

According to these subsets, we examine edges in Γ(Zp × Zq × Zr) in six
cases as follows:

Case 1:
Let e = uv be an edge where for all u ∈ A1 and v ∈ A2. In this case, du = qr−1
and dv = pr − 1. Hence, the number of edges between the sets A1 and A2 is
|A1||A2|, and we attain

|A1||A2|
√

(qr − 1)2 + (pr − 1)2.

Case 2:
Let e = uv be an edge where for all u ∈ A1 and v ∈ A3. In this case, du = qr−1
and dv = pq − 1. Hence, the number of edges between the sets A1 and A3 is
|A1||A3|, and we have

|A1||A3|
√

(qr − 1)2 + (pq − 1)2.
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Case 3:
Let e = uv be an edge where for all u ∈ A2 and v ∈ A3. In this case, du = pr−1
and dv = pq − 1. Hence, the number of edges between the sets A2 and A3 is
|A2||A3|, and we get

|A2||A3|
√

(pr − 1)2 + (pq − 1)2.

Case 4:
Let e = uv be an edge where for all u ∈ A1 and v ∈ A4. In this case, du = qr−1
and dv = p − 1. Hence, the number of edges between the sets A1 and A4 is
|A1||A4|, and we have

|A1||A4|
√

(qr − 1)2 + (p− 1)2.

Case 5:
Let e = uv be an edge where for all u ∈ A2 and v ∈ A5. In this case, du = pr−1
and dv = q − 1. Hence, the number of edges between the sets A5 and A2 is
|A2||A5|, and we attain

|A2||A5|
√

(pr − 1)2 + (q − 1)2.

Case 6:
Let e = uv be an edge where for all u ∈ A3 and v ∈ A6. In this case, du = pq−1
and dv = r − 1. Hence, the number of edges between the sets A6 and A3 is
|A3||A6|, and we get

|A3||A6|
√

(pq − 1)2 + (r − 1)2.

Therefore, after combining above six cases respectively, we obtain that
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SO(Γ(Zp × Zq × Zr)) = |A1||A2|
√

(qr − 1)2 + (pr − 1)2

+ |A1||A3|
√

(qr − 1)2 + (pq − 1)2

+ |A2||A3|
√

(pr − 1)2 + (pq − 1)2

+ |A1||A4|
√

(qr − 1)2 + (p− 1)2

+ |A2||A5|
√

(pr − 1)2 + (q − 1)2

+ |A3||A6|
√

(pq − 1)2 + (r − 1)2

= (p− 1)(q − 1)
√

(pr − 1)2 + (qr − 1)2

+ (p− 1)(r − 1)
√

(pq − 1)2 + (qr − 1)2

+ (q − 1)(r − 1)
√

(pq − 1)2 + (pr − 1)2

+ (p− 1)(q − 1)(r − 1)
√

(qr − 1)2 + (p− 1)2

+ (p− 1)(q − 1)(r − 1)
√

(pr − 1)2 + (q − 1)2

+ (p− 1)(q − 1)(r − 1)
√

(pq − 1)2 + (r − 1)2.

From this identity, we get that Sombor index of zero-divisor graph of Zp×
Zq × Zr is

(p− 1)(q − 1)(r − 1)

[√
(pq − 1)2 + (r − 1)2 +

√
(pr − 1)2 + (q − 1)2

+
√

(qr − 1)2 + (p− 1)2 +

√
(pq − 1)2 + (pr − 1)2

(p− 1)

+

√
(pq − 1)2 + (qr − 1)2

(q − 1)
+

√
(pr − 1)2 + (qr − 1)2

(r − 1)

]
.

Example 4.4. For zero-divisor graph of Z3 × Z5 × Z7, we have p = 3, q = 5
and r = 7. Then, SO(Γ(Z3 × Z5 × Z7)) ∼= 4687.67, and the followings are the
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Figure 3: The graph Γ(Z3 × Z5 × Z7)

set of zero-divisors of this ring.

A1 = {(1, 0, 0), (2, 0, 0)},
A2 = {(0, 1, 0), (0, 2, 0), (0, 3, 0), (0, 4, 0)},
A3 = {(0, 0, 1), (0, 0, 2), (0, 0, 3), (0, 0, 4), (0, 0, 5), (0, 0, 6)},
A4 = {(0, 1, 1), (0, 1, 2), (0, 1, 3), (0, 1, 4), (0, 1, 5), (0, 1, 6), (0, 2, 1), (0, 2, 2), (0, 2, 3),

(0, 2, 4), (0, 2, 5), (0, 2, 6), (0, 3, 1), (0, 3, 2), (0, 3, 3), (0, 3, 4), (0, 3, 5), (0, 3, 6),

(0, 4, 1), (0, 4, 2), (0, 4, 3), (0, 4, 4), (0, 4, 5), (0, 4, 6)}
A5 = {(1, 0, 1), (1, 0, 2), (1, 0, 3), (1, 0, 4), (1, 0, 5), (1, 0, 6), (2, 0, 1), (2, 0, 2), (2, 0, 3),

(2, 0, 4), (2, 0, 5), (2, 0, 6)},
A6 = {(1, 1, 0), (1, 2, 0), (1, 3, 0), (1, 4, 0), (2, 1, 0), (2, 2, 0), (2, 3, 0), (2, 4, 0)}.

The zero-divisor graph of this ring can be seen in Figure 3.
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Lemma 4.5. Assume that R1 and R2 be two rings. If R1
∼= R2 then Γ(R1) ∼=

Γ(R2).

Proof. Assume that R1
∼= R2 and a, b ∈ R1 such that ab = 0. If φ is an

isomorphism between R1 and R2 then φ(a)φ(b) = 0 in R2. This implies that
ab ∈ E(Γ(R1)) and φ(a)φ(b) ∈ E(Γ(R2)). This means that φ is indeed a graph
isomorphism between Γ(R1) and Γ(R2).

Corollary 4.6. Γ(Zp1p2...pn) ∼= Γ(Zp1 × Zp2 × . . . × Zpn) is obtained from
Zp1p2...pn ∼= Zp1 × Zp2 × . . .× Zpn and Lemma 4.5.

By the above arguments, we give the following corollary.

Corollary 4.7. Let Γ(Zp×Zq), Γ(Zp×Zq×Zr), Γ(Zpq), and Γ(Zpqr) be zero-
divisor graphs where p, q, and r are distinct prime numbers. The followings
hold:

i) SO(Γ(Zp × Zq)) = SO(Γ(Zpq))

ii) SO(Γ(Zp × Zq × Zr)) = SO(Γ(Zpqr))

5 Conclusion

We compute that Sombor index of graphs Γ(Zn) for n ∈ {pα, pq, p2q, pqr}
where p, q and r are distinct prime numbers. Moreover, we introduce an al-
gorithm which calculates the Sombor index by determining zero divisors of
ring Zn for given integer n. The Sombor index is a degree based topological
index, so the method in this paper can be applied to other degre based topo-
logical indices. Further, one can determine the Sombor index of Γ(Zn) for
n = pα1

1 pα2
2 . . . pαkk .
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ORCID: 0000-0002-0747-9806
Email: arif.gursoy@ege.edu.tr

Alper ÜLKER,
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