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COLLECTIVELY FIXED POINT THEORY
IN THE COMPACT AND COERCIVE CASES

Donal O’Regan

Abstract

We present collectively fixed point results for multivalued maps which
automatically generate analytic alternatives and minimax inequalities.
As an application we consider equilbrium type problems for generalized
games.

1. Introduction.

In this paper we begin in Section 2 by presenting a variety of new col-
lectively fixed point results for multivalued maps in both the compact and
coercive case; we refer the reader to [1, 5, 6, 9] for some results in the litera-
ture. Our goal is to obtain results which are natural when one is considering
equilbrium type problems for generalized games. Along the way we will also
consider new analytic alternatives and minimax inequalities.

Now we describe the maps considered in this paper. Let H be the C̆ech
homology functor with compact carriers and coefficients in the field of rational
numbers K from the category of Hausdorff topological spaces and continuous
maps to the category of graded vector spaces and linear maps of degree zero.
Thus H(X) = {Hq(X)} (here X is a Hausdorff topological space) is a graded

vector space, Hq(X) being the q–dimensional C̆ech homology group with
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compact carriers of X. For a continuous map f : X → X, H(f) is the
induced linear map f? = {f? q} where f? q : Hq(X) → Hq(X). A space X is
acyclic if X is nonempty, Hq(X) = 0 for every q ≥ 1, and H0(X) ≈ K.

Let X, Y and Γ be Hausdorff topological spaces. A continuous single
valued map p : Γ → X is called a Vietoris map (written p : Γ ⇒ X) if the
following two conditions are satisfied:
(i). for each x ∈ X, the set p−1(x) is acyclic
(ii). p is a perfect map i.e. p is closed and for every x ∈ X the set p−1(x) is
nonempty and compact.

Let φ : X → Y be a multivalued map (note for each x ∈ X we assume
φ(x) is a nonempty subset of Y ). A pair (p, q) of single valued continuous

maps of the form X
p← Γ

q→ Y is called a selected pair of φ (written
(p, q) ⊂ φ) if the following two conditions hold:
(i). p is a Vietoris map
and
(ii). q (p−1(x)) ⊂ φ(x) for any x ∈ X.

Now we define the admissible maps of Gorniewicz [8]. A upper semicon-
tinuous map φ : X → Y with compact values is said to be admissible (and
we write φ ∈ Ad(X,Y )) provided there exists a selected pair (p, q) of φ. An
example of an admissible map is a Kakutani map. A upper semicontinuous
map φ : X → K(Y ) is said to Kakutani (and we write φ ∈ Kak(X,Y )); here
K(Y ) denotes the family of nonempty, convex, compact subsets of Y .

The following class of maps will play a major role in this paper. Let Z
and W be subsets of Hausdorff topological vector spaces Y1 and Y2 and G a
multifunction. We say G ∈ DKT (Z,W ) [6, 9] if W is convex and there exists
a map S : Z → W with co (S(x)) ⊆ G(x) for x ∈ Z, S(x) 6= ∅ for each x ∈ Z
and the fibre S−1(w) = {z ∈ Z : w ∈ S(z)} is open (in Z) for each w ∈W .

Now we consider a general class of maps, namely the PK maps of Park.
Let X and Y be Hausdorff topological spaces. Given a class X of maps,
X(X,Y ) denotes the set of maps F : X → 2Y (nonempty subsets of Y )
belonging to X, and Xc the set of finite compositions of maps in X. We let

F(X) = {Z : FixF 6= ∅ for all F ∈ X(Z,Z)}

where FixF denotes the set of fixed points of F .
The class U of maps is defined by the following properties:

(i). U contains the class C of single valued continuous functions;

(ii). each F ∈ Uc is upper semicontinuous and compact valued; and

(iii). Bn ∈ F(Uc) for all n ∈ {1, 2, ....}; here Bn = {x ∈ Rn : ‖x‖ ≤ 1}.
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We say F ∈ PK(X,Y ) if for any compact subset K of X there is a
G ∈ Uc(K,Y ) with G(x) ⊆ F (x) for each x ∈ K. Recall PK is closed under
compositions.

For a subset K of a topological space X, we denote by CovX (K) the
directed set of all coverings ofK by open sets ofX (usually we write Cov (K) =
CovX (K)). Given two maps F, G : X → 2Y and α ∈ Cov (Y ), F and G are
said to be α–close if for any x ∈ X there exists Ux ∈ α, y ∈ F (x) ∩ Ux and
w ∈ G(x) ∩ Ux.

Let Q be a class of topological spaces. A space Y is an extension space for
Q (written Y ∈ ES(Q)) if for any pair (X,K) in Q with K ⊆ X closed, any
continuous function f0 : K → Y extends to a continuous function f : X → Y .
A space Y is an approximate extension space for Q (written Y ∈ AES(Q)) if
for any α ∈ Cov (Y ) and any pair (X,K) in Q with K ⊆ X closed, and any
continuous function f0 : K → Y there exists a continuous function f : X → Y
such that f |K is α–close to f0.

Let V be a subset of a Hausdorff topological vector space E. Then we
say V is Schauder admissible if for every compact subset K of V and every
covering α ∈ CovV (K) there exists a continuous functions πα : K → V such
that
(i). πα and i : K → V are α–close;
(ii). πα(K) is contained in a subset C ⊆ V with C ∈ AES(compact).

X is said to be q– Schauder admissible if any nonempty compact convex
subset Ω of X is Schauder admissible.

Theorem 1.1. [2, 10] Let X be a Schauder admissible subset of a Hausdorff
topological vector space and Ψ ∈ PK(X,X) a compact upper semicontinuous
map with closed values. Then there exists a x ∈ X with x ∈ Ψ(x).

Remark 1.2. Other variations of Theorem 1.1 can be found in [11].

2. Fixed point results

In this section we present a variety of collectively fixed point results in
both the compact and coercive case. These fixed point results will general
analyic alternatices and minimax inequalities so automatically they generate
equilibrium type results in generalized games. We begin with a result which
illustrates our approach. One of the conditions in our first theorem can be a
little restrictive (from the generalized game point of view) but this condition
will be removed in some later results in this paper.

Theorem 2.1. Let {Xi}Ni=1 be a family of convex sets each in a Haus-
dorff topological vector space Ei. For each i ∈ {1, ..., N} suppose Fi : X ≡∏N
i=1Xi → Xi and Fi ∈ DKT (X,Xi). In addition assume for each i ∈
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{1, ..., N} there exists a convex compact set Ki with Fi(X) ⊆ Ki ⊆ Xi. Then
there exists a x ∈ X with xi ∈ Fi(x) for i ∈ {1, ..., N} (here xi is the projection
of x on Xi).

Proof: For i ∈ {1, ..., N} let Si : X → Xi with Si(x) 6= ∅ for x ∈ X,
co (Si(x)) ⊆ Fi(x) for x ∈ X and S−1i (w) is open (in X) for each w ∈ Xi. Let

K =
∏N
i=1Ki and note K is compact. Let F ?i denote the restriction of Fi to K.

We claim F ?i ∈ DKT (K,Xi) for each i ∈ {1, ..., N}. To see this let S?i denote
the restriction of Si to K. Note trivially S?i (x) 6= ∅ and co (S?i (x)) ⊆ F ?i (x)
for x ∈ K (since Si(x) 6= ∅ and co (Si(x)) ⊆ Fi(x) for x ∈ X). Also note if
y ∈ Xi then

(S?i )−1(y) = {z ∈ K : y ∈ S?i (z)} = {z ∈ K : y ∈ Si(z)}
= K ∩ {z ∈ X : y ∈ Si(z)} = K ∩ S−1i (y)

which is open in K ∩ X = K. Thus for each i ∈ {1, ..., N} we have F ?i ∈
DKT (K,Xi) so since Fi(X) ⊆ Ki we have F ?i ∈ DKT (K,Ki); note for y ∈ Ki

that (S?i )−1(y) = K ∩S−1i (y) which is open in K. Now for each i ∈ {1, ..., N}
from [6] there exists a continuous (single valued) selection fi : K → Ki of F ?i
with fi(x) ∈ co (S?i (x)) ⊆ F ?i (x) for x ∈ K and also there exists a finite set Ci
of Ki with fi(K) ⊆ co (Ci) ≡ Di; note co (Ci) ⊆ co (Ki) = Ki i.e. Di ⊆ Ki.
Let

D =

N∏
i=1

Di and f(x) =

N∏
i=1

fi(x), x ∈ K.

Now f : K → K is continuous with f(K) ⊆ D. Since D =
∏N
i=1 Di ⊆∏N

i=1 Ki = K we have f : D → D and f(D) lies in a finite dimensional

subspace of E =
∏N
i=1 Ei. Note Di = co (Ci) ⊆ Ki is compact and D is

compact and convex. Brouwer’s fixed point theorem guarantees that there
exists a x ∈ D (⊆ K) with x = f(x). Thus xj = fj(x) ∈ co (S?j (x)) ⊆ F ?j (x)
for each j ∈ {1, ..., N} i.e. xj ∈ F ?j (x) for each j ∈ {1, ..., N}. �

We now consider Theorem 2.1 in a more general setting.

Theorem 2.2. Let I be an index set and {Xi}i∈I be a family of convex
sets each in a Hausdorff topological vector space Ei. For each i ∈ I suppose
Fi : X ≡

∏
i∈I Xi → Xi and Fi ∈ DKT (X,Xi). In addition assume for

each i ∈ I there exists a convex compact set Ki with Fi(X) ⊆ Ki ⊆ Xi.
Also suppose X is a q–Schauder admissible subset of the Hausdorff topological
vector space E =

∏
i∈I Ei. Then there exists a x ∈ X with xi ∈ Fi(x) for

i ∈ I.

Proof: For i ∈ I let Si be as in Theorem 2.1, K =
∏
i∈I Ki and F ?i

the restriction of Fi to K. The same reasoning as in Theorem 2.1 guar-
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antees that F ?i ∈ DKT (K,Ki) for i ∈ I. Now for each i ∈ I from [6]
there exists a continuous (single valued) selection fi : K → Ki of F ?i with
fi(x) ∈ co (S?i (x)) ⊆ F ?i (x) for x ∈ K and also there exists a finite set Ci of
Ki with fi(K) ⊆ co (Ci) ≡ Di; note co (Ci) ⊆ co (Ki) = Ki i.e. Di ⊆ Ki. Let

D =
∏
i∈I

Di and f(x) =
∏
i∈I

fi(x), x ∈ K.

Now f : K → K is continuous with f(K) ⊆ D. Since D =
∏
i∈I Di ⊆∏

i∈I Ki = K we have f : D → D with D Schauder admissible (since X is q–
Schauder admissible). Theorem 1.1 guarantees a x ∈ D (⊆ K) with x = f(x)
and as in Theorem 2.1 we immediately have xj ∈ F ?j (x) for each j ∈ I. �

Remark 2.3. (i). Note in the statement of Theorem 2.1 and Theorem 2.2
we could replace Fi ∈ DKT (X,Xi) with Fi ∈ DKT (X,Ki). To see this let
Si : X → Ki with Si(x) 6= ∅ for x ∈ X, co (Si(x)) ⊆ Fi(x) for x ∈ X and
S−1i (w) is open (in X) for each w ∈ Ki. Let F ?i (respectively, S?i ) denote the
restriction of Fi (respectively, Si) to K. Now F ?i ∈ DKT (K,Ki); note for
y ∈ Ki that (S?i )−1(y) = K ∩ S−1i (y) which is open in K. Apply now the
result in [6] and follow the proof in Theorem 2.1 and Theorem 2.2.
(ii). In Theorem 2.2 we could replace ”for each i ∈ I suppose there exists a
convex compact set Ki with Fi(X) ⊆ Ki ⊆ Xi” with ”for each i ∈ I suppose
there exists a compact set Ki with Fi(X) ⊆ Ki ⊆ Xi” provided X is a q–
Schauder admissible subset of E is replaced by X is a p–Schauder admissible
subset of E (X is a p–Schauder admissible subset of E if for any nonempty
compact subset Ω0 of X the set co (Ω0) is Schauder admissible). To see this let
K =

∏
i∈I Ki and note [6] that co (K) is paracompact. Let F ?i (respectively,

S?i ) denote the restriction of Fi (respectively, Si) to Ω ≡ co (K). We claim
F ?i ∈ DKT (Ω, Xi) for i ∈ I since if y ∈ Xi then

(S?i )−1(y) = {z ∈ Ω : y ∈ S?i (z)} = {z ∈ Ω : y ∈ Si(z)}
= Ω ∩ {z ∈ X : y ∈ Si(z)} = Ω ∩ S−1i (y)

which is open in Ω ∩ X = Ω. Now for each i ∈ I from [6] (recall Ω is
paracompact) there exists a continuous (single valued) selection fi : Ω→ Xi of
F ?i with fi(Ω) ⊆ F ?i (Ω) ⊆ Fi(X) ⊆ Ki so fi : Ω→ Ki. Let f(x) =

∏
i∈I fi(x)

for x ∈ Ω and note f : Ω → Ω is continuous (note for each i ∈ I we have
fi(Ω) ⊆ Ki so f(Ω) ⊆ K ⊆ co (K) = Ω). Now since Ω is a Schauder admissible
subset of E then Theorem 1.1 guarantees a x ∈ Ω with x = f(x), so for each
i ∈ I we have xi = fi(x) ∈ F ?i (x).

We can apply this idea to many other classes of maps. We will supply one
more result to the reader.
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Theorem 2.4. Let {Xi}Ni=1 be a family of convex sets each in a Haus-
dorff topological vector space Ei. For each i ∈ {1, ..., N} suppose Fi : X ≡∏N
i=1Xi → Xi and there exists a compact set Ki with Fi(X) ⊆ Ki ⊆ Xi.

Also assume for i ∈ {1, ..., N} that Fi ∈ Ad(X,Xi). In addition assume
X is a Schauder admissible subset of the Hausdorff topological vector space
E =

∏N
i=1 Ei. Then there exists a x ∈ X with xi ∈ Fi(x) for i ∈ {1, ..., N}.

Proof: Let

K =

N∏
i=1

Ki and F (x) =

N∏
i=1

Fi(x), x ∈ K.

Since a finite product of admissible maps of Gorniewicz is an admissible map
of Gorniewicz [8] then F ∈ Ad(X,X) with F (X) ⊆ K. Now Theorem 1.1
guarantees a x ∈ K with x ∈ F (x). �

In our next two results we will replace the compactness condition on Fi
with a coercive type condition [4, 5]. We will now also consider a subclass
of the DKT (Z,W ) maps (see [4, 6]). Let G be a multifunction and we say
G ∈ Φ?(Z,W ) [4] if W is convex and there exists a map S : Z → W with
S(x) ⊆ G(x) for x ∈ Z, S(x) 6= ∅ and has convex values for each x ∈ Z and
S−1(w) is open (in Z) for each w ∈W .

Theorem 2.5. Let {Xi}Ni=1 be a family of convex sets each in a Haus-
dorff topological vector space Ei. For each i ∈ {1, ..., N} suppose Fi : X ≡∏N
i=1Xi → Xi and in addition there exists a map Si : X → Xi with Si(x) 6= ∅

and has convex values for x ∈ X, Si(x) ⊆ Fi(x) for x ∈ X and S−1i (w) is open
(in X) for each w ∈ Xi. Also assume there is a compact subset K of X and
for each i ∈ {1, .., N} a convex compact subset Yi of Xi with Si(x) ∩ Yi 6= ∅
for x ∈ X\K. Then there exists a x ∈ X with xi ∈ Fi(x) for i ∈ {1, ..., N}.

Proof: With K given in the statement of Theorem 2.5 let F ?i (respectively,
S?i ) denote the restriction of Fi (respectively, Si) to K. The same reasoning
as in Theorem 2.1 guarantees that F ?i ∈ Φ?(K,Xi) for i ∈ {1, ..., N}; note
for y ∈ Xi that (S?i )−1(y) = K ∩ S−1i (y) which is open in K. Now for each
i ∈ {1, ..., N} from [4, 6] there exists a continuous (single valued) selection
fi : K → Xi of F ?i with fi(x) ∈ S?i (x) ⊆ F ?i (x) for x ∈ K and also there exists
a finite set Ci of Xi with fi(K) ⊆ co (Ci). Let

Ωi = co (co (Ci) ∪ Yi) for i ∈ {1, ..., N}

which is a convex compact [3, pp.125] subset of Xi. Let F ??i (x) = Fi(x) ∩ Ωi
for x ∈ X and i ∈ {1, ..., N}. We claim F ??i ∈ Φ?(X,Ωi) for i ∈ {1, ..., N}. Let
S??i (x) = Si(x) ∩ Ωi for x ∈ X and i ∈ {1, ..., N}. If x ∈ X\K then S??i (x) =
Si(x) ∩ Ωi 6= ∅ since Si(x) ∩ Yi 6= ∅ and Yi ⊆ Ωi whereas if x ∈ K then since
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fi(K) ⊆ Si(K) and fi(K) ⊆ co (Ci) ⊆ Ωi we have S??i (x) = Si(x) ∩ Ωi 6= ∅ .
Next if x ∈ K then S??i (x) = Si(x) ∩ Ωi ⊆ Fi(x) ∩ Ωi = F ??i (x). Also note if
y ∈ Ωi then

(S??i )−1(y) = {z ∈ X : y ∈ S??i (z)} = {z ∈ X : y ∈ Si(z) ∩ Ωi}
= {z ∈ X : y ∈ Si(z)} = S−1i (y)

which is open in X. Thus F ??i ∈ Φ?(X,Ωi) for i ∈ {1, ..., N}. Now apply
Theorem 2.1 (with Ki replaced by Ωi and Fi replaced by F ??i ) and Remark
2.3 and we see that there exists a x ∈ X with xi ∈ F ??i (x) = Fi(x) ∩ Ωi for
i ∈ {1, ..., N}. �

Theorem 2.6. Let I be an index set and {Xi}∈I a family of convex sets each
in a Hausdorff topological vector space Ei. For each i ∈ I suppose Fi : X ≡∏
i∈I Xi → Xi and in addition there exists a map Si : X → Xi with Si(x) 6= ∅

and has convex values for x ∈ X, Si(x) ⊆ Fi(x) for x ∈ X and S−1i (w) is
open (in X) for each w ∈ Xi. Also assume there is a compact subset K of
X and for each i ∈ I a convex compact subset Yi of Xi with Si(x) ∩ Yi 6= ∅
for x ∈ X\K. In addition suppose X is a q–Schauder admissible subset of the
Hausdorff topological vector space E =

∏
i∈I Ei. Then there exists a x ∈ X

with xi ∈ Fi(x) for i ∈ I.

Proof: For i ∈ I let F ?i and S? be as in Theorem 2.5 and the argument in
Theorem 2.5 guarantees that F ?i ∈ Φ?(K,Xi) for i ∈ I. Also for i ∈ I let
fi, Ci,Ωi and F ??i be as in Theorem 2.5 and the argument in Theorem 2.5
guarantees that F ??i ∈ Φ?(X,Ωi). Now apply Theorem 2.2 (with Ki replaced
by Ωi and Fi replaced by F ??i ) and Remark 2.3 and we see that there exists a
x ∈ X with xi ∈ F ??i (x) = Fi(x) ∩ Ωi for i ∈ I. �

One of the conditions in say Theorem 2.1 and Theorem 2.5 is that we
assume for each x ∈ X that Si(x) 6= ∅ for i ∈ {1, ..., N}. We will relax this
condition in our next results.

Theorem 2.7. Let {Xi}Ni=1 be a family of convex sets each in a Hausdorff

topological vector space Ei with X =
∏N
i=1Xi paracompact. For each i ∈

{1, ..., N} suppose Fi : X → Xi and in addition there exists a map Si : X → Xi

with Si(x) ⊆ Fi(x) for x ∈ X, Si(x) has convex values for x ∈ X and S−1i (w)
is open (in X) for each w ∈ Xi. Also assume for each i ∈ {1, ..., N} there
exists a convex compact set Ki with Fi(X) ⊆ Ki ⊆ Xi. Finally suppose
for each x ∈ X there exists a i ∈ {1, ..., N} with Si(x) 6= ∅. Then there
exists a x ∈ X and a i ∈ {1, .., N} with xi ∈ Fi(x) (in fact we will show

x ∈ K =
∏N
i=1 Ki).

Proof: Note Ai = {x ∈ X : Si(x) 6= ∅}, i ∈ {1, .., N} is an open covering
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of X (recall the fibres of Si are open). Now from [7, Lemma 5.1.6, pp301]
there exists a covering {Bi}Ni=1 of X where Bi is closed and Bi ⊂ Ai for all
i ∈ {1, ..., N}. For each i ∈ {1, .., N} let Gi : X → Xi and Ti : X → Xi be
given by

Gi(x) =

{
Fi(x), x ∈ Bi
Xi, x ∈ X\Bi

and

Ti(x) =

{
Si(x), x ∈ Bi
Xi, x ∈ X\Bi.

We claim for i ∈ {1, ..., N} that Gi ∈ Φ?(X,Xi). Note first for i ∈ {1, ..., N}
that Ti(x) 6= ∅ for x ∈ X since if x ∈ Bi then Ti(x) = Si(x) 6= ∅ since Bi ⊂ Ai
whereas if x ∈ X\Bi then Ti(x) = Xi. Also for x ∈ X and i ∈ {1, ..., N} then
if x ∈ Bi we have Ti(x) = Si(x) ⊆ Fi(x) = Gi(x) whereas if x ∈ X\Bi we
have Ti(x) = Xi = Gi(x). Also note if y ∈ Xi then

T−1i (y) = {z ∈ X : y ∈ Ti(z)}
= {z ∈ X\Bi : y ∈ Ti(z) = Xi} ∪ {z ∈ Bi : y ∈ Ti(z)}
= (X\Bi) ∪ {z ∈ Bi : y ∈ Si(z)}
= (X\Bi) ∪ [Bi ∩ {z ∈ X : y ∈ Si(z)}]
= (X\Bi) ∪

[
Bi ∩ S−1i (y)

]
= X ∩

[
(X\Bi) ∪ S−1i (y)

]
= (X\Bi) ∪ S−1i (y)

which is open in X (note S−1i (y) is open in X and Bi is closed in X). Thus
for i ∈ {1, ..., N} we have Gi ∈ Φ?(X,Xi).

Let K =
∏N
i=1 Ki (note K is compact) and let G?i denote the restriction of

Gi to K. We claim for i ∈ {1, ..., N} that G?i ∈ Φ?(K,Xi). To see this let T ?i
denote the restriction of Ti to K. Note T ?i (x) 6= ∅ for x ∈ K (since Ti(x) 6= ∅
for x ∈ X) and T ?i (x) ⊆ G?i (x) for x ∈ K (since Ti(x) ⊆ Gi(x) for x ∈ X).
Also if y ∈ Xi then

(T ?i )−1(y) = {z ∈ K : y ∈ T ?i (z)} = {z ∈ K : y ∈ Ti(z)}
= K ∩ {z ∈ X : y ∈ Ti(z)} = K ∩ T−1i (y)

which is open in K ∩X = K. Thus for i ∈ {1, ..., N} we have G?i ∈ Φ?(K,Xi)
with K compact. Now for i ∈ {1, ..., N} let G??i be given by G??i (x) = G?i (x)∩
Ki for x ∈ K. We claim for i ∈ {1, ..., N} that G??i ∈ Φ?(K,Ki). To see this
let T ??i be given by T ??i (x) = T ?i (x)∩Ki for x ∈ K. Note first for i ∈ {1, ..., N}
that T ??i (x) 6= ∅ for x ∈ K since if x ∈ Bi ∩K then T ??i (x) = Si(x) ∩Ki 6= ∅
since Bi ⊂ Ai and Si(x) ⊆ Fi(x) ⊆ Ki whereas if x ∈ K\Bi then T ??i (x) =
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Xi ∩Ki 6= ∅. Next note if x ∈ K then T ??i (x) = T ?i (x) ∩Ki ⊆ G?i (x) ∩Ki =
G??i (x). Also note if y ∈ Ki then

(T ??i )−1(y) = {z ∈ K : y ∈ T ??i (z)} = {z ∈ K : y ∈ T ?i (z) ∩Ki}
= K ∩ {z ∈ X : y ∈ Ti(z) ∩Ki}
= K ∩ {z ∈ X : y ∈ Ti(z)} = K ∩ T−1i (y)

which is open in K∩X = K. Thus for i ∈ {1, ..., N} we have G??i ∈ Φ?(K,Ki)
with K compact. Now for each i ∈ {1, ..., N} from [4] there exists a continuous
(single valued) selection fi : K → Ki of G??i with fi(x) ∈ T ??i (x) ⊆ G??i (x) for
x ∈ K and also there exists a finite set Ci of Ki with fi(K) ⊆ co (Ci) ≡ Di;
note co (Ci) ⊆ co (Ki) = Ki i.e. Di ⊆ Ki. Let

D =
N∏
i=1

Di and f(x) =
N∏
i=1

fi(x), x ∈ K.

Now f : K → K is continuous with f(K) ⊆ D. Since D =
∏N
i=1 Di ⊆∏N

i=1 Ki = K we have f : D → D and f(D) lies in a finite dimensional

subspace of E =
∏N
i=1 Ei. Note Di ⊆ co (Ci) ⊆ Ki is compact and D is

compact and convex. Brouwer’s fixed point theorem guarantees that there
exists a x ∈ D (⊆ K) with x = f(x) i.e. xj = fj(x) ∈ T ??j (x) ⊆ G??j (x) for
each j ∈ {1, .., N}. Thus xj ∈ G?j (x)∩Kj = Gj(x)∩Kj for each j ∈ {1, .., N}
i.e. xj ∈ Gj(x) for each j ∈ {1, ..., N}. Since {Bi}Ni=1 is a covering of X
there exists a j0 ∈ {1, .., N} with x ∈ Bj0 so xj0 ∈ Gj0(x) = Fj0(x). �

Remark 2.8. In Theorem 2.7 we showed there exists a x ∈ K and a j0 ∈
{1, .., N} with xj0 ∈ Fj0(x) and from our proof note x ∈ Bj0 ⊂ Aj0 . Also we
showed xj ∈ Gj(x) for each j ∈ {1, ..., N} where

Gj(x) =

{
Fj(x), x ∈ Bj
Xj , x ∈ X\Bj .

Remark 2.9. In the statement of Theorem 2.7 we could replace ”there exists
a map Si : X → Xi with Si(x) ⊆ Fi(x) for x ∈ X, Si(x) has convex values for
x ∈ X and S−1i (w) is open (in X) for each w ∈ Xi” with ”there exists a map
Si : X → Ki with Si(x) ⊆ Fi(x) for x ∈ X, Si(x) has convex values for x ∈ X
and S−1i (w) is open (in X) for each w ∈ Ki”. Here we define Gi : X → Ki

and Ti : X → Ki by

Gi(x) =

{
Fi(x), x ∈ Bi
Ki, x ∈ X\Bi

and

Ti(x) =

{
Si(x), x ∈ Bi
Ki, x ∈ X\Bi.
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The argument in Theorem 2.7 guarantees for each i ∈ {1, .., N} that Gi ∈
Φ?(X,Ki) and if G?i is the restriction of Gi to K then G?i ∈ Φ?(K,Ki); note
if T ?i is the restriction of Ti to K and if y ∈ Ki then (T ?i )−1(y) = K ∩ T−1i (y)
which is open in K. Next we can immediately apply the result in [4] to
guarantee a continuous selection fi : K → Ki of G?i and follow the reasoning in
Theorem 2.7 (note the introduction of G??i in Theorem 2.7 is not needed here).
Thus there exist a x ∈ D (⊆ K) with xj ∈ Gj(x) for each j ∈ {1, ..., N} so
there exists a j0 ∈ {1, .., N} with x ∈ Bj0 and so xj0 ∈ Gj0(x) = Fj0(x).

The same reasoning in Theorem 2.7 except Theorem 1.1 is used instead of
Brouwer’s fixed point theorem immediately yields our next result.

Theorem 2.10. Let I be an index set and {Xi}i∈I be a family of convex sets
each in a Hausdorff topological vector space Ei with X =

∏
i∈I Xi paracompact.

Also assume X is a q–Schauder admissible subset of the Hausdorff topological
vector space E =

∏
i∈I Ei. For each i ∈ I suppose Fi : X → Xi and in

addition there exists a map Si : X → Xi with Si(x) ⊆ Fi(x) for x ∈ X, Si(x)
has convex values for x ∈ X and S−1i (w) is open (in X) for each w ∈ Xi. Also
assume for each i ∈ I there exists a convex compact set Ki with Fi(X) ⊆ Ki ⊆
Xi. Finally suppose for each x ∈ X there exists a i ∈ I with Si(x) 6= ∅. Then
there exists a x ∈ X and a i ∈ I with xi ∈ Fi(x) (in fact x ∈ K =

∏
i∈I Ki).

Remark 2.11. (i). Note there is an analogue Remark 2.9 for Theorem 2.10.
(ii). If in Theorem 2.10 we replace ”suppose for each x ∈ X there exists a i ∈ I
with Si(x) 6= ∅” with ”suppose there exists a finite subset I0 of I such that for
each x ∈ X there exists a i ∈ I0 with Si(x) 6= ∅” then X being a q–Schauder
admissible subset of the Hausdorff topological vector space E can be removed.
Note we use the Brouwer fixed point theorem instead of Theorem 1.1 since
Ai = {x ∈ X : Si(x) 6= ∅}, i ∈ I is an open covering of X can be replaced by
Ai = {x ∈ X : Si(x) 6= ∅}, i ∈ I0 is an open covering of X and proceed as in
Theorem 2.7 with {1, ..., N} replaced by I0. An example of the above situation
is if X ≡

∏
i∈I Xi is compact (of course no reference to paracompactness is

needed in this situation and one could restate Theorem 2.10).

Theorem 2.12. Let {Xi}Ni=1 be a family of convex sets each in a Hausdorff

topological vector space Ei with X =
∏N
i=1Xi paracompact. For each i ∈

{1, ..., N} suppose Fi : X → Xi and in addition there exists a map Si : X → Xi

with Si(x) ⊆ Fi(x) for x ∈ X, Si(x) has convex values for x ∈ X and S−1i (w)
is open (in X) for each w ∈ Xi. Also assume there is a compact subset K of
X and for each i ∈ {1, .., N} a convex compact subset Yi of Xi such that for
each x ∈ X\K there exists a j ∈ {1, .., N} with Sj(x) ∩ Yj 6= ∅. Suppose for
each x ∈ X there exists a i ∈ {1, ..., N} with Si(x) 6= ∅. Then there exists a
x ∈ X and a i ∈ {1, .., N} with xi ∈ Fi(x).



COLLECTIVELY FIXED POINT THEORY 203

Proof: Let Ai, Bi, Gi and Ti be as in Theorem 2.7. The same reasoning as
in Theorem 2.7 guarantees that for i ∈ {1, ..., N} we have Gi ∈ Φ?(X,Xi).
Let K be as in the statement of Theorem 2.12 and let G?i (respectively, T ?i )
denote the restriction of Gi (respectively, Ti) to K. The same reasoning as
in Theorem 2.7 guarantees that for i ∈ {1, ..., N} we have G?i ∈ Φ?(K,Xi).
Now for each i ∈ {1, ..., N} from [4] there exists a continuous (single valued)
selection fi : K → Xi of G?i with fi(x) ∈ T ?i (x) ⊆ G?i (x) for x ∈ K and also
there exists a finite set Ci of Xi with fi(K) ⊆ co (Ci). Let

Ωi = co (co (Ci) ∪ Yi) for i ∈ {1, ..., N}

which is a convex compact [3] subset of Xi. For each x ∈ X and i ∈ {1, ..., N}
let F ??i (x) = Fi(x) ∩ Ωi and S??i (x) = Si(x) ∩ Ωi. Note if x ∈ X then
S??i (x) = Si(x) ∩ Ωi ⊆ Fi(x) ∩ Ωi = F ??i (x). Also note if y ∈ Ωi then

(S??i )−1(y) = {z ∈ X : y ∈ S??i (z)} = {z ∈ X : y ∈ Si(z) ∩ Ωi}
= {z ∈ X : y ∈ Si(z)} = S−1i (y)

which is open in X.
Let x ∈ X. We claim there exists a i ∈ {1, .., N} with S??i (x) 6= ∅.

This is immediate if x ∈ X\K since from one of our assumptions in the
statement of Theorem 2.12 there exists a j ∈ {1, .., N} with Sj(x)∩ Yj 6= ∅ so
S??j (x) = Sj(x) ∩ Ωj 6= ∅ since Yj ⊆ Ωj . It remains to consider x ∈ K. Since

{Bi}Ni=1 is a covering of X there exists a j0 ∈ {1, .., N} with x ∈ Bj0 . Note
fj0(x) ∈ T ?j0(x) = Tj0(x) = Sj0(x) since x ∈ Bj0 and fj0(x) ∈ co (Cj0) ⊆ Ωj0 .
Thus S??j0 (x) = Sj0(x) ∩ Ωj0 6= ∅. Combining all the above we see that there
exists a i ∈ {1, .., N} with S??i (x) 6= ∅.

Next note for i ∈ {1, ..., N} that F ??i (X) ⊆ Ωi (since F ??i (x) = Fi(x)∩Ωi ⊆
Ωi) and Ωi is a convex compact subset of Xi. Now apply Theorem 2.7 (with
Ki replaced by Ωi, Fi replaced by F ??i and Si replaced by S??i ) and Remark
2.9 so there exists a x ∈ X and a i ∈ {1, ..., N} with xi ∈ F ??i (x) = Fi(x)∩Ωi
i.e. xi ∈ Fi(x). �

The same reasoning in Theorem 2.12 except Theorem 2.10 replaces Theo-
rem 2.7 immediately yields our next result.

Theorem 2.13. Let I be an index set and {Xi}i∈I be a family of convex sets
each in a Hausdorff topological vector space Ei with X =

∏
i∈I Xi paracompact.

Also assume X is a q–Schauder admissible subset of the Hausdorff topological
vector space E =

∏
i∈I Ei. For each i ∈ I suppose Fi : X → Xi and in

addition there exists a map Si : X → Xi with Si(x) ⊆ Fi(x) for x ∈ X, Si(x)
has convex values for x ∈ X and S−1i (w) is open (in X) for each w ∈ Xi.
Also assume there is a compact subset K of X and for each i ∈ I a convex
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compact subset Yi of Xi such that for each x ∈ X\K there exists a j ∈ I with
Sj(x) ∩ Yj 6= ∅. Suppose for each x ∈ X there exists a i ∈ I with Si(x) 6= ∅.
Then there exists a x ∈ X and a i ∈ I with xi ∈ Fi(x).

Now we present an analytic alternative.

Theorem 2.14. Let {Xi}Ni=1 be a family of convex sets each in a Hausdorff

topological vector space Ei with X =
∏N
i=1Xi paracompact. For i ∈ {1, ..., N}

let fi, gi : X × Xi → R with gi(x, y) ≤ fi(x, y) for all (x, y) ∈ X × Xi, let
λi ∈ R and let for x ∈ X,

Fi(x) = {zi ∈ Xi : fi(x, zi) > λi} and Si(x) = {zi ∈ Xi : gi(x, zi) > λi}.

Assume for each i ∈ {1, ..., N} that Si(x) is convex valued for each x ∈ X and
S−1i (w) is open (in X) for each w ∈ Xi. In addition suppose either

(1). for each i ∈ {1, ..., N} there exists a convex compact set Ki with Fi(X) ⊆
Ki ⊆ Xi,

or

(2). there is a compact subset K of X and for each i ∈ {1, .., N} a convex
compact subset Yi of Xi such that for each x ∈ X\K there exists a j ∈ {1, .., N}
with Sj(x) ∩ Yj 6= ∅,

hold. Then either

(A1). there exists a x ∈ X and a i ∈ {1, ..., N} with xi ∈ Fi(x) (i.e. fi(x, xi) >
λi),

or

(A2). there exists a x ∈ X with supzi∈Xi
gi(x, zi) ≤ λi for all i ∈ {1, .., N}

occurs.

Proof: Note either (a). there exists a x ∈ X with Si(x) = ∅ for all i ∈
{1, ..., N} or (b). for each x ∈ X there exists a i ∈ {1, ..., N} with Si(x) 6= ∅.

Suppose (a) holds. Then for this x we have Si(x) = ∅ for all i ∈ {1, ..., N} so
for all i ∈ {1, ..., N} we have gi(x, zi) ≤ λi for zi ∈ Xi (so supzi∈Xi

gi(x, zi) ≤
λi).

Suppose (b) holds. Note Si is a selection of Fi so Theorem 2.7 (if (1) oc-
curs)) or Theorem 2.12 (if (2) occurs) guarantees a x ∈ X and a i ∈ {1, ..., N}
with xi ∈ Fi(x) so fi(x, xi) > λi (i.e. (A1) occurs). �

The same reasoning in Theorem 2.14 except Theorem 2.10 (respectively,
Theorem 2.12) replaces Theorem 2.7 (respectively, Theorem 2.13) immediately
yields our next result.
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Theorem 2.15. Let I be an index set and {Xi}i∈I be a family of convex sets
each in a Hausdorff topological vector space Ei with X =

∏
i∈I Xi paracompact.

Also assume X is a q–Schauder admissible subset of the Hausdorff topological
vector space E =

∏
i∈I Ei. For i ∈ I let fi, gi : X ×Xi → R with gi(x, y) ≤

fi(x, y) for all (x, y) ∈ X ×Xi, let λi ∈ R and let for x ∈ X,

Fi(x) = {zi ∈ Xi : fi(x, zi) > λi} and Si(x) = {zi ∈ Xi : gi(x, zi) > λi}.

Assume for each i ∈ I that Si(x) is convex valued for each x ∈ X and S−1i (w)
is open (in X) for each w ∈ Xi. In addition suppose either

(1). for each i ∈ I there exists a convex compact set Ki with Fi(X) ⊆ Ki ⊆ Xi,

or

(2). there is a compact subset K of X and for each i ∈ I a convex compact
subset Yi of Xi such that for each x ∈ X\K there exists a j ∈ I with Sj(x) ∩
Yj 6= ∅,

hold. Then either

(A1). there exists a x ∈ X and a i ∈ I with xi ∈ Fi(x) (i.e. fi(x, xi) > λi),

or

(A2). there exists a x ∈ X with supzi∈Xi
gi(x, zi) ≤ λi for all i ∈ I

occurs.

Note Theorem 2.14 (and Theorem 2.15) immediately guranatees a min-
imax inequality. Suppose fi and gi are as in Theorem 2.14 and let λi =
supx∈X [fi(x, xi)]. Assume λi < ∞ for all i ∈ {1, ..., N}. Now suppose the
assumptions in Theorem 2.14 hold with these λi, i ∈ {1, .., N}. First note
that (A1) cannot occur since if there a x ∈ X and a i ∈ {1, ..., N} with
fi(x, xi) > λi i.e. fi(x, xi) > supx∈X [fi(x, xi)] we have a contradiction. Thus
there exists a x ∈ X with supzi∈Xi

gi(x, zi) ≤ λi for all i ∈ {1, ..., N} i.e.

sup
zi∈Xi

gi(x, zi) ≤ sup
x∈X

fi(x, xi) for all i ∈ {1, ..., N}.

Remark 2.16. A game has N players and each player must select a strategy
in a set determined by the strategies chosen by the other players. Here Xi

denotes the set of strategies of the ith player and each element of X =
∏N
i=1 Xi

determines an outcome. The payoff to the ith player is hi (which is defined
on X). Let xi be given in Xi (the strategies of all the others). For x ∈ X,
i ∈ {1, ..., N}, yi ∈ Xi we write (xi, yi) as a point in X having the same
components as x except the ith component is replaced by yi; note any x ∈ X
can be written as (xi, xi) for any i ∈ {1, ..., N} where xi denotes the projection
of x onto Xi. The ith player chooses yi ∈ Xi so as to maximize hi(x

i, yi). An
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equilibrium point is a strategy point x ∈ X such that for all i ∈ {1, .., N} we
have

xi ∈ Xi and hi(x) = max
yi∈Xi

hi(x
i, yi).

Suppose for i ∈ {1, .., N} we have fi : X ×Xi → R given by

fi(x, yi) = hi(x
i, yi)− hi(x) and gi(x, yi) = fi(x, yi)

for all x ∈ X and yi ∈ Xi. Let λi = supx∈X [fi(x, xi)] and assume λi <∞ for
all i ∈ {1, ..., N}. Suppose the assumptions in Theorem 2.14 hold with these
λi, i ∈ {1, ..., N}; here Fi = Si for i ∈ {1, .., N} in this case. From the above
minimax inequality we deduce that there exists a x ∈ X with

sup
yi∈Xi

fi(x, yi) ≤ sup
x∈X

fi(x, xi) for all i ∈ {1, ..., N}

i.e.

sup
yi∈Xi

[hi(x
i, yi)− hi(x)] ≤ sup

x∈X
[hi(x

i, xi)− hi(x)] = 0 for all i ∈ {1, ..., N}.

Thus supyi∈Xi
hi(x

i, yi) ≤ hi(x) for all i ∈ {1, ..., N}. Note also for i ∈
{1, ..., N} that hi(x) = hi(x

i, xi) ≤ supyi∈Xi
hi(x

i, yi) so

hi(x) = sup
yi∈Xi

hi(x
i, yi) for all i ∈ {1, ..., N}.

To guarantee an equilibrium point conditions are put on hi to guarantee that
the above achieves its maximum on Xi.
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