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DNA codes over finite local Frobenius
non-chain rings of length 5 and nilpotency

index 4

C. A. Castillo-Guillén and C. Álvarez-Garćıa

Abstract

A one to one correspondence between the elements of a finite local
Frobenius non-chain ring of length 5 and nilpotency index 4, and k-
tuples of DNA codewords is established. Using this map the structure
of DNA codes over these rings is determined, the length of the code is
relatively prime to the characteristic of the residue field of the ring.

1 Introduction

In [2], Adleman gave studies on DNA computing by solving an instance of NP-
complete problem over DNA molecules. A single DNA strand is a sequence of
four possible nucleotides: adenine (A), guanine (G), cytosine (C) and thymine
(T ). DNA has two strands that are governed by the rule called Watson Crick
complement (WCC), that is, A pairs with T and G pairs with C. We denote
the WCC as A = T , T = A, C = G, G = C.

The structure of DNA is used as a model for constructing good error cor-
recting codes and conversely error correcting codes that enjoy similar prop-
erties with DNA structure are also used to understand DNA itself. Several
papers have proposed different techniques to construct a set of DNA code-
words. In [18], authors used stochastic search algorithms to design codewords
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that are suitable for DNA computing. Linear and cyclic codes have also ex-
tensively been used to construct DNA codes by several authors in [1], [3], [5],
[10], [11], [12], [13], [16], [17], [19].
In [1], [11] and [17], nucleotides were identified with the elements of the rings
GF(4), Z4 and GF(2)[u]/〈u2−1〉, respectively, and DNA codes over these rings
were studied. Nucleotide pairs {A,C,G, T}2 were identified with elements of
the chain ring GF(2)[T]/〈T4−1〉 and DNA codes over this ring were studied in
[19]. k-tuples of nucleotides were identified with elements of finite local Frobe-
nius non-chain rings of length 4 and DNA codes over those rings were studied
in [3]. The idea in these works was to find a bijection Φ : R → {A,C,G, T}k
with the properties Φ(a+κ) = Φ(a) and Φ(ρa) = rev(Φ(a)), for some ρ, κ ∈ R,
and for all a ∈ R.

On the other hand, the finite local Frobenius non-chain rings of length 5
and nilpotency index 4 were determined in [9] and the structure of reversible
cyclic codes over those rings was established in [4], when the length of the code
is relatively prime to the characteristic of the residue field of the ring. Now
it would be interesting to identify these rings with k-tuples of nucleotides and
study DNA codes over these rings.

The purpose of this paper is to identify Finite local Frobenius non-chain
rings of length 5 whose maximal ideal has nilpotency index 4 and residue field
GF(2d) with k-tuples of nucleotides, for some k, and determine the structure
of DNA codes over these rings, of length relatively prime to the characteristic
of the residue field of the ring. The paper is organized as follows: in Section 2,
basic facts on commutative finite local rings, properties of the reciprocal matrix
and properties finite local Frobenius non-chain ring of length 5 whose maximal
ideal has nilpotency index 4 are given. In Section 3, we give conditions for
the existence of a correspondence between finite local rings and k-tuples of
nucleotides. In Section 4 we use the correspondence between {A,C,G, T}5
and a finite local Frobenius non-chain ring of length 5, nilpotency index 4 and
residue field GF(22) for describing the structure of DNA codes over this ring.

2 Preliminaries

Throughout this work GF(q) denotes the finite field with q = pd elements, p a
prime, and all rings are assumed to be finite, commutative with unit element.

Let Ω be a non empty set and O be an equivalence relation in Ω. The
family of equivalence classes modulo O is a partition of Ω, conversely if {Oi}i∈I

is a partition of Ω, the set O of all pairs (ω1, ω2) such that ω1, ω2 are in
the same member of the partition is an equivalence relation in Ω. That is,
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every equivalence relation in Ω corresponds uniquely to a partition of Ω and
conversely.

Let R be a ring and M an R-module. The annihilator ideal of M in R is
defined as annR(M) := {a ∈ R : am = 0,∀ m ∈ M}. The length of M, denoted
by `R(M), is the length of a composition series for M, see [15]. If R has the
unique maximal ideal m, it is called local, k = R/m its residue field, there is
an integer t ≥ 1 such that mt = 〈0〉, called the nilpotency index of m, and
|M| = |GF(q)|`R(M), see [6]. The local ring R will be denoted by the triple
(R,m,GF(q)).

Let (R,m,GF(q)) be a finite local ring, f ∈ R[T] and n ∈ N with (p, n) = 1.
¯ : R[T]→ GF(q)[T] is the ring homomorphism that maps a 7→ a+ m and the
variable T to T. f is called basic irreducible if f̄ is irreducible in GF(q)[T].
If f is monic basic irreducible and deg(f) = s, the ring B = R[T]/〈f〉 =
{a0 + a1T + · · · + as−1Ts−1 : ai ∈ R} is a local separable extension of R
with maximal ideal mB and residue field GF(qs). Furthermore if T ⊂ R
is a set of representatives of GF(q) and I is an ideal of R, the set Ts :=
{a0 + a1T + · · · + as−1Ts−1 : ai ∈ T} ⊂ B is a set of representatives of
GF(qs) and `R(I) = `B(IB), see [6]. Hensel’s Lemma guarantees that Tn − 1
is the product of a unique family of monic basic irreducible pairwise coprime
polynomials in R[T], see [7] and [15].

The reciprocal of the polynomial f is defined as f∗ = Tdeg(f)f( 1
T ), the

polynomial f is called self-reciprocal if f∗ is associate of f. Let f1, . . . , fr the
unique family of monic basic irreducible pairwise coprime polynomials such
that Tn − 1 = f1 · · · fr. From [7], [8] and [14] we have the following: (1) f∗i is
associate of fj if and only if f∗i is associate of fj , in particular fi is self-reciprocal
if and only if fi is self-reciprocal; (2) Over fields, self reciprocal polynomials
have even degree with the only exception of T + 1. In particular, if fi is self
reciprocal and fi 6= T−1, then fi has even degree; (3) After renumbering there
are non negative integers r1, r2 such that r = r1 + 2r2, f∗2i−1 is associate of f2i,
1 ≤ i ≤ r1, and f2r1+i is self-reciprocal polynomial, 1 ≤ i ≤ r2.
For the remainder of the manuscript the following notation will be used:
(1) The order of the sequence f1, . . . , fr is fixed according to the last assertion;
(2) For u ∈ {1, . . . , r}, u∗ denotes the index of the polynomial which is asso-
ciate of fu, observe that (u∗)∗ = u; (3) For U ⊆ {1, . . . , r} let U∗ = {u∗ : u ∈
U}.
U is called self-reciprocal if U∗ = U, observe that U is a self-reciprocal set if
and only if {1, . . . , r}\U is a self-reciprocal set. ∅ is considered a self-reciprocal
set.

The reciprocal matrix is helpful to determine reversible constacyclic codes,
its properties was treated in [4] and [8]. Observe that if f ∈ GF(q)[T] is
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an irreducible polynomial, then ψ : GF(q)[T]/〈f∗〉 → GF(q)[T]/〈f〉 given by
h∗+〈f〉

Tdeg(h)+〈f〉 is an isomorphism over GF(q).

Definition 1. Let (R,m,GF(q)) be a finite local ring, f ∈ R[T] a monic basic
irreducible polynomial, n ≥ deg(f), ψ as above and H = (aij) a matrix over

GF(qdeg(f)) = GF(q)[T]/〈f∗〉, the matrix (T
n
ψ(aij)) in GF(q)[T]/〈f〉 is called

the n-th reciprocal matrix of H with respect f and is denoted by H∗(n,f).

Let (R,m,GF(q)), f, n and H = (aij) as in Definition 1. Suppose f is self
reciprocal, deg(f) = 2s and f|Tn − 1. Let g ∈ GF(q)[T] be an irreducible
polynomial of degree s and α ∈ GF(q2s) be a root of g. From [3], we have

H∗(n,f) = H⇔ H is a matrix over GF(qs)

⇔ H = (hij(α)), for some hij ∈ GF(q)[T] with deg(hij) < s.

The ring R is a chain ring if the lattice of its ideals is a chain under
set-theoretic inclusion . The ring R is a chain ring if and only if R is local
and its maximal ideal is principal. The ideals of the finite chain ring R are
〈π`R(R)〉 = 〈0〉 ⊂ 〈π`R(R)−1〉 ⊂ . . . ⊂ 〈π〉 ⊂ R. A finite local ring (R,m,GF(q))
is Frobenius if annR(m) is the unique minimal ideal of R. If (R,m,GF(q)) is a
finite local Frobenius ring and I is an ideal of R, then `R(I) + `R(annR(I)) =
`R(R). F4

5 denotes the family of finite local Frobenius non-chain rings of length
5 with nilpotency index 4. Recently, the rings in the family F4

5 with residue
field GF(2d) were described in [9] and for completeness we recall this result
here:

Proposition 1. Let (R,m,GF(2d)) ∈ F4
5, then R is isomorphic to one of the

following rings:

(a) If 3|2d − 1
(1) GF(2d)[X,Y]/〈X2 −Y3,XY〉,
(2) GR(22, d)[X,Y]/〈Y2 − 2,X2 −Y3,XY〉,
(3) GR(22, d)[X,Y]/〈Y3 − 2,X2 −Y3,XY〉,
(4) GR(22, d)[X,Y]/〈ζY3 − 2,X2 −Y3,XY〉,
(5) GR(22, d)[X,Y]/〈ζ2Y3 − 2,X2 −Y3,XY〉,
(6) GR(23, d)[X]/〈22 −X3, 2X〉,
(7) GR(23, d)[X]/〈22 − ζX3, 2X〉,
(8) GR(23, d)[X]/〈22 − ζ2X3, 2X〉,
(9) GR(24, d)[X]/〈X2 − 23, 2X〉.
In cases (4) and (5), {0, 1, . . . , ζ2d−2} is the Teichmüller set of the Galois

ring GR(22, d). In cases (7) and (8), {0, 1, . . . , ζ2d−2} is the Teichmüller
set of the Galois ring GR(23, d).
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(b) If 3 6 |2d − 1
(1) GF(2d)[X,Y]/〈X2 −Y3,XY〉,
(2) GR(22, d)[X,Y]/〈Y2 − 2,X2 −Y3,XY〉,
(3) GR(22, d)[X,Y]/〈Y3 − 2,X2 −Y3,XY〉,
(6) GR(23, d)[X]/〈22 −X3, 2X〉,
(9) GR(24, d)[X]/〈X2 − 23, 2X〉.

Let (R,m,GF(q)) ∈ F4
5, f ∈ R[T] a monic basic irreducible polynomial

of degree s, and ~v = (a, b) ∈ GF(qs)2. For the reminder of the manuscript
(B = R[T]/〈f〉,mB,GF(qs)) will be the separable extension of R determined
by f, T ⊂ R will be a set of representatives of GF(q), θ̃ = {θ1, θ2} will be a
sequence of elements of B and the following notation will be used.

(1) Ts = {a0 + a1T + · · · + as−1Ts−1 : ai ∈ T} ⊂ B will be the set of
representatives of B/mB = GF(qs);

(2) For a ∈ GF(qs), the only representative of a in Ts will be denoted by
aTs ;

(3) The ideal of B, 〈aTsθ1 + bTsθ2〉, will be denoted by ~vTs
θ̃

.

(4) A fixed minimal R-generating set {α1, α2} of m will be considered.
If the ring R is one of the rings (1) − (5) mentioned in Proposition 1,
α1 = x and α2 = y.
If the ring R is one of the rings in cases (6)−(8) mentioned in Proposition
1, α1 = 2 and α2 = x.
If the ring R is the ring (9) mentioned in Proposition 1, α1 = x and
α2 = 2.
When we take a minimal R-generating set for m we understand that
{α1, α2} is the ordered minimal R-generating set for m.

(5) The fixed minimal R-generating set for annR(m2) will be {α1, α
2
2}.

When we take a minimal R-generating set for annR(m2) we understand
this is the ordered minimal R-generating set for annR(m2).

(6) We write α̃ for {α1, α2} and β̃ for {α1, α
2
2}.

The lattice of ideals of a separable extension of a ring in the family F4
5 and

the annihilator ideal of the ideals of a ring in the family F4
5 were determined

in [9] and [4], respectively. For completeness we state these results here.

Lemma 1. Let (R,m,GF(q)) ∈ F4
5, T, Ts, α̃ = {α1, α2}, f ∈ R[T], deg(f) = s,

(B = R[T]/〈f〉,mB,GF(qs)) be as above, then:

(1) The ideals of length 0, 1, 4, 5 of B are 〈0〉, m3B, mB, B, respectively.
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(2) Ideals of length 2 of B are between annR(m2)B and m3B. These ideals
are:

m2B = (0, 1)Ts
β̃
, (1, λ1)Ts

β̃
, . . . , (1, λqs)

Ts
β̃

λi ∈ GF(qs).

(3) Ideals of length 3 of B are between mB and m2B. These ideals are:

(0, 1)Tsα̃ , (1, 0)Tsα̃ + m2B = annB(m2B), (1, λ1)Tsα̃ , . . . , (1, λqs−1)Tsα̃ ,

λi ∈ GF(qs) \ {0}.

The ideal (1, 0)Tsα̃ + m2B = annB(m2B) = 〈α1, α
2
2〉B is simply denoted by

(1, 0)Tsα̃ .

Lemma 2. Let (R,m,GF(q)) ∈ F4
5, T and α̃ = {α1, α2} be as above, then:

annR(α2
2) = 〈α1, α

2
2〉, annR(α1) = 〈α2〉 and

(1) annR(α1 + λ1α
2
2) = 〈α1 + λ2α2〉, λ1, λ2 ∈ T, λ1λ2 = −1, for the rings

(1)− (6), (9) in Proposition 1.

(2) annR(α1 +λ1α
2
2) = 〈α1 +λ2α2〉, λ1, λ2 ∈ T, λ̄1λ̄2 = −ζ, for the ring (7)

in Proposition 1.

(3) annR(α1 + λ1α
2
2) = 〈α1 + λ2α2〉, λ1, λ2 ∈ T, λ̄1λ̄2 = −ζ2, for the ring

(8) in Proposition 1.

Observation 1. Under the notation as in Lemma 1. Since m(α2B) = α2
2B =

m2B and (annB(m2)B)(α2B) = (〈α1, α
2
2〉B)(α2B) = α3

2B ⊆ α1B, then:

(α1B : α2B) = {a ∈ R : aα2 ∈ α1B} = annB(m2)B.

The next results will be useful for the existence of compatible functions
defined on a rings (R,m,GF(2d)) in the family F4

5. Observe the following:

`R(annR(ρ− 1)) = 3⇔ `R(ρ− 1) = 2

⇔ 〈ρ− 1〉 = (0, 1)Ts
β̃
or 〈ρ− 1〉 = (1, λ)Ts

β̃
, λ ∈ GF(2d),

⇔ ρ = 1 + a0α
2
2, a0 ∈ R∗, or ρ = 1 + a0(α1 + λα2

2), a0 ∈ R∗, λ ∈ T.

Lemma 3. Let R be any of the following rings:

(1) GF(2d)[X,Y]/〈X2 −Y3,XY〉,

(2) GR(22, d)[X,Y]/〈Y2 − 2,X2 −Y3,XY〉,

(3) GR(22, d)[X,Y]/〈Y3 − 2,X2 −Y3,XY〉,
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(4) GR(22, d)[X,Y]/〈ζY3 − 2,X2 −Y3,XY〉,

(5) GR(22, d)[X,Y]/〈ζ2Y3 − 2,X2 −Y3,XY〉.

The only elements ρ, κ ∈ R which satisfy 2κ = 0, ρ2 = 1, κ = ρκ, κ 6∈ 〈ρ− 1〉
and `R(annR(ρ− 1)) = 3 are:

ρ = 1 + a0y2, κ = a1x + a2y2, a0, a1 ∈ R∗, a2 ∈ R.

In this case `R(κ) = `R(x + a−1
1 a2y2) = 2.

Proof: Case I: If ρ = 1 + a0y2, a0 ∈ R∗, relation κ = ρκ implies κ ∈
annR(y2) = 〈x, y2〉 and κ = a1x + a2y2, a1, a2 ∈ R. Now since κ 6∈ 〈ρ − 1〉 =
〈y2〉 then a1 ∈ R∗.
Case II: If 〈ρ − 1〉 = 〈x + λy2〉, then 〈ρ − 1〉2 = 〈2(ρ − 1)〉 = 〈2〉〈x + λy2〉 =
〈0〉 = 〈x + λy2〉2 = 〈x2〉, a contradiction.

Lemma 4. Let R be any of the rings:

(1) GR(23, d)[X]/〈22 −X3, 2X〉,

(2) GR(23, d)[X]/〈22 − ζX3, 2X〉,

(3) GR(23, d)[X]/〈22 − ζ2X3, 2X〉.

The only elements ρ, κ ∈ R which satisfy 2κ = 0, ρ2 = 1, κ = ρκ, κ 6∈ 〈ρ− 1〉
and `R(annR(ρ− 1)) = 3 are:

(1) ρ = 1 + a0(2 + λx2), κ = a1x2, where λ ∈ T, a0 ∈ 1 + m, a1 ∈ R∗.
In this case `R(κ) = `R(x2) = 2.

(2) ρ = 1 + 2a0, κ = a1x, where a0 ∈ R∗, a1 6∈ 〈2, x2〉.

In this case `R(κ) = `R(a1x) =

{
`R(x) = 3 a1 ∈ R∗

`R(x2) = 2 a1 ∈ m \ 〈2, x2〉
.

Proof: Case I: If 〈ρ − 1〉 = 〈x2〉, relations 2κ = 0 and κ = ρκ imply
κ ∈ annR(2)∩ annR(x2) = annR(2, x2) = 〈x2〉 = 〈ρ− 1〉, which is not possible.
Case II: If ρ = 1+a0(2+λx2), λ 6= 0 and a0 ∈ R∗, then ρ2 = 1 = 1+4a0 +4a2

0,
4a0(1 +a0) = 0, 1 +a0 ∈ annR(x3) = m and a0 ∈ 1 +m. Relations κ = ρκ and
2κ = 0 imply κ ∈ annR(2+λx2)∩annR(2) = annR(2, x2) = 〈x2〉 and κ = a1x2,
a1 ∈ R. Now if a1 ∈ m, then κ = a1x2 ∈ m3 ⊆ 〈ρ− 1〉, hence a1 ∈ R∗.
Case III: If ρ = 1 + 2a0, a0 ∈ R∗. Relation 2κ = 0 and Lemma 2 imply
κ ∈ annR(2) = 〈x〉 and κ = a1x, a ∈ R. Now by Remark 1 and because
κ 6∈ 〈ρ− 1〉 = 〈2〉, then a1 6∈ (〈2〉 : 〈x〉) = {a ∈ R : ax ∈ 〈2〉} = 〈2, x2〉.
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Lemma 5. Let R = GR(24, d)[X]/〈X2−23, 2X〉. There are not elements ρ, κ ∈
R which satisfy 2κ = 0, ρ2 = 1, κ = ρκ, κ 6∈ 〈ρ− 1〉 and `R(annR(ρ− 1)) = 3.

Proof: Case I: If 〈ρ−1〉 = 〈4〉, then 〈ρ−1〉2 = 〈2(ρ−1)〉 = 〈8〉 = 〈4〉2 = 〈16〉,
a contradiction.
Case II: If 〈ρ − 1〉 = 〈x + 4λ〉, relations κ = ρκ and 2κ = 0 imply κ ∈
annR(ρ−1)∩annR(2) = annR(x+4λ)∩annR(2) = annR(x, 2) = m3 ⊆ 〈ρ−1〉,
which is not possible.

3 The identification between a local ring and the DNA
alphabet

In this section we give conditions for the existence of a compatible function
between a finite local ring of odd length and k-tuples of nucleotides. These
compatible functions exist for some rings in the family F4

5.

Definition 2. Let k be an integer, R be a ring, ρ ∈ R∗ and κ ∈ R.
(1) ρ̃ denotes the permutation R 7→ R given by ρ̃(a) = ρa;
(2) κ̃ denotes the permutation R 7→ R given by κ̃(a) = a+ κ;
(3) r : {A,C,G, T}k → {A,C,G, T}k denotes the reverse operation,

(c1, . . . , ck) 7→ (ck, . . . , c1);

(4) − : {A,C,G, T}k → {A,C,G, T}k denotes the complement operation,

(c1, . . . , ck) 7→ (c1, . . . , ck) = (c̄1, . . . , c̄k), A = T, T = A,C = G,G = C.

(5) A bijection Φ : R→ {A,C,G, T}k is called compatible if there are ρ, κ ∈ R
such that the following diagrams are commutative.

R

κ̃

��

Φ // {A,C,G, T}k

−−−

��
R

Φ // {A,C,G, T}k

R

ρ̃

��

Φ // {A,C,G, T}k

r

��
R

Φ // {A,C,G, T}k

Let (R,m,GF(2d)) is a finite local ring and Φ : R → {A, T,C,G}k a
compatible bijection, for ρ, κ ∈ R. Relation |M| = |GF(2d)|`R(M), where M is

a module over R implies |R| = 2d`R(R) = |{A,C,G, T}k| = 4k and k = d`R(R)
2 .

The following two Lemmas and the remark are from [3].

Lemma 6. Let Ω be a non-empty set, ω ∈ Ω and ψ, φ two permutations of Ω
such that ψ2 = φ2 = idΩ and ψ◦φ = φ◦ψ. Let [ω]ψφ = {ω, ψ(ω), φ(ω), ψφ(ω)},
then {[ω]ψφ : ω ∈ Ω} is a partition of Ω.
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Let Ω, ψ, φ and [ω]ψφ be as in Lemma 6. The equivalence relation corre-

sponding to the classes [ω]ψφ is denoted by Oψ
φ . The following subsets of Ω are

useful to describe Oψ
φ :

(1) Λφ = {ω ∈ Ω : φ(ω) = ω}, (2) Λψφ = {ω ∈ Ω : φ(ω) = ψ(ω)},
(3) ΛΩ = Ω \ (Λφ ∪ Λψφ ).

Observation 2. Let k ≥ 2 an integer, R a ring, ρ ∈ R∗ \{1} and κ ∈ R\{0}.
Suppose 2κ = 0, ρ2 = 1 and κ = ρκ.
(1) If in Lemma 6, we take Ω = R, ψ = κ̃ and φ = ρ̃, then:

(a) κ̃(a) 6= a, for all a ∈ R, ρ̃ 6= idR, κ̃ and ρ̃ have order two and κ̃◦ρ̃ = ρ̃◦κ̃;

(b) Λρ̃ = annR(ρ− 1) and Λκ̃ρ̃ =

{
a1 + annR(ρ− 1) if (ρ− 1)a1 = κ

∅ if κ 6∈ 〈ρ− 1〉.

(2) If in Lemma 6, we take Ω = {A,C,G, T}k, ψ = − and φ = r, then:

(a) ccc 6= ccc, for all ccc ∈ {A,C,G, T}k, r 6= id{A,C,G,T}k , r and − have order
two and r ◦ − = − ◦ r;

(b) Λr =

{
(c1, . . . , c k

2
, c k

2
, . . . , c1) if k is even

(c1, . . . , c k−1
2
, c k+1

2
, c k−1

2
, . . . , c1) if k is odd,

Λ
−

r =

{
(c1, . . . , c k

2
, c k

2
, . . . , c1) if k is even

∅ if k is odd,

|Λr| =

{
2k if k is even

2k+1 if k is odd
and |Λ−r | =

{
2k if k is even

0 if k is odd.

Lemma 7. Let Ω, ψ, φ and [ω]ψφ be as in Lemma 6. Suppose ψ(ω) 6= ω,

∀ω ∈ Ω, and let Λφ = {ω ∈ Ω : φ(ω) = ω}, Λψφ = {ω ∈ Ω : φ(ω) = ψ(ω)} and

ΛΩ = Ω \ (Λφ ∪ Λψφ ), then:

(1) |[ω]ψφ | = 2⇔ [ω]ψφ = {ω, ψ(ω)} ⇔ ω ∈ Λφ or ω ∈ Λψφ .

(2) |[ω]ψφ | = 4⇔ ω ∈ ΛΩ.

(3) If ω ∈ Λφ ( ω ∈ Λψφ ), then [ω]ψφ ⊆ Λφ ( [ω]ψφ ⊆ Λψφ ).

In particular |{[ω]ψφ : ω ∈ Λφ}| =
|Λφ|

2 , |{[ω]ψφ : ω ∈ Λψφ}| =
|Λψφ |

2 and

|{[ω]ψφ : ω ∈ ΛΩ}| =
|Ω|−|Λφ|−|Λψφ |

4 .
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(4) The number of equivalence classes with 2 elements is
|Λφ|+|Λψφ |

2 .

The number of equivalence classes with 4 elements is
|Ω|−|Λφ|−|Λψφ |

4 .

The number of equivalence classes is
|Ω|+|Λφ|+|Λψφ |

4 .

Let R = GF(2d)[X,Y]/〈X2 − Y3,XY〉 the ring (1) in Proposition 1, ρ =
1 + y2 and κ = x ∈ R. R has residue field GF(2d), every element of R can be
written uniquely in the form a0 +a1x +a2y +a3y2 +a4y3, where ai ∈ GF(2d).
By Lemma 3, 2κ = 0, ρ2 = 1, κ = ρκ, κ 6∈ 〈ρ− 1〉 and `R(annR(ρ− 1)) = 3.

Example 1. Let R = GF(22)[X,Y]/〈X2−Y3,XY〉, ρ = 1+y2 and κ = x ∈ R.

(1) Λρ̃ = annR(ρ− 1) = 〈x, y2〉 = {a1x + a2y2 + a3y3 : ai ∈ GF(22)},
|{[a]κ̃ρ̃ : a ∈ Λρ̃}| = |Λρ̃|

2 = 32 and

[a1x + a2y2 + a3y3]κ̃ρ̃ = {a1x + a2y2 + a3y3, (a1 + 1)x + a2y2 + a3y3}.

(2) ΛR = {a0 + a1x + a2y + a3y2 + a4y3 : ai ∈ GF(22), a0 6= 0 or a2 6= 0},
|{[a]κ̃ρ̃ : a ∈ ΛR}| = |R|−|Λρ̃|

4 = 44 − 42 = 240 and

[a0 +a1x+a2y+a3y2 +a4y3]κ̃ρ̃ = {a0 +a1x+a2y+a3y2 +a4y3, a0 +(a1 +

1)x + a2y + a3y2 + a4y3, a0 + a1x + a2y + (a0 + a3)y2 + (a2 + a4)y3, a0 +
(a1 + 1)x + a2y + (a0 + a3)y2 + (a2 + a4)y3}.

Example 2. Let {A,C,G, T}5, we have

(1) Λr = {(c1, c2, c3, c4, c5) : c1 = c5, c2 = c4},
|{[ccc]−r : ccc ∈ Λr}| = |Λr|

2 = 32 and
[(c1, c2, c3, c2, c1)]κ̃ρ̃ = {(c1, c2, c3, c2, c1), (c1, c2, c3, c2, c1)}.

(2) Λ{A,C,G,T}5 = {(c1, c2, c3, c4, c5) : c1 6= c5 or c2 6= c4},

|{[ccc]−r : ccc ∈ Λ{A,C,G,T}5}| =
|{A,C,G,T}5|−|Λ{A,C,G,T}5 |

4 = 240 and
[(c1, c2, c3, c4, c5)]κ̃ρ̃ = {(c1, c2, c3, c4, c5), (c1, c2, c3, c4, c5), (c5, c4, c3,
c2, c1), (c5, c4, c3, c2, c1)}.

The following Proposition is the main result of this section.

Proposition 2. Let (R,m,GF(2d)) be a finite local ring. There is a compatible

function Φ : R → {A,C,G, T}
d`R(R)

2 , for some ρ, κ ∈ R, if and only if there
exist ρ, κ ∈ R, with κ 6= 0, 2κ = 0, ρ2 = 1, κ = ρκ and one of the following
relations is satisfied:

(1) R is one of the following rings: GF(4), Z4, GF(2)[T]/〈T2〉;

(2) `R(R) is odd, `R(R) ≥ 3, d = 2, κ 6∈ 〈ρ − 1〉 and `R(annR(ρ − 1)) =
`R(R)+1

2 ;
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(3) `R(R) is even, 4 6 |`R(R), d = 1, κ 6∈ 〈ρ − 1〉 and `R(annR(ρ − 1)) =
`R(R)

2 + 1;

(4) `R(R) is even, 4|d`R(R), κ ∈ 〈ρ− 1〉 and `R(annR(ρ− 1)) = `R(R)
2 .

Proof: We consider the classes [a]κ̃ρ̃ = {a, a+ κ, ρa, ρa+ κ} and [ccc]
−

r = {ccc,
ccc, r(ccc), r(ccc)}, in R and {A,C,G, T}k, respectively.
⇒) For the first relations we have:
(a) Φ(a+ κ) = Φ(a) 6= Φ(a), then κ 6= 0;

(b) Φ(2κ) = Φ(κ) = Φ(0) = Φ(0), then 2κ = 0;
(c) Φ(ρ2) = r(Φ(ρ)) = r[r(Φ(1))] = Φ(1), then ρ2 = 1;
(d) Φ(ρκ) = r(Φ(κ)) = r(Φ(0)) = rΦ(0) = Φ(ρ0) = Φ(0) = Φ(κ), then ρκ = κ.

Concerning the number d`R(R)
2 , the possibilities are d`R(R)

2 = 1, d`R(R)
2 ≥ 3 is

odd and d`R(R)
2 is even. Each of one of these cases is treated in the following

lines. Observe that Φ maps bijectively Λρ̃ into Λr.

(1) d`R(R)
2 = 1⇔ Φ(a) = r(Φ(a)) = Φ(ρa), ∀ a ∈ R⇔ ρ = 1⇔

d = 2 and `R(R) = 1 or d = 1 and `R(R) = 2⇔
R ∼= GF(4) or R ∼= Z4 or R ∼= GF(2)[T]/〈T2〉.

(2) d`R(R)
2 is odd and d`R(R)

2 ≥ 3⇔ r(ccc) 6= ccc, ∀ccc ∈ {A, T,C,G}
d`R(R)

2 ⇔
Φ(ρa) 6= Φ(a+ κ), ∀a ∈ R⇔ κ 6∈ 〈ρ− 1〉.
Then |Λρ̃| = |Λr| = |annR(ρ− 1)| = 2d`R(annR(ρ−1)) = 2

d`R(R)

2 +1 and

`R(annR(ρ− 1)) =
`R(R)

2
+

1

d
.

If `R(R) is odd, then d = 2 and `R(annR(ρ− 1)) = `R(R)+1
2 .

If `R(R) is even, then d = 1, 4 6 |`R(R) and `R(annR(ρ− 1)) = `R(R)
2 + 1.

(3) d`R(R)
2 is even ⇔ there exists ccc ∈ {A, T,C,G}

d`R(R)

2 with r(ccc) = ccc⇔
there exists a ∈ R with Φ(ρa) = Φ(a + κ) ⇔ κ ∈ 〈ρ − 1〉. Then |Λρ̃| =

|Λr| = |annR(ρ−1)| = 2d`R(annR(ρ−1)) = 2
d`R(R)

2 , `R(annR(ρ−1)) = `R(R)
2

and `R(R) is even.

⇐) Case (1) was treated in [1], [11] and [17].
Case (2). Suppose `R(R) is odd, `R(R) ≥ 3, d = 2, ρ, κ ∈ R, with 2κ = 0,

ρ2 = 1, κ = ρκ, κ 6∈ 〈ρ − 1〉 and `R(annR(ρ − 1)) = `R(R)+1
2 . By Remark 2,
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|Λκ̃ρ̃ | = |Λ
−

r | = 0 and let

l1 = |{[a]κ̃ρ̃ : a ∈ Λρ̃}| = |{[ccc]
−

r : ccc ∈ Λr}| = 2`R(R),

l2 = |{[a]κ̃ρ̃ : a ∈ ΛR}| = |{[ccc]
−

r : ccc ∈ Λ{A,C,G,T}`R(R)}| =
4`R(R) − 2`R(R)+1

4
,

M = {f1, . . . , fl1 |fi ∈ Λρ̃} ∪ {h1, . . . , hl2 |hi ∈ ΛR} be a set of fixed represen-
tatives of the classes [a]κ̃ρ̃ and N = {fff1, . . . , fff l1 |fff i ∈ Λr} ∪ {hhh1, . . . ,hhhl2 |hhhi ∈
Λ{A,C,G,T}`R(R)} be a set of fixed representatives of the classes [ccc]

−

r . Using

Lemma 7, we define the bijection Φ : R → {A,C,G, T}`R(R) in the following
way:

(1) For i ∈ {1, . . . , l1}, [fi]
κ̃
ρ̃ = {fi, fi+κ} and we put Φ(fi) = fff i, Φ(fi+κ) =

fff i;

(2) For i ∈ {1, . . . , l2}, [hi]
κ̃
ρ̃ = {hi, hi + κ, ρhi, ρhi + κ} and we put Φ(hi) =

hhhi,Φ(hi + κ) = hhhi, Φ(ρhi) = r(hhhi), Φ(ρhi + κ) = r(hhhi).

Φ satisfies the desired properties. We have the following cases

(1) For i ∈ {1, . . . , l1}, [fi]
κ̃
ρ̃ = {fi, fi + κ}, ρfi = fi, ρ(fi + κ) = fi + κ,

fff i ∈ Λr, r(fff i) = fff i, r(fff i) = fff i and:

(a) Φ(fi) = fff i = Φ(fi + κ),

(b) r(Φ(fi)) = r(fff i) = fff i = Φ(fi) = Φ(ρfi),

(c) Φ(fi + κ) = fff i = fff i = Φ(fi) = Φ(fi + 2κ),

(d) r(Φ(fi + κ)) = r(fff i) = fff i = Φ(fi + κ) = Φ(ρ(fi + κ)).

(2) For i ∈ {1, . . . , l2}, [hi]
κ̃
ρ̃ = {hi, hi + κ, ρhi, ρhi + κ}, [hhhi]

−

r = {hhhi, hhhi,
r(hhhi), r(hhhi)} and:

(a) Φ(hi + κ) = hhhi = hhhi = Φ(hi) = Φ(hi + 2κ),

(b) r(Φ(hi + κ)) = r(hhhi) = r(hhhi) = Φ(ρ(hi + κ)),

(c) Φ(ρhi) = r(hhhi) = Φ(ρhi + κ),

(d) r(Φ(ρhi)) = r(r(hhhi)) = hhhi = Φ(hi) = Φ(ρ2hi),

(e) Φ(ρhi + κ) = r(hhhi) = r(hhhi) = Φ(ρhi) = Φ(ρhi + 2κ),

(f) r(Φ(ρhi + κ)) = r(r(hhhi)) = hhhi = Φ(hi + κ) = Φ(ρ(ρhi + κ)).
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Case (3) was treated in [3]. Case (4) is treated in a similar way as case (2)
and details are omitted.

The following is a particular case of Proposition 2, when the ring R is a
chain ring. Case (1) follows from Proposition 2 and case (2) was treated in
[3].

Corollary 1. Let (R, 〈π〉,GF(2d)) be a finite chain ring. There is a compat-

ible function Φ : R → {A,C,G, T}
d`R(R)

2 , for some ρ, κ ∈ R, if and only if
char(R) ∈ {2, 4} and one of the following relations is satisfied:

(1) R is one of the following rings: GF(4), Z4, GF(2)[T]/〈T2〉;

(2) `R(R) is even and 4|d`R(R);

(3) `R(R) is even, 4 6 |`R(R), d = 1, and if char(R) = 4 and κ = v1π
`R(R)

2 −1,

v1 ∈ R∗, then 2 ∈ 〈π
`R(R)

2 +1〉;

(4) `R(R) is odd, `R(R) ≥ 3 and d = 2.

Proof: The assertion follows from Proposition 2 and the following relations:
Case (3)

(i) `R(annR(ρ− 1)) = `R(R)
2 + 1⇔ `R(ρ− 1) = `R(R)

2 − 1⇔
〈ρ− 1〉 = 〈π

`R(R)

2 +1〉 ⇔ ρ = 1 + uπ
`R(R)

2 +1, u ∈ R∗.

(ii) κ 6∈ 〈ρ − 1〉 and ρκ = κ ⇔ κ 6∈ 〈π
`R(R)

2 +1〉 and κ ∈ annR(ρ − 1) =

〈π
`R(R)

2 −1〉 ⇔ κ = v1π
`R(R)

2 −1 or κ = v2π
`R(R)

2 , v1, v2 ∈ R∗.

(iii) 2κ = 0⇔ 2 ∈ annR(κ) =

{
〈π

`R(R)

2 +1〉 if κ = v1π
`R(R)

2 −1

〈π
`R(R)

2 〉 if κ = v2π
`R(R)

2

⇔

char(R) ∈ {2, 4}, and if char(R) = 4 and κ = v1π
`R(R)

2 −1, then 2 ∈
〈π

`R(R)

2 +1〉.

Case (4)

(i) `R(annR(ρ−1)) = `R(R)+1
2 ⇔ `R(ρ−1) = `R(R)−1

2 ⇔ 〈ρ−1〉 = 〈π
`R(R)+1

2 〉
⇔ ρ = 1 + uπ

`R(R)+1

2 , u ∈ R∗.

(ii) κ 6∈ 〈ρ − 1〉 and ρκ = κ ⇔ κ 6∈ 〈π
`R(R)+1

2 〉 and κ ∈ annR(ρ − 1) =

〈π
`R(R)−1

2 〉 ⇔ κ = vπ
`R(R)−1

2 .

(iii) 2κ = 0⇔ 2 ∈ annR(π
`R(R)−1

2 ) = 〈π
`R(R)+1

2 〉 ⇔ char(R) ∈ {2, 4}.
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The following is a particular case of Proposition 2, when the ring is in the
family F4

5.

Corollary 2. Let (R,m,GF(2d)) ∈ F4
5. There is a compatible function Φ :

R → {A,C,G, T}
d`R(R)

2 , for some ρ, κ ∈ R, if and only if R is one of the
following rings

(1) GF(22)[X,Y]/〈X2 −Y3,XY〉,

(2) GR(22, 2)[X,Y]/〈Y2 − 2,X2 −Y3,XY〉,

(3) GR(22, 2)[X,Y]/〈Y3 − 2,X2 −Y3,XY〉,

(4) GR(22, 2)[X,Y]/〈ζY3 − 2,X2 −Y3,XY〉,

(5) GR(22, 2)[X,Y]/〈ζ2Y3 − 2,X2 −Y3,XY〉,

(6) GR(23, 2)[X]/〈22 −X3, 2X〉,

(7) GR(23, 2)[X]/〈22 − ζX3, 2X〉,

(8) GR(23, 2)[X]/〈22 − ζ2X3, 2X〉.

Proof: The assertion follows from Proposition 2 and Lemmas 3, 4 and 5.

Example 3. Let R = GF(22)[X,Y]/〈X2 −Y3,XY〉, ρ = 1 + y2, κ = x.
Using notation as in proof of Proposition 2 and by Examples 1, 2, let M =
{f1, . . . , f32, h1, . . . , h240|fi ∈ Λρ̃, hi ∈ ΛR} the set of fixed representatives of
the classes [a]κ̃ρ̃ and N = {fff1, . . . , fff32,hhh1, . . . ,hhh240|fff i ∈ Λr,hhhi ∈ Λ{A,C,G,T}5}
the set of fixed representatives of the classes [ccc]

−

r .
Let i ∈ {1, . . . , 32}, fi = ai1x + ai2y2 + ai3y3, fff i = (ci1, c

i
2, c

i
3, c

i
2, c

i
1), the map

Φ : GF(22)[X,Y]/〈X2 −Y3,XY〉 → {A,C,G, T}5 is given by:

f ∈ [ai1x + ai2y2 + ai3y3]κ̃ρ̃ Φ(f)

ai1x + ai2y2 + ai3y3 (ci1, c
i
2, c

i
3, c

i
2, c

i
1)

(ai1 + 1)x + ai2y2 + ai3y3 (ci1, c
i
2, c

i
3, c

i
2, c

i
1)

Table 1: The map Φ

Let j ∈ {1, . . . , 240}, hj = aj0 + aj1x + aj2y + aj3y2 + aj4y3, aj0 6= 0 or aj2 6= 0,

and hhhj = (cj1, c
j
2, c

j
3, c

j
4, c

j
5), c1 6= c5 or c2 6= c4, the map Φ is given by
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h ∈ [aj0 + aj1x + aj2y + aj3y2 + aj4y3]κ̃ρ̃ Φ(h)

aj0 + aj1x + aj2y + aj3y2 + aj4y3 (cj1, c
j
2, c

j
3, c

j
4, c

j
5)

aj0 + (aj1 + 1)x + aj2y + aj3y2 + aj4y3 (cj1, c
j
2, c

j
3, c

j
4, c

j
5)

aj0 + aj1x + aj2y + (aj0 + aj3)y2 + (aj2 + aj4)y3 (cj5, c
j
4, c

j
3, c

j
2, c

j
1)

aj0 + (aj1 + 1)x + aj2y + (aj0 + aj3)y2 + (aj2 + aj4)y3 (cj5, c
j
4, c

j
3, c

j
2, c

j
1)

Table 2: The map Φ

4 DNA codes over rings in F4
5

In the rest of this manuscript we only consider the following local rings in the
family F4

5, see Corollary 2:

(1) GF(22)[X,Y]/〈X2 −Y3,XY〉,

(2) GR(22, 2)[X,Y]/〈Y2 − 2,X2 −Y3,XY〉,

(3) GR(22, 2)[X,Y]/〈Y3 − 2,X2 −Y3,XY〉,

(4) GR(22, 2)[X,Y]/〈ζY3 − 2,X2 −Y3,XY〉,

(5) GR(22, 2)[X,Y]/〈ζ2Y3 − 2,X2 −Y3,XY〉,

(6) GR(23, 2)[X]/〈22 −X3, 2X〉,

(7) GR(23, 2)[X]/〈22 − ζX3, 2X〉,

(8) GR(23, 2)[X]/〈22 − ζ2X3, 2X〉.

Let (R,m,GF(22)) ∈ F4
5 and Φ : R −→ {A,C,G, T}5 be a compatible

function, for ρ, κ ∈ R, Φ can be extended to Rn in the obvious way

Φ(a0, . . . , an−1) = (Φ(a0), . . . ,Φ(an−1)).

A code over the nucleotides of length m is a subset of {A,C, T,G}m. A code
over the nucleotides of length m is complementary if it is invariant under
the mapping − : {A,C, T,G}m → {A,C, T,G}m given by (a1, . . . , am) 7→
(ā1, . . . , ām), where Ā = T , T̄ = A, C̄ = G, Ḡ = C. A linear cyclic code
of length n over R is a submodule of Rn invariant under the permutation
σ : Rn → Rn given by (a0, . . . , an−1) 7→ (an−1, a0, . . . , an−2). These codes can
be thought of as ideals in the quotient ring R[T]/〈Tn−1〉 via the isomorphism
from Rn to R[T]/〈Tn− 1〉 defined by (a0, . . . , an−1) 7→ a0 + . . .+ an−1Tn−1 +
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〈Tn − 1〉, see [14]. Reversible codes are codes invariant under the mapping
r : Rn −→ Rn given by (a0, . . . , an−1) 7→ (an−1, . . . , a0). The linear code C
of length n over R is called complementary if Φ(C) is complementary and is
DNA if it is cyclic, reversible and complementary.

In this work all codes over R are considered linear and their lengths are
relatively prime to the characteristic of the residue field of R and the following
notation will be used:
(1) If F|Tn − 1, let F̂ = Tn−1

F ,
(2) We will just write a0 + a1T + . . .+ an−1Tn−1 for the corresponding coset
a0 + a1T + . . .+ an−1Tn−1 + 〈Tn − 1〉 in R[T]/〈Tn − 1〉.
(3) Tn − 1 = f1 · · · fr will be the unique representation of Tn − 1 as a product
of monic basic irreducible pairwise coprime polynomials in R[T].

From [6], the decomposition of a cyclic code over (R,m,GF(q)) ∈ F4
5 can be

found in the following way: Let Tn−1 = f1 · · · fr be as above, si = deg(fi) and
Bi = R[T]/〈fi〉. By the Chinese Remainder Theorem, R[T]/〈Tn−1〉 ∼= ⊕ri=1Bi,
then any ideal I of R[T]/〈Tn−1〉 is a direct sum of ideals of Bi. Since `R(R) =
`Bi(Bi) = 5, then there is a partition of [1, . . . , r], U0,U1,U2,U3,U4,Ul, such
that Ui = {u : `Bu(Iu) = i} and

I =
⊕
u∈U0

Iu ⊕
⊕
u∈U1

Iu ⊕
⊕
u∈U2

Iu ⊕
⊕
u∈U3

Iu ⊕
⊕
u∈U4

Iu ⊕
⊕
u∈U5

Iu

The following results are on the structure of cyclic reversible codes over a
ring in the family F4

5, see [4] and [9].

Theorem 1. Let (R,m,GF(q)) ∈ F4
5, α̃ = {α1, α2}, β̃ = {α1, α

2
2}, T and

Ts as above and f1, . . . , fr the unique monic basic irreducible pairwise coprime
polynomials such that Tn − 1 = f1 · · · fr, si = deg(fi). Let C be a cyclic code
of length n over R. Then

(1) There exists a unique partition of [1, r], U0,U1,U2,U3,U4,U5.

(2) For each i ∈ {2, 3} and each u ∈ Ui, there is a unique ~vu ∈ {(0, 1), (1, λ) :
λ ∈ GF(qs)} such that the corresponding ideal, in R[T]/〈Tn − 1〉, of C
is

〈m3
∏̂
u∈U1

fu,m
∏̂
u∈U4

fu,
∏̂
u∈U5

fu, (~vu)
Tsu
β̃

f̂u, (~vw)
Tsw
α̃ f̂w : u ∈ U2, w ∈ U3〉

and
|C| = q5

∑
u∈U5

su+4
∑
u∈U4

su+3
∑
ν∈U3

su+2
∑
u∈U2

su+
∑
u∈U1

su .

Theorem 2. Let (R,m,GF(q)) ∈ F4
5, α̃ = {α1, α2}, β̃ = {α1, α

2
2}, T, Ts,

f1, . . . , fr and si = deg(fi), C as in Theorem 1 and
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(1) U0,U1,U2,U3,U4,U5 the unique partition of {1, . . . , r}, associated to C,

(2) {~vu : u ∈ U2 ∪ U3} the vectors such that the corresponding ideal, in
R[T]/〈Tn − 1〉, of C is

〈m3
∏̂
u∈U1

fu,m
∏̂
u∈U4

fu,
∏̂
u∈U5

fu, (~vu)
Tsu
β̃

f̂u, (~vw)
Tsw
α̃ f̂w : u ∈ U2, w ∈ U3〉.

The following conditions are equivalent:

(1) C is a reversible code;

(2) Ui is self-reciprocal, for i ∈ {1, . . . , 5}, and ~vu = (~vu∗)
∗
(n,fu), for u ∈

U2 ∪U3;

(3) Ui is self-reciprocal, for i ∈ {0, . . . , 5}, and ~vu = (~vu∗)
∗
(n,fu), for u ∈

U2 ∪U3.

The following is the main result of this section. Recall that C is comple-
mentary, if and only if (κ, . . . , κ) ∈ C, see [3].

Theorem 3. Let (R,m,GF(q)) ∈ F4
5, α̃ = {α1, α2}, β̃ = {α1, α

2
2}, T, Ts,

f1, . . . , fr and si = deg(fi), C as in Theorem 1 and

(1) U0,U1,U2,U3,U4,U5 the unique partition of {1, . . . , r}, associated to C,

(2) {~vu : u ∈ U2 ∪ U3} the vectors such that the corresponding ideal, in
R[T]/〈Tn − 1〉, of C is

〈m3
∏̂
u∈U1

fu,m
∏̂
u∈U4

fu,
∏̂
u∈U5

fu, (~vu)
Tsu
β̃

f̂u, (~vw)
Tsw
α̃ f̂w : u ∈ U2, w ∈ U3〉.

The following conditions are equivalent:

(1) C is DNA code;

(2) Ui is self-reciprocal, for i ∈ {1, . . . , 5}, ~vu = (~vu∗)
∗
(n,fu), for u ∈ U2∪U3,

and one of the following relations is satisfied:
(a) if `R(κ) = 2 and 〈κ〉 = m2, then Ir = 〈κ〉 or 3 ≤ `R(Ir);
(b) if `R(κ) = 2 and 〈κ〉 6= m2, then Ir ∈ {〈κ〉, annR(m2),m,R};
(c) if `R(κ) = 3, then Ir ∈ {〈κ〉,m,R}.

(3) Ui is self-reciprocal, for 0 ∈ {1, . . . , 5}, ~vu = (~vu∗)
∗
(n,fu), for u ∈ U2∪U3,

r ∈ ∪5
i=`R(κ)Ui and one of the following relations is satisfied:

(a) if `R(κ) = 2, 〈κ〉 = m2 and r ∈ U2, then (~vr)β̃ = 〈κ〉;
(b) `R(κ) = 2, 〈κ〉 = m2 and r ∈ U3 ∪U4 ∪U5;
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(c) if `R(κ) = 2, 〈κ〉 6= m2 and r ∈ U2, then (~vr)β̃ = 〈κ〉;
(d) `R(κ) = 2, 〈κ〉 6= m2, r 6∈ U2 and Ir ∈ {annR(m2),m,R};
(e) if `R(κ) = 3 and r ∈ U3, then (~vr)β̃ = 〈κ〉;
(f) `R(κ) = 3, r 6∈ U3 and Ir ∈ {m,R}.

Proof: Recall the following:
(1) Under the polynomial representation, (κ, . . . , κ) in Rn corresponds with
κTn−1

T−1 in R[T]/〈Tn − 1〉,
(2) The ideal generated by κTn−1

T−1 in R[T]/〈Tn − 1〉 is identified with 〈~0〉 ⊕
κR[T]/〈fr〉, in ⊕ri=1R[T]/〈fi〉.
(3) U0,U1,U2,U3,U4,U5, are given by Ui = {u : `R[T]/〈fu〉(Iu) = i}.
(4) We may assume R[T]/〈fr〉 is the ring R.
Let C ∼= I1 ⊕ . . .⊕ Ir, Ii is an ideal of R[T]/〈fi〉, then:

(κ, . . . , κ) ∈ C⇔ 〈~0〉 ⊕ 〈κ〉 ⊆ I1 ⊕ . . .⊕ Ir ⇔ 〈κ〉 ⊆ Ir

if and only if, by Lemma 1, one of the following hold:
(a) if `R(κ) = 2 and 〈κ〉 = m2, then Ir = 〈κ〉 or 3 ≤ `R(Ir);
(b) if `R(κ) = 2 and 〈κ〉 6= m2, then Ir ∈ {〈κ〉, annR(m2),m,R};
(c) if `R(κ) = 3, then Ir ∈ {〈κ〉,m,R}.
⇔ r ∈ ∪5

i=`R(κ)Ui and one of the following relations is satisfied:

(a) if `R(κ) = 2, 〈κ〉 = m2 and r ∈ U2, then (~vr)β̃ = 〈κ〉;
(b) `R(κ) = 2, 〈κ〉 = m2 and r ∈ U3 ∪U4 ∪U5;
(c) if `R(κ) = 2, 〈κ〉 6= m2 and r ∈ U2, then (~vr)β̃ = 〈κ〉;
(d) `R(κ) = 2, 〈κ〉 6= m2, r 6∈ U2 and Ir ∈ {annR(m2),m,R};
(e) if `R(κ) = 3 and r ∈ U3, then (~vr)β̃ = 〈κ〉;
(f) `R(κ) = 3, r 6∈ U3 and Ir ∈ {m,R}.
The assertion follows from Theorem 2.

The following example is given illustrating the above results.

Example 4. Let GF(22) = {0, 1, ζ, ζ2}, ζ2 = ζ + 1, R = GF(22)[X,Y]/〈X2 −
Y3,XY〉, ρ = 1 + y2, κ = x as in Example 3. By Hensel’s Lemma, T3 − 1 =
f1f2f3, where: f1 = T− ζ2, f2 = T− ζ, f3 = T− 1 ∈ GF(2)[T] ⊂ R[T].
We have f∗1 = ζ2f2, f∗2 = ζf2, f∗3 = f3, r1 = 1 and r2 = 1.
If U3 = {3}, U0 = U1 = U2 = U4 = U5 = ∅, ~v3 = (1, 0), the code

〈m3
∏̂
u∈U1

fu,m
∏̂
u∈U4

fu,
∏̂
u∈U5

fu, (~vu)
Tsu
β̃

f̂u, (~vw)
Tsw
α̃ f̂w : u ∈ U2, w ∈ U3〉 =

〈xf̂3, y
2 f̂3〉 = 〈xf1f2, y

2f1f2〉

is a DNA code with |C| = 45(0)+4(0)+3(1)+2(0)+1(0) = 43 = 64 elements
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