
DOI: 10.2478/auom-2022-0007
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Stochastic orders of log-epsilon-skew-normal
distributions

Luigi-Ionut Catana

Abstract

The log-epsilon-skew-normal distributions family is generalized class
of log-normal distribution. Is widely used to model non-negative data
in many areas of applied research. We give necessary and/or sufficient
conditions for some stochastic orders of log-epsilon-skew-normal distri-
butions. Also, we give sufficient conditions for orders of moments and
Gini indexes. Finally, it is presented a real data application.

1 Introduction

The log-normal distribution has a long and rich history. Galton (1879) sug-
gested the use of the log-normal distribution to analyze data for which the
geometric mean is better than the arthimatic mean for estimating central
tendency. McAlister (1879) derived the log-normal distribution at Galton’s
suggestion. For a review of the history of log-normal distribution and its
applications as a generative law see Mitzenmacher (2004). Finney (1941) ex-
amined the moments, moment estimation, and efficiency of the estimation.
The epsilon-skew normal (ESN) distribution was introduced as a skew exten-
sion of the normal distribution in same spirit as Azzalini’s (1985) skew-normal
(SN) distribution. A key advantage of the LESN family is that it includes

Key Words: Stochastic order, Log-Normal distribution, index Gini.
2010 Mathematics Subject Classification: Primary 60E15; Secondary 62G32.
Received: 13.07.2021
Accepted: 13.09.2021

109



STOCHASTIC ORDERS OF LOG-EPSILON-SKEW-NORMAL
DISTRIBUTIONS 110

as a subfamily the log-normal distributions, which are well known to be in
use in a wide spectrum of disciplines. Examples include astrophysics, Gandhi
(2009), environmental sciences, Benning and Barnes (2009), computer science,
Doerr et al. (2013), economics, Cobb et al. (2013), biomedical, Feng et al.
(2013), and radiology, Neti and Howell (2008). Limpert et al. (2001) com-
pared the use of the log-normal distribution across several different science
disciplines. Hutson et al. (2020) introduced and studied a family of distri-
butions with non-negative reals as support and termed the log-epsilon-skew
normal (LESN) which includes the log-normal distributions as a special case.

Life expectancy is one of the most meaningful and widely used summary
measure of the distribution of lifespan (length of life). However, the variability
of this distribution is an equally important measure to consider, since the same
life expectancy value can derive from very different shapes of this distribution.
Gini coefficient is the most common statistical index of diversity or inequality
in social sciences (Kendall and Stuart (1966), Allison (1978)). It is widely used
in econometrics as a standard measure of inter-individual or inter-household
inequality in income and wealth (Atkinson (1970, 1980), Sen and Amartia
(1973), Anand (1983)). Illsey and Le Grand (1987) who justified the use of
Gini coefficient for the analysis of inequality in health in the 1980s, stressed
that the individual-based measurement of inequality in health is a way to a
universal comparability of degrees of inequality over time and across countries.

Another intersting subject which we can use this distribution is survival
analyzes which have been developed mainly in the medical and biological sci-
ences, but are widely used in the social sciences such as economics and engi-
neering (reliability and failure time analysis). The changes that characterize
the changing stage of mortality are measured by variables such as age-specific
death rates, life expectancy at birth, probabilities of death and survival func-
tion. Survival analysis methods depend on the distribution of survival and on
the hazard function.

A classical method to compare survival, hazard rate functions or Gini in-
dex is stochastic orders which are strongly related to the insurance and risk
theory. For introduction in the field, we recommend the reader more recent
books (see, for instance Shaked and Shanthikumar (2007) and Levy (2015)).
Recent results regarding Gini index were given by: Zbaganu (2020) analized
Loenz order and Gini index for a recent model, Preda and Catana (2021) gave
theoretical results for different stochastic orders of a log-scale-location family
which uses Tsallis statistics functions and results which describe the inequal-
ities of moments or Gini index according to parameters, Buffa et al. (2020)
analized the inequality of the Gini coefficient in the case of a kinetic model for
Wealth distribution. Also, results describing the problem of stochastic orders
were given by: Ortega-Jiménez et al. (2021) provide sufficient conditions for
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comparing several distances between pairs of random variables (with possibly
different distribution functions) in terms of various stochastic orderings;

Balakrishnan et al. (2021) analized hazard rate and reversed hazard rate
orders of parallel systems with components having proportional reversed haz-
ard rates and starting devices; Catana and Raducan (2020c) gave sufficient
conditions for stochastic order of multivariate uniform distributions on closed
convex sets; Catana (2021a) gave theoretical results for equivalence between
di erent stochastic orders of some kind multivariate Pareto distribution family;
Sfetcu et al. (2021) introduced a stochastic order on Awad–Varma residual
entropy and studied some properties of this order, like closure, reversed clo-
sure and preservation in some stochastic models (the proportional hazard rate
model, the proportional reversed hazard rate model, the proportional odds
model and the record values model); Catana and Preda (2021b) proved that
different orders between parameters vectors imply the hazard order and reverse
hazard order between extremes order statistics of transmuted distributions;

Berrendero and Cárcamo (2012) provided a new meaning to the corre-
sponding test statistics; Nadeb and Torabi (2020) analized different stochastic
comparisons in the transmuted-G family with different parameters; Ahmadi
and Arghami (2001) analized some univariate stochastic orders on record val-
ues; Bancescu (2018) presented the likelihood order of some classes of statis-
tical distributions.

The purpose of this work is to analyze different stochastic orders and the
order between some elements of log-epsilon-skew-normal distributions (for ex-
ample Gini index or the moments) and also the usual stochastic order of the
log-scale-location models. The structure of this article is: in the section 2
there are presented the preliminaries; in the section 3 there is presented the
log-epsilon-skew-normal distributions family and some mathematical proper-
ties; in the section 4 we give necessary and/or sufficient conditions for different
stochastic orders of log-epsilon-skew-normal distributions and some direct con-
sequences; in the section 5 we give sufficient conditions for ususal stochastic
order of log-scale-location models; in the section 6 we illustrate the theoret-
ical results whit a real data application. In the last section we present the
conclusions of this article.

2 Preliminaries

Let (Ω,F, P ) be a probability space. Let X : Ω→ R be a random variable. For
a random variable X we consider µX(B) = P (X ∈ B) be its distribution on
(R,B(R)), FX(x) = P (X ≤ x) its distribution function and survival function
FX (x) = 1− FX(x), where x ∈ R.
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If X is absolutely continuous according to Lebesgue measure then we
denote fX (x) = (FX(x))

′
its density function. Also, we denote QX(p) =

inf {x ∈ R : p ≤ FX (x)} the quantile function of X.
If FX is differentiable, we define the hazard rate function rX : Supp(FX)→

R, rX =
(
− lnFX

)′
, where for a function g : R → R, Supp(g) = {x ∈ R :

g(x) 6= 0}.
Also, for a random variable X with E (X) 6= 0 it is defined

LX(p) =

∫ p
0
QX(u)du

EX

the Lorenz curve of X and

GX =

∫∞
0

∫∞
0
|t1 − t2| dFX (t1) dFX (t2)

2EX

the Gini index of X (see Arnold (2007, 1987)).
Another formulas for the Gini index of X are

GX = 1−
∫∞

0
F

2

X(x)dx∫∞
0
FX(x)dx

and

GX = 1− 2

∫ 1

0

LX(p)dp.

For a ≥ 1, the a-Gini generalized index

GX;a = 1− a (a− 1)

∫ 1

0

(1− p)a−2
LX (p) dp.

We notice that GX;2 = GX .
A simple a simple calculation shows that

GX;a = 1−
∫∞

0
F
a

X(x)dx∫∞
0
FX(x)dt

= 1−
∫∞

0
F
a

X(x)dx

EX
.

For a function g : R→ R, g(x)+ = max(g(x), 0) and g(x)− = min(g(x), 0).
Definition. (Shaked and Shanthikumar, 2007) Let X, Y : Ω→ R random

variables. We say that X is said to be smaller than Y in the
(i) stochastic order (written as X ≺st Y ) if FX (x) ≤ FY (x) ∀x ∈ R;
(ii) hazard rate order (written as X ≺hr Y ) if rX(x) ≥ rY (x) ∀x ∈

Supp(FX) ∩ Supp(FY );
(iii) Lorenz order (written as X ≺Lorenz Y ) if LX (p) ≥ LY (p) ∀p ∈ [0; 1] ;
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(iv) likelihood ratio order (written as X ≺lr Y ) if fY (x)
fX(x) is increasing in

x ∈ Supp(fX) ∪ Supp(fY ).
Another equivalent definition for stochastic order is:
Definition. (Shaked and Shanthikumar, 2007) Let X, Y : Ω→ R random

variables. We say that X is said to be smaller than Y in the stochastic order
(written as X ≺st Y ) if Eu(X) ≤ Eu(Y ), for all increasing functions u :
R→ R, provided that the means exists.

Definition. (Shaked and Shanthikumar, 2007) Let X, Y : Ω→ R random
variables. We say that X is said to be smaller than Y in the increasing convex
order (written as X ≺icx Y ) if Eu(X) ≤ Eu(Y ), for all increasing convex
functions u : R→ R, provided that the means exists.

Definition. (Shaked and Shanthikumar, 2007) Let X, Y : Ω→ R random
variables. We say that X is said to be smaller than Y in the increasing convex
order (written as X ≺cx Y ) if Eu(X) ≤ Eu(Y ), for all convex functions
u : R→ R, provided that the means exists.

It is well known:
Proposition 2.1. (Shaked and Shanthikumar, 2007) X ≺lr Y ⇒ X

≺hr Y ⇒ X ≺st Y.
Proposition 2.2. (Shaked and Shanthikumar, 2007) X ≺cx Y ⇔ X ≺icx

Y and EX = EY.
Proposition 2.3. (Shaked and Shanthikumar, 2007) X ≺Lorenz Y ⇔

X ≺cx Y and EX = EY.
Proposition 2.4. (Shaked and Shanthikumar, 2007) X ≺Lorenz Y ⇒

GX ≤ GY .

3 Log-epsilon-skew-normal distribution

Hutson et al. (2020) introduced the following distributions family:
Definition. We say the random variable X is log-epsilon-skew-normal

(LESN) distributed with the parameters θ ∈ R, σ ∈ (0,∞), ε ∈ (−1, 1) (and
we denote X ∼ LESN (θ, σ, ε)) if

fX (x) = 1
x
√

2πσ
· e−

(ln x−θ)2

2σ2(1−ε)2 · 1(0,eθ) (x) + 1
x
√

2πσ
· e−

(ln x−θ)2

2σ2(1+ε)2 · 1[eθ,∞) (x) .

Also they computed:
the distribution function
FX (x) = (1− ε) Φ

(
ln x−θ
σ(1−ε)

)
·1(0,eθ) (x)+

(
−ε+ (1 + ε) Φ

(
ln x−θ
σ(1+ε)

))
·1[eθ,∞) (x) ,

where Φ is distribution function of standard normal distribution and Φ =
1− Φ;

the quantile function QX(x) = eθ+σQ0(x) for x ∈ [0, 1] , where
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Q0(u) = (1− ε) Φ−1
(

u
1−ε

)
· 1(0, 1−ε2 ) (u) +

(
−ε+ (1 + ε) Φ−1

(
u+ε
1+ε

))
·

1[ 1−ε2 ,1) (u) ,

the k-th moment (k ∈ Z, k ≥ 1)

E
(
Xk
)

= eθk
(

(1− ε) e
(1−ε)2σ2k2

2 · Φ (− (1− ε)σk) + (1 + ε) e
(1+ε)2σ2k2

2 · Φ ((1 + ε)σk)

)
and the hazard function

rX (x) =
1

x
√

2πσ
·e
− (ln x−θ)2

2σ2(1−ε)2

1−(1−ε)Φ( ln x−θ
σ(1−ε) )

· 1(0,eθ) (x) +
1

x
√

2πσ
·e
− (ln x−θ)2

2σ2(1+ε)2

(1+ε)Φ( ln x−θ
σ(1+ε) )

· 1[eθ,∞) (x) .

Also in Hutson et al. (2020) there were given another properties of this
distribution.

4 Stochastic orders of log-epsilon-skew-normal distribu-
tion

In this section we analize different stochastic order and as a consequence the
inequalities between the moments and the a-Gini generalized index of two
log-epsilon-skew-normal distributions.

Let us consider the positive real random variables X and Y.
Theorem 4.1 gives necessary conditions for usual stochastic order and the-

orem 4.2 gives sufficient conditions for usual stochastic order between two
log-epsilon-skew-normal distributions.

Theorem 4.1. Let the random variables X ∼ LESN (θX , σX , εX) and
Y ∼ LESN (θY , σY , εY ) . If X ≺st Y then only one of the statements is true:

(i) εX < εY , σX (1− εX) > σY (1− εY ) , σX (1 + εX) < σY (1 + εY ) ;
(ii) θX ≥ θY , σX ≥ σY , εX > εY ;
(iii) θX ≤ θY , σX ≥ σY , εX < εY ;
(iv) θX = θY , σX = σY , εX = εY .
Proof. If X ≺st Y then FX (x) ≥ FY (x) ∀x > 0.
Then

(1− εX) Φ

(
lnx− θX
σX (1− εX)

)
≥ (1− εY ) Φ

(
lnx− θY
σY (1− εY )

)
∀x ∈

(
0,min

(
eθX , eθY

))
⇔
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1− εX ≥ (1− εY ) ·
Φ
(

ln x−θY
σY (1−εY )

)
Φ
(

ln x−θX
σX(1−εX)

) ∀x ∈ (0,min
(
eθX , eθY

))
But there exists

lim
x→0
x>0

Φ
(

ln x−θY
σY (1−εY )

)
Φ
(

ln x−θX
σX(1−εX)

) = lim
x→0
x>0

∂
∂xΦ

(
ln x−θY
σY (1−εY )

)
∂
∂xΦ

(
ln x−θX
σX(1−εX)

) =

lim
x→0
x>0

σX (1− εX)

σY (1− εY )
· e

1
2

[(
ln x−θX
σX(1−εX)

)2

−
(

ln x−θY
σY (1−εY )

)2]
=

σX (1− εX)

σY (1− εY )
· lim
x→0
x>0

e
1
2 [A1·(ln x)2+A2·ln x+A3]

where A1 = 1
(σX(1−εX))2

− 1
(σY (1−εY ))2

, A2 = 2θY
(σY (1−εY ))2

− 2θX
(σX(1−εX))2

,

A3 =
θ2X

(σX(1−εX))2
− θ2Y

(σY (1−εY ))2
.

From

1− εX ≥ (1− εY ) ·
Φ
(

ln x−θY
σY (1−εY )

)
Φ
(

ln x−θX
σX(1−εX)

)∀x ∈ (0,min
(
eθX , eθY

))
it results

1− εX ≥ (1− εY ) · lim
x→0
x>0

Φ
(

ln x−θY
σY (1−εY )

)
Φ
(

ln x−θX
σX(1−εX)

)
then

lim
x→0
x>0

[
A1 · (lnx)

2
+A2 · lnx+A3

]
∈ R ∪ {−∞} .

Thus A1 < 0 or (A1 = 0 and A2 ≤ 0).
Also, from FX (x) ≥ FY (x) ∀x > 0 we have

−εX + (1 + εX) Φ

(
lnx− θX
σX (1 + εX)

)
≥
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−εY + (1 + εY ) Φ

(
lnx− θY
σY (1 + εY )

)
∀x ∈

(
max

(
eθX , eθY

)
,∞
)
⇔

(1 + εX) Φ

(
lnx− θX
σX (1 + εX)

)
≤

(1 + εY ) Φ

(
lnx− θY
σY (1 + εY )

)
∀x ∈ [max

(
eθX , eθY

)
,∞)⇔

(1 + εX) ·
Φ
(

ln x−θX
σX(1+εX)

)
Φ
(

ln x−θY
σY (1+εY )

) ≤ 1 + εY ∀x ∈ [max
(
eθX , eθY

)
,∞)

But there exists

lim
x→∞

Φ
(

ln x−θX
σX(1+εX)

)
Φ
(

ln x−θY
σY (1+εY )

) = lim
x→∞

∂
∂xΦ

(
ln x−θX
σX(1+εX)

)
∂
∂xΦ

(
ln x−θY
σY (1+εY )

) =

lim
x→∞

σY (1 + εY )

σX (1 + εX)
· e

1
2

[(
ln x−θY
σY (1+εY )

)2

−
(

ln x−θX
σX(1+εX)

)2]
=

σY (1 + εY )

σX (1 + εX)
· lim
x→∞

e
1
2 [B1·(ln x)2+B2·ln x+B3]

where B1 = 1
(σY (1+εY ))2

− 1
(σX(1+εX))2

, B2 = 2θX
(σX(1−εX))2

− 2θY
(σY (1−εY ))2

,

B3 =
θ2Y

(σY (1+εY ))2
− θ2X

(σX(1+εX))2
.

From

(1 + εX) ·
Φ
(

ln x−θX
σX(1+εX)

)
Φ
(

ln x−θY
σY (1+εY )

) ≤ 1 + εY ∀x ∈ [max
(
eθX , eθY

)
,∞)

it results

(1 + εX) · lim
x→∞

Φ
(

ln x−θX
σX(1+εX)

)
Φ
(

ln x−θY
σY (1+εY )

) ≤ 1 + εY
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then

lim
x→∞

[
B1 · (lnx)

2
+B2 · lnx+B3

]
∈ R ∪ {−∞} .

Thus B1 < 0 or (B1 = 0 and B2 ≤ 0).
Case 1: A1 < 0 , B1 < 0
Then σX (1− εX) > σY (1− εY ) (which is equvalent with 1

σX(1−εX) <
1

σY (1−εY ) ) and σX (1 + εX) < σY (1 + εY ), thus

1

σX (1− εX)
· σX (1 + εX) <

1

σY (1− εY )
· σY (1 + εY )⇔

1 + εX
1− εX

<
1 + εY
1− εY

⇔ εX < εY .

Therefore case 1 occurs.
Case 2: (A1 = 0 and A2 ≤ 0) and B1 < 0
Then σX (1 + εX) < σY (1 + εY ) (which is equvalent with 1

σX(1+εX) >
1

σY (1+εY ) ) and σX (1− εX) = σY (1− εY ), thus

1

σX (1 + εX)
· σX (1− εX) <

1

σY (1 + εY )
· σY (1− εY )⇔

1− εX
1 + εX

<
1− εY
1 + εY

⇔ εX > εY .

A2 ≤ 0⇒ θX ≥ θY .
If σX < σY then σX (1− εX) < σY (1− εY ) , contradiction!
Then σX ≥ σY . Therefore case 2 occurs.
Case 3: A1 < 0 and (B1 = 0 and B2 ≤ 0)
Then σX (1− εX) > σY (1− εY ) (which is equvalent with 1

σX(1−εX) <
1

σY (1−εY ) ) and σX (1 + εX) = σY (1 + εY ), thus

1

σX (1− εX)
· σX (1 + εX) <

1

σY (1− εY )
· σY (1 + εY )⇔

1 + εX
1− εX

<
1 + εY
1− εY

⇔ εX < εY .

B2 ≤ 0⇒ θX ≤ θY .
If σX < σY then σX (1 + εX) < σY (1 + εY ) , contradiction!
Then σX ≥ σY . Therefore case 3 occurs.
Case 4: (A1 = 0 and A2 ≤ 0) and (B1 = 0 and B2 ≤ 0)
Then σX (1− εX) = σY (1− εY ),σX (1 + εX) = σY (1 + εY ) , θX ≤ θY , θY ≤

θX .
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θX ≤ θY , θY ≤ θX ⇒ θX = θY .
If σX (1− εX) = σY (1− εY ) and σX (1 + εX) = σY (1 + εY ) then 1−εX

1+εX
=

1−εY
1+εY

, thus εX = εY .
It results σX = σY . Therefore case 4 occurs. �
Theorem 4.2. Let the random variables X ∼ LESN (θX , σX , εX) and

Y ∼ LESN (θY , σY , εY ) .
If

εX ≤ εY , θX ≤ θY , σX (1− εX) ≥ σY (1− εY ) , σX (1 + εX) ≤ σY (1 + εY )

then X ≺st Y.
Proof. We have 1− εX ≥ 1− εY and 1 + εX ≤ 1 + εY .
If x ∈

(
0, eθX

)
then ln x−θX

σX(1−εX) ≥
ln x−θY
σY (1−εY ) .

Thus

FX (x) = (1− εX) Φ

(
lnx− θX
σX (1− εX)

)
≥ (1− εY ) Φ

(
lnx− θY
σY (1− εY )

)
= FY (x) .

If x ∈ [eθX , eθY ) then

−εX + (1 + εX) Φ
(

ln x−θX
σX(1+εX)

)
= 1− (1 + εX) Φ

(
ln x−θX
σX(1+εX)

)
≥

1− (1 + εX) Φ (0) = 1−εX
2 ≥ 1−εY

2 =

(1− εY ) · Φ (0) ≥ (1− εY ) Φ
(

ln x−θY
σY (1−εY )

)
.

Thus FX (x) ≥ FY (x) .
If x ∈ [eθY ,∞) then ln x−θX

σX(1+εX) ≥
ln x−θY
σY (1+εY ) .

Thus

FX (x) = −εX + (1 + εX) Φ

(
lnx− θX
σX (1 + εX)

)
=

1− (1 + εX) Φ

(
lnx− θX
σX (1 + εX)

)
≥ 1− (1 + εY ) Φ

(
lnx− θY
σY (1 + εY )

)
=

−εY + (1 + εY ) Φ

(
lnx− θY
σY (1 + εY )

)
= FY (x) .

It results X ≺st Y. �
Theorem 4.3 gives necessary and sufficient conditions for likelihood ratio

order between two log-epsilon-skew-normal distributions.
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Theorem 4.3. Let the random variables X ∼ LESN (θX , σX , εX) and
Y ∼ LESN (θY , σY , εY ) .

Then X ≺lr Y if and only if θX = θY , σX (1− εX) ≥ σY (1− εY ) and
σX (1 + εX) ≥ σY (1 + εY ) .

Proof. We prove the ”⇒” implication.
For x ∈

(
0,min

(
eθX , eθY

))
we have

fY (x)
fX(x) =

1
x
√

2πσY
·e
− (ln x−θY )2

2σ2
Y (1−εY )2

1
x
√

2πσX
·e
− (ln x−θX)2

2σ2
X(1−εX)2

= e
1
2 [A1·(ln x)2+A2·ln x+A3], where

A1 = 1
(σX(1−εX))2

− 1
(σY (1−εY ))2

, A2 = 2θY
(σY (1−εY ))2

− 2θX
(σX(1−εX))2

, A3 =

θ2X
(σX(1−εX))2

− θ2Y
(σY (1−εY ))2

.

For x ∈
(
max

(
eθX , eθY

)
,∞
)

we have

fY (x)
fX(x) =

1
x
√

2πσY
·e
− (ln x−θY )2

2σ2
Y (1+εY )2

1
x
√

2πσX
·e
− (ln x−θX)2

2σ2
X(1+εX)2

= e
1
2 [B1·(ln x)2+B2·ln x+B3], where

B1 = 1
(σY (1+εY ))2

− 1
(σX(1+εX))2

, B2 = 2θX
(σX(1+εX))2

− 2θY
(σY (1+εY ))2

, B3 =

θ2Y
(σY (1+εY ))2

− θ2X
(σX(1+εX))2

.

X ≺lr Y then

x 7→ fY (x)
fX(x) is increasing on (0,∞)

⇒ x 7→ A1 · (lnx)
2

+A2 · lnx+A3 is increasing on
(
0,min

(
eθX , eθY

))
and

x 7→ B1 · (lnx)
2

+B2 · lnx+B3 is increasing on [max
(
eθX , eθY

)
,∞)

⇒ t 7→ A1 · t2 +A2 · t+A3 is increasing on (−∞,min (θX , θY )) and
t 7→ B1 · t2 +B2 · t+B3 is increasing on [max (θX , θY ) ,∞)
⇒ ∂

∂t

[
A1 · t2 +A2 · t+A3

]
≥ 0 ∀t ∈ (−∞,min (θX , θY )) and

∂
∂t

[
B1 · t2 +B2 · t+B3

]
≥ 0 ∀t ∈ [max (θX , θY ) ,∞)

⇒ 2A1t+A2 ≥ 0 ∀t ∈ (−∞,min (θX , θY )) and
2B1t+B2 ≥ 0 ∀t ∈ [max (θX , θY ) ,∞)

⇒ A1 ≤ 0, 2A1 min (θX , θY ) +A2 ≥ 0, B1 ≥ 0 and 2B1 max (θX , θY ) +B2 ≥ 0

It results

σX (1− εX) ≥ σY (1− εY ) ,

2
(

1
(σX(1−εX))2

− 1
(σY (1−εY ))2

)
min (θX , θY ) + 2θY

(σY (1−εY ))2
− 2θX

(σX(1−εX))2
≥ 0,

σX (1 + εX) ≥ σY (1 + εY ) ,

and
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2
(

1
(σY (1+εY ))2

− 1
(σX(1+εX))2

)
max (θX , θY ) + 2θX

(σX(1+εX))2
− 2θY

(σY (1+εY ))2
≥ 0.

If θX > θY then 2
(

1
(σX(1−εX))2

− 1
(σY (1−εY ))2

)
min (θX , θY )+ 2θY

(σY (1−εY ))2
−

2θX
(σX(1−εX))2

< 0, contradiction!

Then θX ≤ θY . Thus

2

(
1

(σY (1 + εY ))2
− 1

(σX (1 + εX))2

)
max (θX , θY )+

2θX

(σX (1 + εX))2
− 2θY

(σY (1 + εY ))2
=

2

(
1

(σY (1 + εY ))2
− 1

(σX (1 + εX))2

)
θY +

2θX

(σX (1 + εX))2
− 2θY

(σY (1 + εY ))2
=

2 (θX − θY )

(σY (1 + εY ))2
≤ 0

But

2

(
1

(σY (1 + εY ))2
− 1

(σX (1 + εX))2

)
max (θX , θY )+

2θX

(σX (1 + εX))2
− 2θY

(σY (1 + εY ))2
≥ 0.

It results θX = θY .
We prove the ”⇐” implication.
For x ∈

(
0, eθX

)
we have

fY (x)
fX(x) =

1
x
√

2πσY
·e
− (ln x−θX)2

2σ2
Y (1−εY )2

1
x
√

2πσX
·e
− (ln x−θX)2

2σ2
X(1−εX)2

= e
1
2 [A1·(ln x)2+A2·ln x+A3], where

A1 = 1
(σX(1−εX))2

− 1
(σY (1−εY ))2

, A2 = 2θX
(σY (1−εY ))2

− 2θX
(σX(1−εX))2

, A3 =

θ2X
(σX(1−εX))2

− θ2X
(σY (1−εY ))2

.

For x ∈ [eθX ,∞) we have

fY (x)
fX(x) =

1
x
√

2πσY
·e
− (ln x−θX)2

2σ2
Y (1+εY )2

1
x
√

2πσX
·e
− (ln x−θX)2

2σ2
X(1+εX)2

= e
1
2 [B1·(ln x)2+B2·ln x+B3], where

B1 = 1
(σY (1+εY ))2

− 1
(σX(1+εX))2

, B2 = 2θX
(σX(1+εX))2

− 2θX
(σY (1+εY ))2

, B3 =

θ2X
(σY (1+εY ))2

− θ2X
(σX(1+εX))2

.

But
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∂

∂t

[
A1 · t2 +A2 · t+A3

]
≥ 0 ∀t ∈ (−∞, θX)

and

∂

∂t

[
B1 · t2 +B2 · t+B3

]
≥ 0 ∀t ∈ [θX ,∞)

Then x 7→ fY (x)
fX(x) is increasing on

(
0, eθX

)
and on [eθX ,∞). Thus x 7→ fY (x)

fX(x)

is increasing on (0,∞) .
It results X ≺lr Y . �
For the next results we consider

A (p) = (EX)
−1

(1− εX) e
σ2X(1−εX)2+2θX

2 Φ
(

Φ−1
(

p
1−εX

)
− σX (1− εX)

)
,

p ∈
[
0, 1−ε

2

)
and

B(p) = (EX)
−1

(1− εX) e
σ2X(1−εX)2+2θX

2 Φ (σX (1− εX)) +

(1 + εX) e
σ2X(1+εX)2+2(θX−σXεX)

2 Φ (σX (1 + εX)) , p ∈
[

1−ε
2 , 1

)
.

Proposition 4.4 gives a formula for Lorenz curve of log-epsilon-skew-normal
distributions. Also, proposition 4.5 gives sufficient conditions for Lorenz order
between two log-epsilon-skew-normal distributions.

Proposition 4.4. The Lorenz curve of X ∼ LESN (θX , σX , εX) is:

LX(p) = A(p) · 1[0, 1−ε2 ) (p) +B(p) · 1[ 1−ε
2 ,1) (p) .

Proof. Let p ∈
(
0, 1−ε

2

)
. Then

∫ p

0

QX (u) du =

∫ p

0

eθX+σXQ0(u)du =

∫ p

0

e
θX+σX(1−εX)Φ−1

(
u

1−εX

)
du.

Φ−1

(
u

1− εX

)
= y ⇒ u = (1− εX) Φ (y)⇒ du =

1− εX√
2π
· e−

y2

2 dy

It results

∫ p

0

e
θX+σX(1−εX)Φ−1

(
u

1−εX

)
du =

∫ Φ−1
(

p
1−εX

)
−∞

1− εX√
2π
·eθX+σX(1−εX)y− y

2

2 dy =

=
(1− εX) e

σ2X(1−εX)2+2θX
2

√
2π

·
∫ Φ−1

(
p

1−εX

)
−∞

e−
1
2 (y−σX(1−εX))2dy =
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= (1− εX) e
σ2X(1−εX)2+2θX

2

∫ Φ−1
(

p
1−εX

)
−σX(1−εX)

−∞

1√
2π
e−

t2

2 dt =

= (1− εX) e
σ2X(1−εX)2+2θX

2 Φ

(
Φ−1

(
p

1− εX

)
− σX (1− εX)

)
.

Thus LX(p) = A (p) .
Now, let p ∈

[
1−ε

2 , 1
)
. Then ∫ p

0

QX (u) du

=

∫ p

0

eθX+σXQ0(u)du =

∫ 1−εX
2

0

eθX+σXQ0(u)du+

∫ 1

1−εX
2

eθX+σXQ0(u)du

= (1− εX) e
σ2X (1−εX )2+2θX

2 Φ

(
Φ−1

(
1−εX

2

1− εX

)
− σX (1− εX)

)
+

∫ 1

1−εX
2

eθX+σXQ0(u)du

= (1− εX) e
σ2X (1−εX )2+2θX

2 Φ (−σX (1− εX)) +

∫ 1

1−εX
2

eθX+σXQ0(u)du.

We have
∫ 1

1−εX
2

eθX+σXQ0(u)du =
∫ 1

1−εX
2

e
θX−σXεX+σX(1+εX)Φ−1

(
u+εX
1+εX

)
du

and
Φ−1

(
u+εX
1+εX

)
= y ⇒ u+εX

1+εX
= Φ (y) ⇒ u = (1 + εX) Φ (y) − εX and du =

1+εX√
2π
· e−

y2

2 dy

It results ∫ 1

1−εX
2

e
θX−σXεX+σX(1+εX)Φ−1

(
u+εX
1+εX

)
du

=

∫ ∞
0

1 + εX√
2π
· eθX−σXεX+σX(1+εX)y− y

2

2 dy =

=
1 + εX√

2π
· e

σ2X(1+εX)2+2(θX−σXεX)
2

∫ ∞
0

e−
1
2 (y+σX(1+εX))2dy =

= (1 + εX) e
σ2X(1+εX)2+2(θX−σXεX)

2

∫ ∞
σX(1+εX)

1√
2π
e−

t2

2 dt =
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= (1 + εX) e
σ2X(1+εX)2+2(θX−σXεX)

2 Φ (σX (1 + εX)) .

Thus LX(p) = B(p). �
Proposition 4.5. Let the random variables X ∼ LESN (θX , σX , εX) and

Y ∼ LESN (θY , σY , εY ) with EX = EY.
If

εX ≤ εY , θX ≤ θY , σX (1− εX) ≥ σY (1− εY ) , σX (1 + εX) ≤ σY (1 + εY )

then X ≺Lorenz Y .
Proof. We have X ≺st Y ⇒ X ≺icx Y. But EX = EY. Then X ≺cx Y,

thus X ≺Lorenz Y . �

5 Consequences

Propositions 5.1 and 5.2 sufficient conditions for orders of the moments of
order k and a-Gini indexes.

Proposition 5.1. Let the random variables X ∼ LESN (θX , σX , εX) and
Y ∼ LESN (θY , σY , εY ) .

If

εX ≤ εY , θX ≤ θY , σX (1− εX) ≥ σY (1− εY ) , σX (1 + εX) ≤ σY (1 + εY )

then EXk ≤ EY k ∀k ∈ Z, k ≥ 1.
Proof. It results from theorem 4.2. �
Proposition 5.2. Let the random variables X ∼ LESN (θX , σX , εX) and

Y ∼ LESN (θY , σY , εY ) with EX = EY.
If

εX ≤ εY , θX ≤ θY , σX (1− εX) ≥ σY (1− εY ) , σX (1 + εX) ≤ σY (1 + εY )

then GX;a ≤ GY ;a for all a ≥ 1.
Proof. It results from proposition 4.5. �
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6 Real data application

In this section we illustrate the theoretical results obtained in the paper.
We use estimated parameters of log-normal and LESN distribution using
data from two examples in Hutson et al. (2020). The first data repre-
sents Mayo Clinic primary biliary cirrhosis data that can be downloaded
from http://www.umass.edu/statdata/statdata/data/, Fleming and Harring-
ton (1991). In particular, they examined 418 serum bilirubin (mg/dl) measure-
ments. In Table 1 maximum likelihood estimators are presented for LESN.
The second data represents data that was part of a large clinical trial car-
ried out by the Radiation Therapy Oncology Group in the United States,
Kalbfleisch and Prentice (1980). The data may also be downloaded from
http://www.umass.edu/statdata/statdata/data/. In particular, they exam-
ined the survival time in days from date of diagnosis in 195 patients with
squamous carcinoma in the oropharynx. There were 53 patients (27%) whose
survival times were right censored. In Table 2 maximum likelihood estimators
are presented for LESN.

Table 1
Parameters LESN

Θ -0.4169
Σ 0.9273
ε 0.6713

Table 2
Parameters LESN

Θ 5.7489
Σ 1.3002
ε 0.2266

Let the random variables X ∼ LESN (−0.4169, 0.9273, 0.6713) and Y ∼
LESN (5.7489, 1.3002, 0.2266). We have:

εX = 0.6713, εY = 0.2266,
θX = −0.4169, θY = 5.7489,
σX (1− εX) = 0.9273 · (1− 0.6713) = 0.3048,
σY (1− εY ) = 1.3002 · (1− 0.2266) = 1.0056,
σX (1 + εX) = 0.9273 · (1 + 0.6713) = 1.5498,
σY (1 + εY ) = 1.3002 · (1 + 0.2266) = 1.5948.
From theorem 4.1 it results X ⊀st Y because σX (1− εX) < σY (1− εY ) .
From theorem 4.3 it results X ⊀lr Y because θX 6= θY .
Remarks. (1) There exists c1 > 0 such that FX (c1) > FY (c1) ;
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(2) There exists k1 ∈ Z, k1 ≥ 1 such that EXk1 > EY k1 ;
(3) There exists c2 > 0 such that rX (c2) < rY (c2) .
Proof. (1) and (2) result from X ⊀st Y.
(3) If X ≺hr Y then X ≺st Y, contradiction!
Then X ⊀hr Y. �

7 Conclusions

In this article we analyzed different stochastic orders between log-epsilon-skew-
normal distributions. We gave necessary and/or sufficient conditions for these
orders. These results improve the literature of stochastic ordering between
log-normal distributions and provide ideas for generalizations in other research
papers.
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