
DOI: 10.2478/auom-2022-0027
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Algebraic Heun Operators with Tetrahedral
Monodromy

Iulia - Cătălina Pleşca

Abstract

Our work adds to the picture of second order differential operators
with a full set of algebraic solutions, which we will call algebraic. We
see algebraic Heun operators as pull-backs of algebraic hypergeometric
operators via Belyi functions. We focus on the case when the hyperge-
ometric one has a tetrahedral monodromy group. We find arithmetic
conditions for the pull-back functions to exist. For each distribution of
the singular points in the ramified fibers, we identify the minimal val-
ues of the exponent differences and we explicitly construct the dessin
d’enfant corresponding to the pull-back function in the minimal cases.
Then by allowing some parameters to vary, we find infinite families of
such graphs, hence of Heun operators with tetrahedral monodromy.

1 Introduction

Consider a second order linear differential operator L with coefficients
rational functions over C. We focus on the situation when the corresponding
ordinary linear differential equation:

d2 y(z)

d z2
+ p(z)

d y(z)

d z
+ q(z)y(z) = 0 (1)

Key Words: Algebraic solutions of differential equations, Belyi Functions, Dessins
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has a full set of solutions in an algebraic extension of C(z). In this case, we
call the equation and the operator algebraic.∗

This topic has a long history, for details see [8]. Let S be the set of poles
of the coefficients, which will be called singular points of the equation. The
first requirement is for these singularities to be regular. If the equation has a
finite number of regular singular points, it is called Fuchsian. The cases when
(1) has one or two singular points are trivial. The hypergeometric equation
covers the situation of 3 singular points which is more challenging but has
been completely solved. The most relevant results were obtained by Schwarz
[25] and Klein [12] who provided conditions for the hypergeometric equation
to be algebraic.

The algebraicity of a Fuchsian operator is equivalent with the finiteness
of the monodromy group. The monodromy group of a differential operator
of order 2 is the image of the representation π1(P1 \ S) → GL(2,C) given by
the analytic continuation of the 2 solutions in a basis along the closed paths
that represent the elements of π1(P1 \ S). The projective monodromy group
is defined in a similar way, using the continuation of the ratios of solutions in
a basis.

This work comes to complete the picture of algebraic differential operators
with 4 singular points, by looking at Heun operators given by (8). We give
a detailed description of such operators that are pull-backs of hypergeometric
ones with tetrahedral monodromy, by following the strategy described in [19]
and analysing the possible distributions of the singular points in the ramified
fibers of the pull-back functions, obtaining nine essentially distinct cases. We
give arithmetic conditions for existence and construct some families of such
operators by allowing some parameters to vary. As a consequence of this study,
we obtain the following result:

Proposition 1. There are pull-back functions of any degree greater than 2
from the hypergeometric operator with tetrahedral monodromy to an algebraic
Heun operator.

The structure of the paper is at follows. The second section presents the
necessary terminology and results to introduce our work. The third section
contains our results. In the first subsection, we describe the minimal cases,
that is, we find out the minimal possible degree for the function that realizes an
algebraic Heun operator as a pull-back of a hypergeometric one. In the second
subsection, we construct some infinite families, starting from the minimal ones
and allowing at least one of the parameters involved to vary. We construct the
associated graph by ”adding” cells. We identify three types of cells that cover

∗Throughout the paper, we shall use mostly interchangeably equation and operator when
naming the concepts associated to them.
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all the cases identified in the previous sections. The existence of these infinite
families means that there are infinite families of algebraic Heun operators.

These ideas can be similarly employed for studying Heun operators with
any fixed, finite monodromy group.

2 Second order differential operators with algebraic so-
lutions

As mentioned before, in our study, we follow the approach described in [19].
Therefore, in this section, we will just briefly go over the necessary terminology
related to differential equations and the Grothendieck correspondence.

Given a differential operator:

L =
d2

d z2
+ p(z)

d

d z
+ q(z), (2)

its singularities have to be regular, as stated previously. This translates to
p(z) having poles of order at most 1 and q(z) having poles of order at most 2.

The monodromy condition mentioned in the Introduction implies the ra-
tionality of the local exponents. They are the roots of a quadratic equation
that can be made explicit from the coefficients of L. Moreover, in this case, if
the difference of the local exponents is an integer, the singularity is apparent,
i.e. can be removed after a suitable change of variable.

To make things more explicit, the algebraicity of equation (1) is character-
ized by the following result:

Proposition 2. [29] Given a Fuchsian differential equation, the following
statements are equivalent

• The equation is algebraic.

• The monodromy group of the equation is finite.

• The projective monodromy group of the equation is finite and its Wron-
skian is algebraic.

In what follows we will focus on the finiteness of the projective monodromy
group, which we will denote by PMG(L). In order to simplify our study, we
shall consider some relations between operators.

Definition 1. [6][29] Let L be a differential operator with derivation with
respect to z.
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A differential operator L0 is said to be projectively equivalent to L if
there exists θ a radical function (a product of powers of rational functions)
such that L0 = θ ◦ L ◦ θ−1.

If z is replaced by a non-constant rational function f(x) ∈ C(x), then L
becomes Lf an operator with derivation with respect to x, called the proper
rational pull-back of L by z = f(x).

If L′ is a differential operator with respect to x that is projectively equivalent
with Lf , L′ is called a rational pull-back of L by z = f(x).

Preserving the notations in the previous Definition

Proposition 3 ([1], [27]). The following are true:

1. PMG(L0) ∼= PMG(L).

2. PMG(L′) ≤ PMG(L).

It is worth mentioning that any second order differential operator is pro-
jectively equivalent to one in normalized form, i.e. one without first order
derivatives ([6] and [29]).

Proposition 4. [29] Two projectively equivalent differential operators have
the same differences of local exponents over their corresponding singularities.

Notation 1. For an operator L we denote

∆L =
∑

α∈P1(C)

(|ρ1(α)− ρ2(α)| − 1), (3)

where ρ1(α), ρ2(α) are the local exponents of L in α.

Proposition 5. [1][16] Let L be a Fuchsian differential operator with finite
monodromy and L′ be a rational pull-back of L by z = f(x) ∈ C(x).

Let

• ρ1(α) and ρ2(α) be the local exponents of L in α = f(α̃) ∈ P1(C)

• eα̃ be the ramification index of f in α̃

• ρ1(α̃) and ρ2(α̃) be the local exponents of L′ in α̃

It follows that:
ρ1(α̃)− ρ2(α̃) = eα̃(ρ1(α)− ρ2(α)). (4)

The degree of a pull-back functions is given by:

∆L′ + 2 = deg f · (∆L + 2). (5)



Algebraic Heun Operators with Tetrahedral Monodromy 213

As mentioned in the introduction, the first non-trivial case to look at is
that of hypergeometric operators. Their normal form is given by:

Hλ,µ,ν =
d2

d z2
+

1− λ2

4z2
+

1− µ2

4(z − 1)2
+
λ2 + µ2 − ν2 − 1

4z(z − 1)
(6)

where λ, µ, ν ∈ C are the differences of the local exponents of the points 0, 1,∞
and they completely determine the operator up to projective equivalence. The
algebraic hypergeometric operators are given by the ”basic Schwarz list” which
follows from [25], [12]:

(λ, µ, ν) PMG(Hλ,µ,ν)
(1/n, 1, 1/n) CN , N ∈ N∗

(1/2, 1/n, 1/2) DN , N ∈ N∗
(1/2, 1/3, 1/3) A4

(1/2, 1/3, 1/4) S4

(1/2, 1/3, 1/5) A5

. (7)

For a general algebraic generator, Klein proved the following result [12],
[1], [16]:

Theorem 1 (Klein). Let L be a second order differential operator in normal
form on P1(C) with PMG(L) = G, |G| < ∞. Then there exists a unique
hypergeometric operator H belonging to (7), with PMG(H) = G, such that L
is a pull-back of H via a rational function f : P1(C) → P1(C). Moreover, if
|G| 6= D2, the function f is also unique, modulo Möbius transformations.

Furthermore, if L has no apparent singularity, relation (4) implies that the
function f is unramified above P1\{0, 1,∞} [16], making it a Belyi function,
i.e. a morphism to P1(C) with at most 3 critical values [9]. Grothendieck
proved that there is a correspondence between such functions and dessins
d’enfants [10], which we will see as bicoloured planar multi-graphs. The two
colours will be assumed to be white and black [9]. The aforementioned corre-
spondence can be interpreted as a dictionary that ”translates” the properties
of the function into elements of the graph:
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Belyi function with critical values Dessin d’enfant
{0, 1,∞}
f−1({0}) White vertices of the graph
f−1({1}) Black vertices of the graph
f−1({∞}) Faces of the graph
Branching order of point P ∈ f−1({0}) Degree of corresponding

white vertex wP
Branching order of point Q ∈ f−1({1}) Degree of corresponding

black vertex bQ
Branching order of point R ∈ f−1({∞}) Order of the corresponding

face ϕR
Degree of f Number of edges of the graph
Sheets of f−1([0, 1]) Edges of the graph

For more details on this correspondence and its implications, see [26], [17].

3 Heun Operators

In the following sections, we will apply the methods from [15], [16], [19] for
general second order operators with four singular points. Any such operator is
projectively equivalent with a Heun operator. As mentioned in the Introduc-
tion, we see the rational function that realizes the Heun operator as a pull-back
of a hypergeometric operator as a Belyi function and we try to construct the
associated dessin d’enfant using information about the multiplicities of the
points. If the construction of the dessin is not possible, it follows that the
pull-back does not exist which proves that the operator is not algebraic.

Definition 2. [7] The Heun equation is the canonical second-order Fuchsian
differential equation on the Riemann sphere P1(C), with 4 regular singularities:

d2 U(x)

dx2
+

(
γ

x
+

δ

x− 1
+

ε

x− t

)
dU(x)

dx
+

αβx− q
x(x− 1)(x− t)

U(x) = 0, (8)

where α, β, γ, δ, ε, t ∈ C, t 6= 0, t 6= 1 such that α+ β + 1 = γ + δ + ε.

The Riemann scheme of (8) is given by: 0 1 t ∞ x
0 0 0 α

1− γ 1− δ 1− ε β

 . (9)

While hypergeometric operators are completely determined up to projec-
tive equivalence by their Riemann scheme, this does not apply to Heun oper-
ators, since they also depend on the accessory parameter q. From this point
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onward, we will denote with H(a, b, c, d) a Heun operator with local exponent
differences: a, b, c, d ≥ 0. Sometimes, we will refer to these four values as the
parameters of the Heun operator.

Robert Maier computed on a machine 192 solutions of the Heun equation
[20], an analogue to Kummer’s list for the hypergeometric equation. Also, he
studied polynomial Heun-to-Hypergeometric transformations [21].

Raimundas Vidūnas, together with Galina Filipuk and Mark van Hoeij,
has a series of articles studying Heun to hypergeometric transformations: [11],
[27], [28].

In [27], Filipuk and Vidūnas classify pull-back transformations from hyper-
geometric to Heun equations. They fix some of the local exponent differences
and set others as parameters and they exclude cases with Liouvillian solutions,
which include algebraic solutions. Studying the possible branching patterns,
they obtain 89 possibilities. For 27 of these, there is no corresponding Belyi
functions, therefore there are 61 parametric hypergeometric-to-Heun transfor-
mations of maximal degree 12 given by the Belyi functions together with the
corresponding dessin denfants.

In [28], Vidūnas studies Liouvillian solutions of Heun’s equations that are
pull-backs of the parametric hypergeometric equations with cyclic or dihedral
monodromy groups. For the cyclic ones, he proves that the pull-back func-
tions are unique up to Möbius transformations for any pair (M,N) of positive
integers. The pull-back covering is a Belyi polynomial of degree D:

ϕ(x) = 1− (1− x)N
(

1 +
Nx

M

)M
.

There is a similar result regarding the dihedral case, but in this case the pull-
back function is not polynomial, but it has the form

ϕ(x) = x3Θ2(x)2/Θ1(x)2,

where Θ1 and Θ2 verify the following equation

(1 +
√
x)N

(
1− n

√
x

M

)M
= Θ1(x) + x3/2Θ2(x).

In [11], Vidūnas and van Hoeij study transformations of hyperbolic hyper-
geometric operators Hλ,µ,ν , as in (6), with the sum of the differences of local
exponents less or equal to 1: λ+µ+ν ≤ 1. They obtain 387 possible branching
patterns which give 29 possible triplets with degree of the pull-back function
at most 60.

Our study is complementary to the work of Vidūnas and his collabora-
tors. We are interested in finding conditions for the Heun operators to be
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algebraic. In what follows we will find the corresponding graphs for pull-back
functions from the tetrahedral hypergeometric operator to algebraic Heun op-
erators. A similar analysis can be conducted for operators with octahedral and
icosahedral monodromy. We are focused on algebraic Heun operators with no
apparent singularities. Therefore, based on Fuchs’ theorem [2], we remark the
following:

Remark 1. The local exponent differences of an algebraic Heun operator have
to be rational non-integers:

a, b, c, d ∈ Q \ Z

Any Heun operator is projectively equivalent to one in normalized form.
Using Klein’s Theorem, we search for Heun operators as pull-backs of the
hypergeometric operator given by (6):

Ha,b,c,d = f∗(Hλ,µ,ν). (10)

Since Heun operators are not completely determined by their local exponent
differences, equation (10) denotes the existence of one Heun operator with pa-
rameters a, b, c, d as the pull-back of the tetrahedral hypergeometric operator.

The degree of the function f given by (10) follows from (5):

(S − 4 + 2) = deg f(λ+ µ+ ν − 3 + 2) ⇐⇒ S − 2 = deg f(λ+ µ+ ν − 1).

In our case (λ, µ, ν) = (1
2 ,

1
3 ,

1
3 ), therefore

deg f = 6(S − 2). (11)

We will focus on the existence of the associated dessins with the given data.
From Proposition 5, we obtain the possible values for the ramification indices
of the pull-back function given in Table 3 (in each cell, the other possibility is
0):

z\x 0 1 t ∞
0 2a or 0 2b or 0 2c or 0 2d or 0 points of order 2
1 3a or 0 3b or 0 3c or 0 3d or 0 points of order 3
∞ 3a or 0 3b or 0 3c or 0 3d or 0 points of order 3

On each of the columns corresponding to 0, 1, t, ∞, we have only one
non-zero value placed on the row corresponding to the image of the point. On
each row, the non-zero values indicate the ramification data over that point.
The sum of values on each row is equal to the degree of f , because this is the
total number of points in each fiber, counting multiplicities. This will help
count the number of non-ramified points over each of the critical values.

In this section and the next one we will prove the following result:
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Proposition 6. There are pull-back functions of any degree greater than 2
from the tetrahedral hypergeometric operator to an algebraic Heun operator.

First of all, we make the following simplification to the problem: we ignore
permutations between the columns corresponding to 0, 1, t,∞ and between the
second and third line, since those particular possibilities can be obtained from
the ones below by composing the pull-back function with a Möbius transfor-
mation. Therefore we obtain 9 essentially different situations which we study.
In the first subsection, Minimal Cases, we take the following steps:

• We determine arithmetic conditions for the differences of local exponents.

• We find out the minimal possible degree for the function f (from equation
(11) this is equivalent to determining the minimal value of S).

• We check if there exists a dessin d’enfant with the given data.

• If there is no possible graph, it follows that the Heun operator with the
predetermined differences of local exponents is not algebraic.

• If we can construct the graph, it follows that there exists an algebraic
Heun operator with the corresponding data. From Proposition 3, it
follows that its projective monodromy group is a subgroup of the tetra-
hedral group.

In the second subsection, Families of graphs, we start from the minimal graph
and allow at least one of the parameters to vary. We construct families of
graphs by ”adding” cells. We identify three types of cells that cover all the
cases identified in the previous sections. In this way, we obtain infinite families
of dessins d’enfants parametrized by natural numbers. Correspondingly, this
means that there are infinite families of algebraic Heun operators with pull-
back functions of any degree.

3.1 Minimal cases

We proceed with the analysis of the 9 cases.

1.

0 1 t ∞
∞ 2a 2b 2c 2d 2(S − 3) points of order 2
0 2(S − 2) points of order 3
1 2(S − 2) points of order 3

Without loss of generality, we can assume that a ≥ b ≥ c ≥ d.
All the values in the table have to be positive integers, so it follows from
Remark 1 that a, b, c, d ∈ N + 1

2 . In addition, S − 3 ≥ 0.
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We see this as the data for a 3-regular bipartite graph. Such a graph
cannot have bridges, thus the order of a face cannot exceed the number
of vertices of one color: 2a ≤ 2(S − 2) which gives b + c + d ≥ 2. Since
b, c, d ∈ N + 1

2 , the minimal solution is given by

Figure 1: a = b = 3
2 , c = d = 1

2 ,deg f = 12

As a side note, let us observe that the Lamé operators (Heun operators
with parameters: a = b = c = 1

2 , d = n + 1
2 , where n ∈ N) would fall

under this case. Since we obtained that b + c + d ≥ 2, it follows that
there are no Lamé operators which are pull-backs of the tetrahedral
hypergeometric one, recovering the result in [1] and [16].

2.

0 1 t ∞
0 2a 2b 2c 2(S − 3) + d points of order 2
1 3d 2(S − 2)− d points of order 3
∞ 2(S − 2) points of order 3

All the values in the table have to be positive integers, therefore 2(S −
2), 2(S − 2) − d ∈ N ⇒ d ∈ N which contradicts Remark 1. It follows
that there are no algebraic Heun operators in this case.

3.

0 1 t ∞
0 2a 2b 3(S − 2)− (a+ b) points of order 2
∞ 3c 3d 2(S − 2)− (c+ d) points of order 3
1 2(S − 2) points of order 3

All the values in the table have to be positive integers. This, together
with Remark 1, implies that a, b ∈ N + 1

2 , c, d ∈
N
3 \ N and 2S ∈ N.

It follows that a + b, c + d ∈ N∗ ⇒ S ∈ N \ {0, 1}. Since 2(S − 2) > 0,
the minimal value for S is 3. Without loss of generality, we can assume
that a ≥ b and c ≥ d. There are two possibilities for the values of a+ b
and c+ d:

(a) a+ b = 1⇒ a = b = 1
2 ,

c+ d = 2⇒
i. c = 4

3 , d = 2
3

or
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ii. c = 5
3 , d = 1

3 .

(b) a+ b = 2⇒ a = 3
2 , b = 1

2 ,
c+ d = 1⇒ c = 2

3 , d = 1
3 .

(a) i.

Figure 2: a = b = 1
2 , c = 4

3 , d = 2
3 ,deg f = 6

ii. a = 1
2 , b = 1

2 , c = 5
3 , d =

1
3 ,deg f = 6

(b)

a = 3
2 , b = 1

2 , c = 2
3 , d =

1
3 ,deg f = 6

a = 3
2 , b = 1

2 , c = 5
3 , d =

1
3 ,deg f = 12

4.

0 1 t ∞
0 2a 2b 3(S − 2)− (a+ b) points of order 2
∞ 3c 2(S − 2)− c points of order 3
1 3d 2(S − 2)− d points of order 3

We can assume without loss of generality that a ≥ b and c ≥ d. All
the values in the table have to be positive integers. This, together with
Remark 1, gives the following implications: a, b ∈ N+ 1

2 ⇒ a+ b ∈ N∗ ⇒
3S ∈ N∗.
Also 3(S − 2) ≥ (a + b). Since a + b ≥ 1 the minimal value for S is
2 + 1

3 . In this minimal case a = b = 1
2 . In order to determine c and d, we

observe that c, d ∈ 1
3N \N and 2S− c, 2S− d ∈ N⇒ c− d ∈ N, therefore

c = d = 2
3 .

a = b = 1
2 , c = 2

3 , d = 2
3 ,deg f = 2

5.

0 1 t ∞
∞ 2a 3(S − 2)− a points of order 2
0 3b 3c 3d S − 4 + a points of order 3
1 2(S − 2) points of order 3
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We can assume without loss of generality that b ≥ c ≥ d. All the values
in the table have to be positive integers, in particular 2S ∈ N, b, c, d ∈ N

3 .
It follows from Remark 1 that a ∈ N + 1

2 , therefore b+ c+ d ∈ N∗.
We obtain the minimal value for S: S − 4 + a ≥ 0, 3(S − 2) − a ≥ 0 ⇒
4S − 10 ≥ 0⇒ S ≥ 5

2 .
For this minimal case, since S − 4 + a ≥ 0, we get the values for the
parameters and the graph below:

Figure 3: a = 1
2 , b = 1

3 , c = 1
3 , d = 1

3 ,deg f = 3

6.

0 1 t ∞
∞ 2a 3(S − 2)− a points of order 2
0 3b 3c 2(S − 2)− (b+ c) points of order 3
1 3d 2(S − 2)− d points of order 3

Considering that all the values in Table 6 are positive integers and Re-
mark 1, it follows that a ∈ N + 1

2 , b, c, d ∈
N
3 \ N, therefore 3S ∈ N + 1

2 .
We get two possibilities for S: S ∈ N + 1

6 or S ∈ N + 5
6 . In addition,

2(S − 2) ≥ b+ c ≥ 2
3 ⇒ S ≥ 2 + 1

3 .

If S ∈ N + 1
6 , together with the previous conditions, it follows that the

minimal value for S is 17
6 .

If S = 17
6 , then 6S ≡ 5 (mod 6). Since 3(b + c) ≡ 3d (mod 3) ⇒ d ∈

N + 2
3 , b, c ∈ N + 1

3 .

We identify three possibilities:

(a) a = 3
2 , b = 1

3 , c = 1
3 , d =

2
3 ,deg f = 5.

(b) a = 1
2 , b = 4

3 , c = 1
3 , d =

2
3 ,deg f = 5

(c) a = 1
2 , b = 1

3 , c = 1
3 , d =

5
3 ,deg f = 5

If S ∈ N + 5
6 , it follows that the minimal value for S is 19

6 . There
are two additional cases:

(d)
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a = 1
2 , b = 2

3 , c = 5
3 , d =

1
3 ,deg f = 7

(e) a = 3
2 , b = c = 2

3 , d = 1
3 ,deg f =

7.

7.

0 1 t ∞
0 3(S − 2) points of order 2
∞ 3a 3b 3c 3d S − 4 points of order 3
1 2(S − 2) points of order 3

It is obvious that S ≥ 4. Since all the values in the table, it follows
from Remark 1 that a, b, c, d ∈ N

3 \ N. We can assume without loss of
generality that a ≥ b ≥ c ≥ d. There are several possibilities.

(a) a = 8
3 , b = 2

3 , c = d = 1
3 .

(b) a = 7
3 , b = c = 2

3 , d = 1
3 .

(c) a = b = 5
3 , c = d = 1

3 .

(d) a = 5
3 , b = 4

3 , c = 2
3 , d = 1

3 .

(e) a = b = 4
3 , c = d = 2

3 .

(a) a = 8
3 , b = 2

3 , c = d = 1
3 ,deg f =

12

(b)

a =
7

3
, b = c =

2

3
, d =

1

3
, S = 4,deg f = 12.

0 1 t ∞
0 6 points of order 2
∞ 7 2 2 1 0 points of order 3
1 4 points of order 3

Since each white vertex has order 2, we can regard this as the data
of a ”clean” dessin with 4 vertices of order 3 with faces of orders
7, 2, 2, 1. We try to construct the graph. Since there is a face of
order 1, it follows that the graphs contains a loop:

The graph is connected, therefore the vertex with the loop has to
be connected with one of the other vertices, which in its turn has
to be connected with at least another vertex:
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The remaining fourth vertex cannot have a loop therefore it has to
be connected to both the vertices without loops.

Adding the remaining edges, we get a face of order 3 which did not
appear in our data, therefore this case does not yield an algebraic
Heun operator.

Since S ∈ N, the next possibility is for S = 5. Allowing a to
increase, we get the following parameters and graph:

a = 10
3 , b = 2

3 , c = 2
3 , d =

1
3 ,deg f = 18

(c) a = 5
3 , b = 5

3 , c = 1
3 , d =

1
3 ,deg f = 12

a = 8
3 , b = 5

3 , c = 1
3 , d = 1

3 , S = 5,deg f = 18

0 1 t ∞
0 9 points of order 2
∞ 8 5 1 1 1 point of order 3
1 6 points of order 3

In this case there is no corresponding graph. Indeed, let us consider
the associated clean dessin: a 3-regular pseudo-hypergraph with 6
vertices. There are two possibilities for a face of order 5:

In the first case, we have already drawn 5 vertices, each with two
adjacent edges, therefore we cannot add two loops/faces of order 1.
In the second case, we try to place the other vertices. The vertex
that currently has order 2 has to be connected with one of the
unconnected vertices. We also have to have another loop:
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Since there are no more loops, the still unconnected vertex has to
be adjacent to the vertices that do not already have degree 3:

Adding the remaining edge, we obtain a face of order 2 or 5.

This contradicts the data, therefore this case does not yield any al-
gebraic operators. However, we can construct a new starting point:

a = 14
3 , b = 5

3 , c = 1
3 , d = 1

3 ,
deg f = 30

(d)

a =
5

3
, b =

4

3
, c =

2

3
, d =

1

3
, S = 4,deg = 12.

0 1 t ∞
0 6 order 2
∞ 5 4 2 1 0 order 3
1 4 order 3

Reasoning the same way as we did at point (b), we conclude that
there is no graph with this ramification data. Since S ∈ N, the next
possibility is for S = 5. Allowing a to increase, we get the following
parameters:

a = 8
3 , b = 4

3 , c = 2
3 , d =

1
3 ,deg f = 18

(e) a = b = 4
3 , c = d = 2

3 ,deg f = 12

8.

0 1 t ∞
0 3(S − 2) order 2
1 3a 3b 3c S − 4 + d order 3
∞ 3d 2(S − 2)− d order 3



Algebraic Heun Operators with Tetrahedral Monodromy 224

It is obvious that 3S ∈ N and 2S − d, S + d ∈ N \ {0, 1, 2, 3}. Summing
the last two, it follows that 3S ≥ 8, therefore S ≥ 8

3 . For this minimal
value, it follows that d = 4

3 . Without loss of generality, we can assume
that a ≥ b ≥ c. Therefore, we get the following data:

a = 2
3 , b = c = 1

3 , d = 4
3 ,deg f = 4

9.

0 1 t ∞
0 3(S − 2) order 2
1 3a 3b 2(S − 2)− (a+ b) order 3
∞ 3c 3d 2(S − 2)− (c+ d) order 3

It is obvious that S > 2 which gives a+ b > 1 or c+ d > 1. We assume,
without loss of generality, that a + b > 1. Since a, b, c, d ∈ N

3 , therefore
a+b ≥ 4

3 or c+d ≥ 4
3 . Since 2(S−2) ≥ a+b, 2(S−2) ≥ c+d, it follows

S − 2 ≥ 2
3 . Therefore, the minimal value for S is 8

3 . It follows that

a = b = c = d =
2

3
,deg f = 4

3.2 Families of graphs

In this subsection, we start from the minimal cases previously outlined and
allow some parameters to vary. In order to build the corresponding graphs,
we ”add” cells to the initial graphs. We identify three types of cells and these
situations cover all 9 previous cases.

• Going back to the first case: We want to vary some of the parameters.
Allowing a = 3

2 +m, b = 3
2 + n, (m,n ∈ N), we get the following data:

a =
3

2
+m, b =

3

2
+ n, c = d =

1

2
, S = 4 + n+m,deg f = 12 + 6n+ 6m

0 1 t ∞
∞ 3 + 2m 3 + 2n 1 1 2 + 2m+ 2n points of order 2
0 4 + 2n+ 2m points of order 3
1 4 + 2n+ 2m points of order 3

The graph for m = 0, n = 0 is the one in Figure 1. We represent a graph
corresponding to the case m = n = 1 below.
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The graphs corresponding to the different values for m and n are ob-
tained by inserting m respectively n cells of type:

Figure 4: First type of added cell

• In the third case, again, we would like to allow at least one of the pa-
rameters to vary, namely c. We proceed with the first subcase:

0 1 t ∞
0 1 1 3n+ 2 points of order 2
∞ 4 + 3n 2 n points of order 3
1 2n+ 2 points of order 3

We were not able to proceed as in the first case, instead we found our-
selves distinguishing between the case when n even and the case when
n odd.

1. Taking n = 2m,m ∈ N, we get: S = 2m+ 3,deg f = 12m+ 6.
For m = 0, the corresponding graph is the one in Figure 2. For
m ∈ N∗, m cells given in Figure 5 will be added:

Figure 5: Second type of added cell

We give the graph for m = 1:

2. Taking n = 2m+ 1,m ∈ N, we get: S = 2m+ 3,deg f = 12m+ 6.
The graph for m = 0 is given below:
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The graphs for different values of m are obtained again by adding
m cells given in Figure 5.

This strategy works for all the remaining cases with the exception of
case 5 and 6 e. However, a few problems appear in cases 7e and 9.

Let us look at case 7e:

If we want to allow the parameter a to vary we get the following data:

a =
4

3
+ n, b =

4

3
, c = d =

2

3
⇒ S = 4 + n,deg f = 12 + 6n.

If we allow n to vary and take n = 1, we regard this as the data for a
clean dessin. It follows that there are 6 vertices of degree 3, and 5 faces
of degrees: 7, 4, 3, 2, 2.
Without loss of generality we can assume that the exterior face is the
one of order 7. Since the graph has no faces of order 1, it follows that
the face of order 4 looks like this:

Now, since the graph is 3-regular and connected, at least one of the
vertices has to be connected to a new one:

Now, since the graph has a face of order 3, the newly introduces vertex
has to be connected to another vertex of the face of order 4:

Now, the remaining unconnected vertex has to be connected to the three
vertices that have only order 2, and we cannot obtain two faces of order
2, therefore there is no graph in this case.
For n = 2 we cannot add cells to the minimal example, therefore we
build a new minimal example:

a = 10
3 , b = 4

3 , c = d = 2
3 ,deg f =

24
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Now we can proceed as in the previous cases, and let a = 10
3 +n, n ∈ N.

For n = 2m,m ∈ N we add m cells given in Figure 5 to the figure above.
For n = 2m+ 1, m ∈ N, the minimal example m = 0 is given by:

a = 13
3 , b = 4

3 , c = d = 2
3 ,deg f =

30

• The fifth case and subcase e of case 6 are studied similarly to the previous
cases but the added cell is different.

We let a vary by an integer n ∈ N, a = 3
2 + n:

0 1 t ∞
∞ 3 + 2n 2n order 2
0 1 1 1 2n order 3
1 2n+ 1 order 3

Again, we distinguish between n even and n odd.
If n = 2m,m ∈ N, we start from the minimal case in Figure 3, adding
the following cell:

Figure 6: Third type of added cell

We present the graph for m = 1:

For n = 2m+ 1, we present the minimal example, i.e. for n = 1,m = 0.
For different values of m, we add m cells given in Figure 6:
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This analysis covers all the cases identified previously. In the minimal cases
we found functions of degree 2, 3, 4, 5, 6 and 7. Since the added cells have 12
edges and start from two minimal cases (even and odd), it follows that there
exist functions of any degree and therefore Proposition 9 is proven.
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