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DNA codes over finite local Frobenius
non-chain rings of length 5 and nilpotency
index 4

C. A. Castillo-Guillén and C. Alvarez-Garcia

Abstract

A one to one correspondence between the elements of a finite local
Frobenius non-chain ring of length 5 and nilpotency index 4, and k-
tuples of DNA codewords is established. Using this map the structure
of DNA codes over these rings is determined, the length of the code is
relatively prime to the characteristic of the residue field of the ring.

1 Introduction

In [2], Adleman gave studies on DNA computing by solving an instance of NP-
complete problem over DNA molecules. A single DNA strand is a sequence of
four possible nucleotides: adenine (A), guanine (G), cytosine (C') and thymine
(T'). DNA has two strands that are governed by the rule called Watson Crick
complement (WCC), that is, A pairs with 7" and G pairs with C. We denote
the WCCas A=T,T=A,C=G,G=_C.

The structure of DNA is used as a model for constructing good error cor-
recting codes and conversely error correcting codes that enjoy similar prop-
erties with DNA structure are also used to understand DNA itself. Several
papers have proposed different techniques to construct a set of DNA code-
words. In [18], authors used stochastic search algorithms to design codewords
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that are suitable for DNA computing. Linear and cyclic codes have also ex-
tensively been used to construct DNA codes by several authors in [1], [3], [5],
[10], [11], [12], [13], [16], [17], [19].

In [1], [11] and [17], nucleotides were identified with the elements of the rings
GF(4), Z4 and GF(2)[u]/(u?—1), respectively, and DNA codes over these rings
were studied. Nucleotide pairs {A, C, G,T}* were identified with elements of
the chain ring GF(2)[T]/(T*—1) and DNA codes over this ring were studied in
[19]. k-tuples of nucleotides were identified with elements of finite local Frobe-
nius non-chain rings of length 4 and DNA codes over those rings were studied
in [3]. The idea in these works was to find a bijection ® : R — {4,C, G, T}*
with the properties ®(a+x) = ®(a) and ®(pa) = rev(®(a)), for some p, k € R,
and for all a € R.

On the other hand, the finite local Frobenius non-chain rings of length 5
and nilpotency index 4 were determined in [9] and the structure of reversible
cyclic codes over those rings was established in [4], when the length of the code
is relatively prime to the characteristic of the residue field of the ring. Now
it would be interesting to identify these rings with k-tuples of nucleotides and
study DNA codes over these rings.

The purpose of this paper is to identify Finite local Frobenius non-chain
rings of length 5 whose maximal ideal has nilpotency index 4 and residue field
GF(2%) with k-tuples of nucleotides, for some k, and determine the structure
of DNA codes over these rings, of length relatively prime to the characteristic
of the residue field of the ring. The paper is organized as follows: in Section 2,
basic facts on commutative finite local rings, properties of the reciprocal matrix
and properties finite local Frobenius non-chain ring of length 5 whose maximal
ideal has nilpotency index 4 are given. In Section 3, we give conditions for
the existence of a correspondence between finite local rings and k-tuples of
nucleotides. In Section 4 we use the correspondence between {4,C,G,T}5
and a finite local Frobenius non-chain ring of length 5, nilpotency index 4 and
residue field GF(2?) for describing the structure of DNA codes over this ring.

2 Preliminaries

Throughout this work GF(q) denotes the finite field with ¢ = p? elements, p a
prime, and all rings are assumed to be finite, commutative with unit element.

Let Q be a non empty set and O be an equivalence relation in Q. The
family of equivalence classes modulo O is a partition of 2, conversely if {; }ie1
is a partition of €, the set O of all pairs (wi,ws) such that wy,wy are in
the same member of the partition is an equivalence relation in €2. That is,
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every equivalence relation in 2 corresponds uniquely to a partition of Q and
conversely.

Let R be a ring and M an R-module. The annihilator ideal of M in R is
defined as anng (M) := {a € R : am = 0,V m € M}. The length of M, denoted
by ¢r(M), is the length of a composition series for M, see [15]. If R has the
unique maximal ideal m, it is called local, k = R/m its residue field, there is
an integer ¢ > 1 such that m* = (0), called the nilpotency index of m, and
M| = |GF(q)|"®*™) see [6]. The local ring R will be denoted by the triple
(R, m, GF(q)).

Let (R, m, GF(q)) be a finite local ring, f € R[T] and n € N with (p,n) = 1.
~: R[T] — GF(q)[T] is the ring homomorphism that maps a — a + m and the
variable T to T. f is called basic irreducible if f is irreducible in GF(q)[T].
If f is monic basic irreducible and deg(f) = s, the ring B = R[T]/{f) =
{ag + a1 T + -+ + as_1T57! : a; € R} is a local separable extension of R
with maximal ideal mB and residue field GF(¢®). Furthermore if T C R
is a set of representatives of GF(q) and I is an ideal of R, the set T, :=
{ag + a1 T+ -+ +as_1T*71 : a; € T} C B is a set of representatives of
GF(q¢®) and ¢g(I) = ¢(IB), see [6]. Hensel’s Lemma guarantees that T™ — 1
is the product of a unique family of monic basic irreducible pairwise coprime
polynomials in R[T], see [7] and [15].

The reciprocal of the polynomial f is defined as f* = Tdeg(f)f(%)7 the
polynomial f is called self-reciprocal if f* is associate of f. Let f1,...,f,. the
unique family of monic basic irreducible pairwise coprime polynomials such
that T — 1 = f; ---f,.. From [7], [8] and [14] we have the following: (1) f} is
associate of f; if and only if f7 is associate of f;, in particular f; is self-reciprocal
if and only if f; is self-reciprocal; (2) Over fields, self reciprocal polynomials
have even degree with the only exception of T 4 1. In particular, if f; is self
reciprocal and f; # T — 1, then f; has even degree; (3) After renumbering there
are non negative integers r1, 79 such that r = r; +2ry, £3,_, is associate of fy;,
1 <¢ <7y, and fo,, 44 is self-reciprocal polynomial, 1 < i < rs.

For the remainder of the manuscript the following notation will be used:

(1) The order of the sequence fi, ..., f. is fixed according to the last assertion;
(2) For v € {1,...,7}, u* denotes the index of the polynomial which is asso-
ciate of f,, observe that (u*)* =wu; (3) For UC {1,...,r} let U* = {u* :u €

U}.
U is called self-reciprocal if U* = U, observe that U is a self-reciprocal set if
and only if {1,...,7}\U is a self-reciprocal set. 0 is considered a self-reciprocal
set.

The reciprocal matrix is helpful to determine reversible constacyclic codes,
its properties was treated in [4] and [8]. Observe that if f € GF(g)[T] is
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an irreducible polynomial, then ¢ : GF(q)[T]/{f*) — GF(¢)[T]/{f) given by
h* 4 (f)

Taer0 3 (1) is an isomorphism over GF(q).

Definition 1. Let (R,m,GF(q)) be a finite local ring, f € R[T| a monic basic
irreducible polynomial, n > deg(f), ¢ as above and H = (a;;) a matriz over
GF (¢ = GF(¢)[T])/(f*), the matriz (T v (ai;)) in GF(q)[T]/(f) is called
the n-th reciprocal matriz of H with respect f and is denoted by Hzn,f)'

Let (R,m,GF(q)), f, n and H = (a;;) as in Definition 1. Suppose f is self
reciprocal, deg(f) = 2s and f|T™ — 1. Let g € GF(q)[T] be an irreducible
polynomial of degree s and o € GF(¢**) be a root of g. From [3], we have

H{, ¢ = H < His a matriz over GF(¢®)
< H = (hij(«)), for some hi; € GF(q)[T] with deg(h;;) < s.

The ring R is a chain ring if the lattice of its ideals is a chain under
set-theoretic inclusion . The ring R is a chain ring if and only if R is local
and its maximal ideal is principal. The ideals of the finite chain ring R are
()Y = (0) C (z=®)=1) ¢ ... C (1) C R. A finite local ring (R, m, GF(q))
is Frobenius if anng (m) is the unique minimal ideal of R. If (R, m, GF(q)) is a
finite local Frobenius ring and I is an ideal of R, then ¢g(I) + ¢ (anng(I)) =
/r(R). F4 denotes the family of finite local Frobenius non-chain rings of length
5 with nilpotency index 4. Recently, the rings in the family F2 with residue
field GF(29) were described in [9] and for completeness we recall this result
here:

Proposition 1. Let (R, m,GF(2%)) € 2, then R is isomorphic to one of the
following rings:

(a) If 324 —1
(1) GF(29)[X, Y]/(X? = Y3,XY),
(2) GR(22, d)[X,Y]/(Y? -2,X2 - Y3 XY),
(8) GR(2%,d)[X, Y]/(Y? - 2,X* - Y?,XY),
(4) GR(2%,d)[X ,Y]/<CY3—2 X2 - Y3, XY),
(5) GR(2%,d)[X, Y]/(C?Y? - 2,X? — Y3, XY),
(6) GR(2°,d)[X]/(2* — X3, 2X),
(7) GR(2? . d)[X]/(2* - (X%, 2X),
(8) GR(2%,d)[X]/(2* - (*X?,2X),
( )GR(24 d)[X]/(X? - 23,2X).

In cases (4) and (5), {0,1,..., (2d_2} is the Teichmiiller set of the Galois
ring GR(22,d). In cases (7) and (8), {0,1,..., C2d’2} is the Teichmiiller
set of the Galois ring GR(23,d).
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(b) If3 J2¢ — 1

(1) G (Qd)[X Y]/(X? = Y3, XY),
(2) GR(22,d)[X, Y]/(Y? = 2,X? — Y? XY),
(3) GR(2%, d)[X, ]/<Y3*27X2*Y3,XY>,
(6) GR(2*, d)[X]/ (22 - X*,2X),
(9) GR(2*, d)[X]/(X* — 2°,2X).
Let (R,m,GF(q)) € 4, f € R[T] a monic basic irreducible polynomial

of degree s, and vV = (a,b) € GF(¢*)?. For the reminder of the manuscript
(B = R[T]/{f), mB, GF(¢®)) will be the separable extension of R determined
by f, T C R will be a set of representatives of GF(q), 6 = {01,602} will be a
sequence of elements of B and the following notation will be used.

(1) Ts = {ap + a1 T+ -+ +as_1T*71 : q; € T} C B will be the set of
representatives of B/mB = GF(¢°);

(2) For a € GF(¢®), the only representative of a in T, will be denoted by

Ts.
a s,

(3) The ideal of B, (a™=0; + bT6,), will be denoted by Vgs.

(4) A fixed minimal R-generating set {a7, a2} of m will be considered.
If the ring R is one of the rings (1) — (5) mentioned in Proposition 1,
a; =x and ag =y.
If the ring R is one of the rings in cases (6) —(8) mentioned in Proposition
1, a1 =2 and as = x.
If the ring R is the ring (9) mentioned in Proposition 1, ay = x and
Qo = 2.
When we take a minimal R-generating set for m we understand that
{a1, s} is the ordered minimal R-generating set for m.

(5) The fixed minimal R-generating set for anng (m?) will be {a1, a3}
When we take a minimal R-generating set for anng(m?) we understand
this is the ordered minimal R-generating set for anng (m?).

(6) We write & for {ay,as} and j for {ay,a3}.

The lattice of ideals of a separable extension of a ring in the family g4 and
the annihilator ideal of the ideals of a ring in the family §# were determined
n [9] and [4], respectively. For completeness we state these results here.

Lemma 1. Let (R,m,GF(q)) € g2, T, Ty, & = {a1,as}, f € R[T], deg(f) =
(B =R[T]/{f),mB, GF(¢®)) be as above, then:

(1) The ideals of length 0,1,4,5 of B are (0), m3B, mB, B, respectively.
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(2) Ideals of length 2 of B are between anng(m?)B and m®B. These ideals
are:
m?B = (0, 1)25, (1,/\1)};5, e (1,Aqs)gs \i € GF(¢*).

(3) Ideals of length 3 of B are between mB and m?>B. These ideals are:
(0,1)2°,(1,0)% +m?B = anng(m?B), (1, \1) 5, ..., (1, A\ge—1) 5",
i € GF(¢°) \ {0}.

The ideal (1,0)%* +m?B = anng(m?B) = (ay,a3)B is simply denoted by
(1,0)5"

Lemma 2. Let (R,m,GF(q)) € §2, T and & = {a1, a2} be as above, then:

anng(a3) = (a1, a?), anng(a;) = (o) and

(1) anng(a; + A1a2) = (a1 + Aeaa), A1, A2 € T, Mg = —1, for the rings
(1) = (6), (9) in Proposition 1.

(2) anng (a1 +Aa3) = (a1 + Xaaw), A, Ao € T, MAg = —C, for the ring (7)
in Proposition 1.

(3) anng(a; + Aa3) = (a1 + daas), A, A € T, Ay = —C2, for the ring
(8) in Proposition 1.

Observation 1. Under the notation as in Lemma 1. Since m(aaB) = 3B =
m?B and (anng(m?)B)(a2B) = ((a1,a3)B)(2B) = a3B C a1 B, then:

(1B : aoB) = {a € R : aas € 0y B} = anng(m?)B.

The next results will be useful for the existence of compatible functions
defined on a rings (R, m, GF(2%)) in the family §2. Observe the following:

lp(anng(p—1)) =3 <lr(p—1) =2
s (p—1)=(0, 1)“655 or {p—1) = (1, A)gs,A € GF(2%),
& p=1+apa2 ap € R*, or p=1+ag(a; + Xad),ap € R*,\ € T.
Lemma 3. Let R be any of the following rings:
(1) GF(29)[X,Y]/(X? — Y3,XY),
(2) GR(2%,d)[X,Y]/(Y? —2,X? - Y3 XY),
(8) GR(2%,d)[X,Y]/(Y? —2,X2% - Y3 XY),
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(4) GR(22,d)[X,Y]/(CY? —2,X2 - Y3 XY),
(5) GR(22,d)[X,Y]/(¢?Y3 — 2,X2 — Y3 XY).

The only elements p,x € R which satisfy 2k =0, p> =1, k = pr, k € (p— 1)
and fg(anng(p — 1)) = 3 are:

p=14apy?, k=ax+ay?, ag,a; €R* ay €R.
In this case (g (k) = Ir(x + a] tagy?) = 2.

Proof: Case I: If p = 1+ agy?, ap € R*, relation K = pr implies £ €
anng (y?) = (x,y?) and k = a1x + agy?, ai,a2 € R. Now since k ¢ (p — 1) =
(y?) then a; € R*.

Case IL: If {p — 1) = (x + A\y?), then (p —1)%2 = (2(p — 1)) = (2)(x + \y?) =
(0) = (x + A\y?)? = (x?), a contradiction.

Lemma 4. Let R be any of the rings:
(1) GR(2*,d)[X]/(2* - X?,2X),
(2) GR(2%,d)[X]/(2* — (X?,2X),
(3) GR(2%,d)[X]/(2% — (2X3,2X).

The only elements p,x € R which satisfy 2k =0, p®> =1, k = pr, k € (p — 1)
and g (anng(p — 1)) = 3 are:

(1) p=1+ap(2+ Ax?), k = a1x?, where A€ T, ag € 1 +m, a1 € R*.
In this case (g (k) = (r(x%) = 2.

(2) p=1+2ag, k = arx, where ag € R*, a1 & (2,x?).
. éR(X) =3 a; € R*

In this case lr(k) = ¢r(a1x) = {ﬁR(Xz) —2 aem\ (@)

Proof: Case I: If (p — 1) = (x?), relations 2 = 0 and x = pr imply
Kk € anng(2) Nanng(x?) = anng(2,x%) = (x?) = (p— 1), which is not possible.
Case IL: If p = 14+ag(2+2x?), A # 0 and ag € R*, then p? = 1 = 1+4ag+4a3,
4ag(1+ag) =0, 1+ap € anng(x®) = m and ag € 1+ m. Relations x = px and
2k = 0 imply x € anng (2+ Ax?)Nanng(2) = anng(2,x?) = (x?) and k = a;x?,
a; € R. Now if a; € m, then k = a;x? € m3 C (p — 1), hence a; € R*.
Case III: If p = 1 + 2ag, ag € R*. Relation 2k = 0 and Lemma 2 imply
k € anng(2) = (x) and K = a1x, a € R. Now by Remark 1 and because
kg (p—1)=(2), then a; ¢ ((2) : (x)) = {a € R:ax € (2)} = (2,x?).
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Lemma 5. Let R = GR(2%, d)[X]/(X?—23,2X). There are not elements p, k €

R which satisfy 2k =0, p> =1, k = pr, k € (p— 1) and (g (anng(p — 1)) = 3.
Proof: Case I: If (p—1) = (4), then (p—1)? = (2(p—1)) = (8) = (4)? = (16),

a contradiction.

Case II: If (p — 1) = (x + 4\), relations kK = pk and 2 = 0 imply x €

anng (p—1)Nanng(2) = anng (x+4)\) Nanng (2) = anng(x,2) = m? C (p—1),

which is not possible.

3 The identification between a local ring and the DNA
alphabet

In this section we give conditions for the existence of a compatible function
between a finite local ring of odd length and k-tuples of nucleotides. These
compatible functions exist for some rings in the family Fa.

Definition 2. Let k be an integer, R be a ring, p € R* and s € R.
(1) p denotes the permutation R — R given by p(a) = pa;

(2) i denotes the permutation R — R given by &(a) = a + k;

(3) r:{A,C,G, T} = {A,C,G,T}* denotes the reverse operation,

(Cla"'vck) — (Cka"'vcl);
(4) = :{A,C,G, T} — {A,C,G, T} denotes the complement operation,
(c1,...,ck) = (c1,y..oyex) = (€1,...,e),A=T,T=A,C=G,G=C.

(5) A bijection ® : R — {A,C,G, T} is called compatible if there are p,x € R
such that the following diagrams are commutative.

R . {4,0,G T} R L~ {A,CG T
R I | I
R . {4,0,G T} R L {A,CG T

Let (R, m,GF(2%)) is a finite local ring and ® : R — {A,7,C,G}* a
compatible bijection, for p, x € R. Relation |M| = |GF(2¢)|**M) | where M is
a module over R implies |R| = 2#r(R) = |{A,C, G, T}*| = 4F and k = MRT(R).

The following two Lemmas and the remark are from [3].

Lemma 6. Let © be a non-empty set, w €  and ¥, ¢ two permutations of
such that v? = ¢? = idg and Yo = por. Let [w]’ = {w, b(w), 6(w), bo(w)},
then {[w];f tw € Q} is a partition of Q.
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Let Q, ¥, ¢ and [w];f be as in Lemma 6. The equivalence relation corre-
sponding to the classes [w]z is denoted by Di’. The following subsets of () are
useful to describe Dg:

(1) Ay ={weQ:gw) =w}, (2) A ={w e Q: p(w)
(3) Ao = Q\ (Ay UAY).

YW},

Observation 2. Let k > 2 an integer, R a ring, p € R*\ {1} and k € R\ {0}.
Suppose 2k =0, p?> =1 and k = pk.
(1) If in Lemma 6, we take Q =R, ¥ = kK and ¢ = p, then:

(a) R(a) # a, foralla € R, p # idr, K and p have order two and Kop = pok;
() A, —amnp(p—1) and A% — a; +anng(p—1) if (p—1la1 ==k
! Y if k¢ (p—1).
(2) If in Lemma 6, we take Q = {A,C,G, T}*, ¢p = = and ¢ = r, then:
(a) €#e¢, for allec € {A,C,G,TY, r # id¢a,c,q,rye, T and ~ have order

two andro~ =" or;
() A, = (cl,...,c%,c§,...,cl) if kis even
(cl,...,c%,c%,c%,...,cl) if k is odd,
A= (cl,...,(:g,ég,...,él) if k is even
0 if kis odd,

2k if kis even - 2k if kis even
|AT| = k+1 . . and |Ar | = . .
2 if kis odd 0 if kis odd.

Lemma 7. Let Q, ¢, ¢ and [w]:f be as in Lemma 6. Suppose P(w) # w,
Vw € Q, and let Ay = {w € N : ¢p(w) = w}, A;ﬁ’ ={weN:d(w) =vw)} and
Ag =Q\ (Ay UAY), then:

(1) |w]h] =2& W]} = {w, (W)} & we Ay orweAy.

(2) |w]f] =4 < we Aq.

(3) Ifwe Ay (weAY), then [w]) C Ay (W]} CAY).
. A ‘A'w|
In particular |{[w]gj tw € Ay} = ol Hw]? : w e A;f}\ = = and

. 2 ¢ - 2
[Q—|Ag|—|AL]
{w]} 1w € Ag}| = ———5—=.
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. . . A +|AY
(4) The number of equivalence classes with 2 elements is M.
. . Q] —|Ag|—|AY
The number of equivalence classes with 4 elements is W.
) QA +HAY
The number of equivalence classes is W.

Let R = GF(29)[X,Y]/(X? — Y?,XY) the ring (1) in Proposition 1, p =
1 +y? and k = x € R. R has residue field GF(2%), every element of R can be
written uniquely in the form ag + ai1x 4 asy + asy? +asy®, where a; € GF(2%).
By Lemma 3, 26 =0, p> =1, k = pk, k € (p — 1) and lg(anng(p — 1)) = 3.
Example 1. Let R = GF(2?)[X,Y]/(X2-Y3,XY), p=1+y? and k =x € R.

(1) Aj =anng(p—1) = (x,¥?) = {a1x + asy® + azy® : a; € GF(2%)},
{lals :a € As}| = % =32 and
[a1x + aoy? + a3y3]’pf = {a1x + agy? + azy?, (a1 + 1)x + azy? + azy®}.

(2) Ar = {ao + a1x + agy + azy? + asy® : a; € GF(22),a9 # 0 or az # 0},
alf:a € Ag}| = [RIZIASL — 44— 42 = 240 and
p 4
[a0+a1x+agy +asy® +asy®]s = {ao+a1x+agy +asy® +aay®, ao+ (a1 +
1)x + agy + azy? + asy®, ao + a1x + asy + (ag + az)y? + (a2 + aq)y?, ap +
(a1 + 1)X + azy + (a() + ag)y2 + (ag + a4)y3}.
Example 2. Let {A,C,G,T}>, we have

(Z) AT = {(01,02703704705) cC1 =0Cs, 02 = 64}7
{lel, re€ A} = B =32 and
[(01762,03762701)}2

1

(2) Aqa,carys =1{(c1,c2,¢3,¢4,05) 1 c1 # ¢5 Or C2 # Ca},

- A,C,G,TY?|—|A
e, : e € Aacarys}] = ECET PR meam®l _ 949 gng
[(c1,c2,¢3,c4,¢5)]5 = {(c1,¢2,¢3,¢a,¢5), (C1,¢2, C3, €1, C5), (c5, Ca, C3,

The following Proposition is the main result of this section.

Proposition 2. Let (R, m, GF(29)) be a finite local ring. There is a compatible

function ® : R — {A,C,G, T} HRE , for some p,k € R, if and only if there
exist p,k € R, with k # 0, 2k = 0, p> = 1, kK = pk and one of the following
relations is satisfied:

(1) R is one of the following rings: GF(4), Z4, GF(2)[T]/(T?);

(2) éR(R) is 0dd7 gR(R‘) > 37 d = 27 K ¢ <p - 1> and gR(a’nnR(p - 1)) =
fr(R)+1 .
2

)
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(3) Lr(R) is even, 4 Mr(R), d =1, k € (p— 1) and lg(anng(p — 1)) =
ER;R) +1;

(4) lr(R) is even, 4|dlr(R), k € {p — 1) and lg(anng(p — 1)) = @.

Proof: We consider the classes [a]5 = {a,a + &, pa, pa + x} and [e], = {e,

¢, r(c), r(e)}, in R and {A, C,G, T}*, respectively.
=) For the first relations we have:

(a) B(a+x) = Bla) # B(a), then r £ 0;

(b) ®(26) = B(x) = (0) = B(0), then 2 = 0;

(c) @(p?) =r(®(p)) = r[r(2(1))] = 2(1), then p* = I;

(d) @(pr) = r(®(K)) = r(®(0)) = r®(0) = (p0) = &(0) = ®(x), then px = k.

Concerning the number 28 " the possibilities are %) — 1 4] > 3 4

odd and (”RT(R) is even. Each of one of these cases is treated in the following
lines. Observe that ® maps bijectively Aj; into A,.

(1) ‘”RT(R) =1< ®(a) =r(P(a)) =P(pa), VaceRep=1<
d=2and l{g(R)=1ord=1and fg(R) =2 <
R 2 GF(4) or R 2 Z4 or R = GF(2)[T]/(T?).

(2) CMRT(R) is odd and ‘MRT(R) >3&r(c)#e Yee {AT,C, G}MRTm)
D(pa) #P(a+K), Vac Re kg (p—1). e
Then |Al3| = |A7"‘ = ‘annR(p _ 1)| — 2dln(annR(p—1)) _ ZRTJFl and
14 1
lr(anng(p — 1)) = RéR) + 2

If /g (R) is odd, then d = 2 and fg(anng(p — 1)) = %.
If /g (R) is even, then d = 1, 4 flg(R) and ¢r(anng(p—1)) = ZRQR) +1.

5 with rc)=c&
4 =
there exists a € R with ®(pa) = ®(a + /<;) € (p—1). Then |A;| =
o] = omnnp1)| om0 — 2 0 g
and ¢g(R) is even.

(3) dlr(R) -

<) Case (1) was treated in [1], [11] and [17].
Case (2). Suppose ¢g(R) is odd, (r(R) > 3, d = 2, p,k € R, with 2k = 0,
P’ =1,k =pk, k& (p—1) and fg(anng(p — 1)) = ZR(R)H By Remark 2,
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|AZ| = [A, | =0 and let

ho= ol :a e At =|{[e], :ce A} =2,
Ar(R) _ 9lr(R)+1
4 )

lr = [{[a]} : a € A} = [{[e], :c € Aacarpmm}] =

M= {fi,..., fulfi € Ag} U{h1,... , hy,|hi € AR} be a set of fixed represen-
tatives of the classes [a]5 and N = {f1,..., fi,[fi € Ay} U{h1,... ki, |h; €
A{acarymm} be aset of fixed representatives of the classes [c],. Using
Lemma 7, we define the bijection ® : R — {4, C, G, T}=®) in the following
way:

(1) Forie {1,.... L1}, [f ]§ ={fi, fi+r}and we put ®(f;) = f;, ®(fi+k) =

I

(2) Forie{1,...,l2}, [hi]g = {hz,h + K, phi, ph; + k} and we put ®(h;) =

hi,®(h; + k) = h;, ®(ph;) = r(h;), ®(ph; + ) = r(h;).

® satisfies the desired properties. We have the following cases

(1) For 1 € {17"'7l1} [ }g = {fmfz"_’{}v pf’L = fia p(fz"_"{) = fl + K,
fieA,, T(fi):fia (fz) .fz and:
(a) ®(f;) = fi = ®(fi + x),
(b) r(@(f:)) = r(f:) = fi = 2(fi) = ®(pfi),

(c) ®(fi+r)=Ffi=Ffi=2(fi)) = 2(fi +2r),

(d) 7(®(fi +5)) = r(fi) = Fi = ®(fi + ) = D(p(fi + K)).

(2) For i € {1,...,02}, [hi]g {hi, hi + K, phy, phi + &}, [hi], = {hs, h,
r(h;), 7(h;)} and:

<
—~
KA
G
_|_
X
~—
I
=
Gl
Il
=
s
~—
I
b
—
=
+
I

r(hi)) = hi = ®(hs) = ®(p*hs),

= ®(ph;) = ®(ph; + 2k),
=h; = ®(h; + k) = D(p(phi + K)).
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Case (3) was treated in [3]. Case (4) is treated in a similar way as case (2)
and details are omitted.

The following is a particular case of Proposition 2, when the ring R is a
chain ring. Case (1) follows from Proposition 2 and case (2) was treated in

[3].
Corollary 1. Let (R, (r), GF(2%)) be a finite chain ring. There is a compat-

ible function ® : R — {A,C,G,T} TR , for some p,k € R, if and only if
char(R) € {2,4} and one of the following relations is satisfied:

(1) R is one of the following rings: GF(4), Z4, GF(2)[T]/(T?);

(2) lr(R) is even and 4|dlgr(R);

(3) tr(R) is even, 4 flr(R), d =1, and if char(R) =4 and k = vlﬂ'eRz(m
v1 € R*, then 2 € (szz(R)"’l};

—1
’

(4) Lr(R) is odd, {r(R) >3 and d = 2.

Proof: The assertion follows from Proposition 2 and the following relations:

Case (3)

(i) fr(annr(p - 1)) = el 1 e fr(p—1) = DR _ g
R R R
(p—1)=(r"2 +1>@p=1+uﬂ¥+l,ueR*.

(ii) & EZ(&;)) — 1) and pr = (/;)<z> Kk & (w[Rz(R;t;? and K € anng(p — 1) =
(r72 Ve r=vunr 2 Lork=uvem %3 vi,ve € RY.
ER(R)+1 3 ER(R),l
™ 2 1T K=1U1T 2
(iii) 26 =0« 2 € anng (k) = < ep(R) ) f ! mm e
(m—z ) if K=vom™ 2
char(R) € {2,4}, and if char(R) = 4 and k = UlwlRéR)’l, then 2 €
(m B,
Case (4)

(i) fr(annr (p—1)) = L & f(p-1) = = e po1) = (5
LR (R)+1

Sp=1+ur 2w e R

)

(i) ?(éﬁl— 1) and pﬁ[:(R)/il(:) kg (m 2
T Ve k=vr 2

) and k € anng(p — 1) =

tR(R)—1

(i) 25 =0 2 € annp(r "2 ) = (x o2

) < char(R) € {2,4}.
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The following is a particular case of Proposition 2, when the ring is in the
family Fa.
Corollary 2. Let (R m, GF(2%)) € §&. There is a compatible function ® :

R - {A4,0,G,T}"5%
following rings

, for some p,k € R, if and only if R is one of the

(1) GF(2*)[X,Y]/(X? - Y?,XY),

(2) GR(2%,2)[X,Y]/(Y? - 2,X2 — Y3, XY),
(3) GR(2%,2)[X,Y]/(Y? —2,X2 — Y3 XY),
(4) GR(2%,2)[X, Y]/{CY® - 2,X* - Y?,XY),
(5) GR(2%,2)[X,Y]/(C?Y? — 2,X? — Y3 XY),
(6) GR(2%,2)[X]/(2* - X?,2X),

(7) GR(2%,2)[X]/(2* - (X?,2X),

(8) GR(23,2)[X]/(2? — ¢?X3,2X).

Proof: The assertion follows from Proposition 2 and Lemmas 3, 4 and 5.

Example 3. Let R = GF(23)[X,Y]/(X2 - Y3, XY), p=1+y2, k=x.

Using notation as in proof of Proposition 2 and by Examples 1, 2, let M =
{fi,-- ., fa2,ha, .. hoaol|fi € Aj,hi € AR} the set of fized representatives of
the classes [a]g and N = {f1,...,f32,h1,... hosolfi € Ar,hi € Apac,arys )
the set of fized representatives of the classes ],

Leti € {1,...,32}, fi = alx + aby® + aly3, fi = (ci,ch,ch,ch,ct), the map
P : GF(ZQ)[X Y]/(X2 Y3, XY) = {A,C,G, T} is given by:

f € laix + ajy® +aY]S o(f)
ajx + aby® + aly® (ci,ch, ch, ch,cf)
(ali +Dx + aéy2 + aéyS (gv gv %v %7 E)

Table 1: The map ¢

Let j € {1,...,240}, h; —a0+alx+a2y+a3y +a4y,a07$()ora27é0
and h; = (ci,c%,c;,ci,cé) c1 # c5 or ca # ¢4, the map ® is given by
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h e [ag + a{x + agy + afn;y2 + aiy?’}g D(h)

aj + ajx + ajy + aly® + afy® (
af + (af + Dx+ ay +afy® + ajy® (

ap + aix + agy + (ap + az)y® + (a3 + a3)y’ (103,05,
(

a) + (a] + 1)x + ady + (a} + ab)y? + (a} + a})y®

Table 2: The map ¢

4 DNA codes over rings in §;

In the rest of this manuscript we only consider the following local rings in the
family F2, see Corollary 2:

(1) GF(2*)[X,Y]/(X* - Y?, XY),

(2) GR(2%,2)[X,Y]/(Y? - 2,X% - Y3,XY),
(3) GR(22,2)[X, Y]/(Y? - 2,X% - Y3,XY),
(4) GR(22,2)[X, Y]/(CY? - 2,X% - Y3,XY),
(5) GR(22,2)[X, Y]/(¢?Y® — 2,X2 — Y3 XY),
(6) GR(2°,2)[X]/(2* - X?,2X),

(7) GR(2°,2)[X]/(2* - (X%, 2X),

(8) GR(2°,2)[X]/(2* - ¢*X?,2X).

Let (R,m,GF(2?)) € 32 and ® : R — {A,C,G,T}® be a compatible
function, for p,x € R, ® can be extended to R™ in the obvious way

®(ag,...,an—1) = (®(ag),...,P(an-1)).

A code over the nucleotides of length m is a subset of {A,C,T,G}™. A code
over the nucleotides of length m is complementary if it is invariant under
the mapping ~ : {A,C,T,G}"™ — {A,C,T,G}™ given by (ay,...,am) —
(@1,-..,@m), where A =T, T = A, C = G, G = C. A linear cyclic code
of length n over R is a submodule of R™ invariant under the permutation
o : R™ — R" given by (ag,...,an—1) = (Gn_1,0a0,...,a,—2). These codes can
be thought of as ideals in the quotient ring R[T]/(T™ —1) via the isomorphism
from R™ to R[T]/(T™ — 1) defined by (ag,...,an—1) > ag+...+a,—1T" "1 +
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(T™ — 1), see [14]. Reversible codes are codes invariant under the mapping
r: R" — R"™ given by (ag,...,an-1) = (@n-1,...,a9). The linear code C
of length n over R is called complementary if ®(C) is complementary and is
DNA if it is cyclic, reversible and complementary.

In this work all codes over R are considered linear and their lengths are
relatively prime to the characteristic of the residue field of R and the following
notation will be used:

() IEF|T" — 1, let F = T,

(2) We will just write ag + a1 T + ... + a,—1T" ! for the corresponding coset
ao+ar T+ ... +a, 1 T" 1+ (T" — 1) in R[T]/(T" — 1).

(3) T" —1=1{; - -, will be the unique representation of T" — 1 as a product
of monic basic irreducible pairwise coprime polynomials in R[T].

From [6], the decomposition of a cyclic code over (R, m, GF(q)) € F2 can be
found in the following way: Let T™ —1 = f; - - - f,. be as above, s; = deg({f;) and
B; = R[T]/(f;). By the Chinese Remainder Theorem, R[T]/(T"—1) = @®_,B;,
then any ideal I of R[T]/(T™ —1) is a direct sum of ideals of B;. Since ¢g(R) =
{p,(B;) = 5, then there is a partition of [1,...,r], Uy, Uy, Uy, Us, Uy, Uj, such
that U; = {u: ¢p,(I,) =i} and

I-PrLePlLePLePle PLe Pl

ueUg ueUy u€eUs u€Us u€Uy u€Us

The following results are on the structure of cyclic reversible codes over a
ring in the family §2, see [4] and [9].

Theorem 1. Let (R,m,GF(q)) € 3, @ = {ai, a3}, B = {a1,03}, T and
Ts as above and f1, ..., f,. the unique monic basic irreducible pairwise coprime
polynomials such that T" — 1 = f; ---f., s; = deg(f;). Let C be a cyclic code
of length n over R. Then

(1) There exists a unique partition of [1,r], Uy, Uy, Ug, Us, Uy, Us.

(2) Foreachi € {2,3} and eachu € Uy, there is a unique ¥,, € {(0,1), (1, ) :
A € GF(¢®)} such that the corresponding ideal, in R[T]/(T™ — 1), of C
18

T - 7T - 1T . - \Ts, 7 - \Ts, 7
(m® I twm [T fur ] fu- (V) 5" fu, (V)5 Fuo - w € Un,w € Us)
ueUy ueUy ueUs

and
‘C| — q5 Eu€U5 s“+4EuEU4 Su+3 ZUEUB Su+2 ZueUQ S"+Z'u€U1 Su .

Theorem 2. Let (R,m,GF(q)) € §, a = {a1,a2}, f = {1,03}, T, T,,
f1,....f. and s; = deg(f;), C as in Theorem 1 and
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(1) Up, Uy, Uy, Us, Uy, Uy the unique partition of {1,...,r}, associated to C,

(2) {Vu : v € Uy U U3z} the vectors such that the corresponding ideal, in
R[T]/(T™ — 1), of C is

TT »  TT7T » TT 7+ /o Ted o \To,
@ I fwm [] fu ] fu (Vu) 5" Fuy (Fu)a™ fu  w € Us,w € Us).
u€Uy u€Uy u€Us

The following conditions are equivalent:
(1) C is a reversible code;

(2) U; is self-reciprocal, for i € {1,...,5}, and ¥y = (Vur)(, ¢y, for u €
Uy U Ug;
(3) U; is self-reciprocal, for i € {0,...,5}, and ¥, = (vu*)?n,fu)’ for u €
Us U Us.
The following is the main result of this section. Recall that C is comple-
mentary, if and only if (k,...,x) € C, see [3].

Theorem 3. Let (R,m,GF(q)) € 33, & = {a1,as}, B = {aq,03}, T, Ts,
f1,...,f. and s; = deg(f;), C as in Theorem 1 and

(1) Uo, Uy, Us,Us, Uy, Us the unique partition of {1,...,r}, associated to C,

(2) {V. : u € Uy UUz} the vectors such that the corresponding ideal, in
R[T]/(T™ = 1), of C is

T - . 1T - \Ts, 7 - \Ts, 7
(® I tum [ fus ] fuy (V) 5" s (V)™ Fu - u € Uz, w € Us).
ueU, ueUy u€eUs

The following conditions are equivalent:

(1) Cis DNA code;

(2) U, is self-reciprocal, fori e {1,...,5}, ¥, = (Vu*)?n)fu), foru € UsUUs,
and one of the following relations is satisfied:
(a) if tr(k) = 2 and (k) = m?, then I, = (k) or 3 < lr(L.);
(b) if tr(k) = 2 and (k) # m?, then 1, € {(k), anng(m?), m,R};
(¢) if tr(k) = 3, then 1, € {(k),m,R}.

(3) U; is self-reciprocal, for 0 € {1,...,5}, V,, = (v"*)?n,fu)’ foru € UaUUsg,
re U?:ZR(;«V)UZ’ and one of the following relations is satisfied:
(a) if tr(k) =2, (k) = m* and r € Uy, then (V)5 = (K);
(b) lr(k) =2, (k) =m? and r € U3 U U4 U Us;
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( =2, (k) #m? and r € Uy, then (V)5 = (K);
(d) r(k) =2, (k) #m2, r € Uy and 1, € {anng(m?), m, R};
(e) =
( 3

Proof: Recall the following:

(1) Under the polynomial representation, (k,...,k) in R™ corresponds with
/ej:r =L in R[T]/(T"™ — 1),

(2) The ideal generated by k=t in R[T]/(T"™ — 1) is identified with (0) @
sR[T]/(fr), in @i, R[T]/(fi).
(3)

(4)

Let

Uo, Ul,UQ,Ug,U4, U5, are given by Ul = {u . eR[T]/<fu>(Iu) = Z}
We may assume R[T]/(f,) is the ring R.
CxL®...aL, ] is an ideal of R[T]/(f;), then:

(k,..., k) eCe kK CL®...0l < (k) CI,

if and only if, by Lemma 1, one of the following hold:

(a) if fr(k) = 2 and (k) = m?, then I, = (k) or 3 < lr(1,);

(b) if lr(k) = 2 and (k) # m2, then 1. € {(k),anng(m?), m,R};

()ifﬁR( ) = 3, then I, € {(k), m,R}.
=tr
)

ore Ul (%) U and one of the following relations is satisfied:
(a) if lr(k) = 2, (k) = m? and r € Uy, then (V)5 = ()

(b) ( ) 2, <l€> m? and r € U3 UUyUUsg;

(c) if lr(K) = 2, (k) 7£ m and r € Uy, then (v,)5 = (k);

(d) Ir(k) =2, (k) #m? r € Uy and I, € {anng(m?),m,R};
(e) if br(k) =3 and re Ug, then (V)5 = (k);

(f) tr(k) =3, r ¢ Us and I, € {m,R}.

The assertion follows from Theorem 2.
The following example is given illustrating the above results.
Example 4. Let GF(2%) ={0,1,(,(?}, (? =(+1, R=GF(2)[X, Y] /(X? -
Y3, XY), p=1+7y?, k =x as in Ezxample 3. By Hensel’s Lemma, T3 — 1 =
flfgfg, where: f; =T — 4-27 fp=T- C, fg =T-1¢€¢ GF(Q)[T] - R[T]
We have ff = (?fa, f5 = (fo, £5 =13, r1 =1 and ro = 1.
IfUs={3}, Uy=U, =U; =Uy = U5 =0, V3 = (1,0), the code

(m? H f,,m H fu, H fo, (\_f'u)g“‘?u, (\'I’w)g“”?w cu € Ug,w € Us) =

ueUy ueUy ucUs

(xfy, y*fs) = (xfrfa, y*fifa)
is a DNA code with |C| = 45(0)+40)+3(1)+2(0)+1(0) — 43 — 64 elements
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