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On the Upper Bound of the Third Hankel
Determinant for Certain Class of Analytic

Functions Related with Exponential Function

Daniel Breaz, Adriana Cătaş and Luminiţa-Ioana Cot̂ırlă

Abstract

In the present paper we introduce a new class of analytic functions f
in the open unit disk normalized by f(0) = f ′(0)−1 = 0, associated with
exponential functions. The aim of the present paper is to investigate the
third-order Hankel determinant H3(1) for this function class and obtain
the upper bound of the determinant H3(1).

1 Introduction

Let A denote the class of analytic functions of the form

f(z) = z +

∞∑
n=2

anz
n (1)

in the open unit disk ∆ = {z ∈ C : |z| < 1} and normalized with f(0) =
f ′(0) − 1 = 0. Also we denote by S the subclass of A consisting of univalent
functions f in ∆. The familiar coefficient conjecture for the function f ∈ S of
the form (1) was first presented by the Bieberbach [1] in 1916 and proved by
de-Branges [2] in 1985. During 1916-1985 many mathematicians struggled to
prove or disprove this conjecture. As result they defined several subfamilies of
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the set S connected with different image domains. Further, we recall some of
them. Let the notations S∗, C and K indicate the families of starlike, convex
and close-to-convex functions respectively with the following Taylor-Maclaurin
series representations:

S∗ =

{
f ∈ S :

zf ′ (z)

f (z)
≺ 1 + z

1− z
, z ∈ ∆

}
; (2)

C =

{
f ∈ S : 1 +

zf ′′ (z)

f ′ (z)
≺ 1 + z

1− z
, z ∈ ∆

}
; (3)

K =

{
f ∈ S :

f ′ (z)

g′ (z)
≺ 1 + z

1− z
, for g ∈ C, z ∈ ∆

}
, (4)

where the symbol ” ≺ ” denotes the familiar concept of differential subor-
dination between analytic functions. Now, we recall here the definition of
subordination.

Suppose that f and g are two analytic functions in ∆. We say that the
function f is subordinate to g and we write f (z) ≺ g (z) , if there exists a
Schwarz function w analytic in ∆ with w (0) = 0 and |w(z)| < 1 such that (see
[14]) f (z) = g (w(z)) . Thus, f (z) ≺ g (z) implies f (∆) ⊂ g (∆) . In case of
univalency of f in ∆, the function f is subordinate to g if and only if f (0) =
g (0) and f (∆) ⊂ g (∆) .

Assume that P denote the class of analytic functions p normalized by

p (z) = 1 + c1z + c2z
2 + . . . (5)

and satisfying the condition <p (z) > 0, z ∈ ∆. It is easy to see that if p ∈ P,
then there exists a Schwarz function w analytic in ∆ with w (0) = 0 and
|w(z)| < 1 such that (see [25])

p (z) =
1 + w (z)

1− w (z)
. (6)

Padmanabhan and Parvatham introduced in the paper [20] a unified fam-
ilies of starlike and convex functions using familiar notion of convolution with
the function z/ (1− z)a , for all a ∈ R. Later on Shanmugam [23] generalized
the idea of paper [20] and introduced the set

S∗h (φ) =

{
f ∈ A :

z (f ∗ h)
′

(f ∗ h)
≺ φ (z) , z ∈ ∆

}
, (7)

where the symbol ” ∗ ” stands for the familiar notion of convolution, φ is
convex and h is a fixed function in A. We obtain the families S∗ (φ) and C (φ)

when taking z/1− z and z/ (1− z)2 instead of h in S∗h (φ) respectively.
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In 1992, Ma and Minda [12] reduced the above restriction to a weaker
supposition that φ is a function, with <φ > 0 in ∆ with, whose image domain
is symmetric about the real axis and starlike with respect to φ (0) = 1 with
φ′ (0) > 0 and discussed some properties. Here are these classes:

S∗ (φ) =

{
f ∈ A :

zf ′ (z)

f (z)
≺ φ (z) , z ∈ ∆

}
;

C (φ) =

{
f ∈ A : 1 +

zf ′′ (z)

f ′ (z)
≺ φ (z) , z ∈ ∆

}
.

The classes S∗ (φ) and C (φ) unify various subclasses of starlike S∗ or convex
C functions in ∆. For example, the class S∗ (φ) generalizes various subfamilies
of the set A as follows:

1. If the function φ (z) = 1+Az
1+Bz with−1 ≤ B < A ≤ 1, then S∗ [A,B] :=

S∗
(

1+Az
1+Bz

)
is the set of Janowski starlike functions defined in [8]. Further, if

A = 1− 2α and B = −1 with 0 ≤ α < 1, then we get the set S∗ (φ) of starlike
function of order α.

2. The family S∗L := S∗
(√

1 + z
)

was introduced by Sokol and
Stankiewicz in [24], consisting of functions f ∈ A such that zf ′ (z) /f (z) lies
in the region bounded by the right-half of the lemniscate of Bernoulli given by∣∣w2 − 1

∣∣ < 1.
3. For the function φ (z) = 1 + sin z, the class S∗ (φ) leads to the class

S∗sin, introduced in [3].
4. The family S∗e := S∗ (ez) was introduced by Mediratta et al. in [13]

given as:

S∗e =

{
f ∈ S :

zf ′ (z)

f (z)
≺ ez, z ∈ ∆

}
, (8)

or equivalently

S∗e =

{
f ∈ S :

∣∣∣∣log
zf ′ (z)

f (z)

∣∣∣∣ ≺ ez, z ∈ ∆

}
. (9)

By using Alexander type relation, we also recall [13] by the following set:

Ce =

{
f ∈ S :

(zf ′ (z))
′

f ′ (z)
≺ ez, z ∈ ∆

}
.

The above mentioned families S∗e and Ce are symmetric about the real axis.
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In [15], Noonan and Thomas studied the qth Hankel determinants Hq(n)
of functions f ∈ A of the form (1) for q ≥ 1 and n ≥ 1 which is defined by

Hq(n) =

∣∣∣∣∣∣∣∣∣
an an+1 . . . an+q−1
an+1 an+2 . . . an+q

...
...

...
...

an+q−1 an+q . . . an+2q−2

∣∣∣∣∣∣∣∣∣ , (a1 = 1) . (10)

In particular

H3(1) =

∣∣∣∣∣∣
a1 a2 a3
a2 a3 a4
a3 a4 a5

∣∣∣∣∣∣ , (a1 = 1) .

Since f ∈ S, a1 = 1, thus

H3(1) = a3
(
a2a4 − a23

)
− a4 (a4 − a2a3) + a5

(
a3 − a22

)
.

The concept of Hankel determinant is very useful in the theory of singularities
[4] and in the study of power series with integral coefficients. The Hankel
determinant Hq(n) have been investigated by several authors to study its rate
of growth as n → ∞ and to determine bounds on it for specific values of q
and n. For example, Pommerenke [22] proved that the Hankel determinants of

univalent functions satisfy |Hq(n)| < kn−( 1
2+β)q+ 3

2 , (n = 1, 2, . . . , q = 2, 3, . . .)
where β > 1/1400 and k depends only on q. Note that the Hankel determi-
nant H2(1) = a3 − a22 is related to the well-known Fekete-Szegő functional
[7] for univalent functions. Although we know many sharp bounds of H2(2)
and significantly less sharp bounds of H3(1) for some proper subfamilies of
S, the sharp results for the whole class S are not known. Moreover, we are
even unable to formulate a reasonable conjecture about it. Ehrenborg studied
Hankel determinant of the exponential polynomials [6] and Noor studied Han-
kel determinant for Bazilevic functions in [18] and for functions with bounded
boundary rotations in [17] and [16]; also for close-to-convex functions in [19].
Until now, very few researches have studied the above determinants for the
function class, subordinate to ez. Thus, in this paper, we aim to investigate
the third-order Hankel determinant H3(1) for a certain class defined below,
which is associated with exponential function and obtain the upper bound of
the determinant. To derive our results, we shall need the following results.

2 Preliminary results

Some preliminary results required in the following section are now listed.
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Lemma 1. ( [5]) If p ∈ P and has the form (5) then

|cn| ≤ 2, n = 1, 2, . . . (11)

and the inequality is sharp.

Lemma 2. ([21], [9]) If p ∈ P and has the form (5) then

|cn+k − µcnck| < 2 for 0 ≤ µ ≤ 1; (12)

|cmcn − ckcl| ≤ 4 for m+ n = k + l; (13)∣∣cn+2k − µcnc2k
∣∣ ≤ 2 (1 + 2µ) for µ < −1

2
; (14)∣∣∣c2 − c21

2

∣∣∣ < 2− |c1|
2

2 ; (15)

and for the complex number λ, we have

c2 − λc21 ≤ 2 max{1, |2λ− 1|}. (16)

For the inequalities (12) , (13) , (14) , (15) see [21] and (16) is given in [9].

Lemma 3. ([10], [11]) If the function p ∈ P is given by (5) , then exists some
x, z with |x| ≤ 1, |z| ≤ 1 such that

2c2 = c21 + x
(
4− c21

)
; (17)

4c3 = c31 + 2c1x
(
4− c21

)
−
(
4− c21

)
c1x

2 + 2
(
4− c21

) (
1− |x|2

)
z. (18)

3 Main results

Definition 1. A function f ∈ S is said to be in the class SC∗α, α ∈ [0, 1] , if
satisfies the following condition:

(1− α)
zf ′ (z)

f (z)
+ α

(
1 +

zf ′′ (z)

f ′ (z)

)
≺ ez.

Remark. For α = 0, the family SC∗0 := S∗e = S∗ (ez) was introduced by
Mediratta et al. in [13] and for α = 1, we reobtain the set SC∗1 := Ce.

Theorem 1. If the function f ∈ SC∗α, where f is given by f(z) = z +∑∞
n=2 anz

n, z ∈ C then we have∣∣a3 − a22∣∣ ≤ 1

2 (1 + 2α)
. (19)
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Proof. Because f ∈ SC∗α, from the definition of subordination, we know that
exists a Schwartz function w(z), with w(0) = 0 and |w(z)| < 1 such that

(1− α)
zf ′ (z)

f (z)
+ α

(
1 +

zf ′′ (z)

f ′ (z)

)
= ew(z).

But

(1− α)
zf ′ (z)

f (z)
=

= (1− α)
[
1 + a2z +

(
2a3 − a22

)
z2 +

(
a32 − 3a2a3 + 3a4

)
z3 + . . .

]
. (20)

α

(
1 +

zf ′′ (z)

f ′ (z)

)
= α

(
1 +

∑∞
n=2 nan (n− 1) zn−1

1 +
∑∞
n=2 nanz

n−1

)
= (21)

= α
[
1 + 2a2z +

(
6a3 − 4a22

)
z2 +

(
12a4 − 18a2a3 + 8a32

)
z3 + . . .

]
.

From the relations (20) and (21) we obtain

(1− α)
zf ′ (z)

f (z)
+ α

(
1 +

zf ′′ (z)

f ′ (z)

)
= (22)

= 1 + za2 (1 + α) + z2
[
2a3 (1 + 2α)− a22 (1 + 3α)

]
+

+z3
[
a32 (1 + 7α)− 3a2a3 (1 + 5α) + 3a4 (1 + 3α)

]
+ . . .

We define a function

p (z) =
1 + w (z)

1− w (z)
= 1 + c1z + c2z

2 + . . . ,

p(z) ∈ P and

w (z) =
p (z)− 1

p (z) + 1
=

c1z + c2z
2 + c3z

3 + . . .

2 + c1z + c2z2 + c3z3 + . . .
.

But

ew(z) = 1 + w (z) +
[w (z)]

2

2!
+

[w (z)]
3

3!
+ . . . =

= 1 +
c1z + c2z

2 + c3z
3 + . . .

2 + c1z + c2z2 + c3z3 + . . .
+

1

2

(
c1z + c2z

2 + c3z
3 + . . .

2 + c1z + c2z2 + c3z3 + . . .

)2

+

+
1

6

(
c1z + c2z

2 + c3z
3 + . . .

2 + c1z + c2z2 + c3z3 + . . .

)3

+ . . . = (23)
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= 1 +
1

2

(
c1z + c2z

2 + . . .
) [

1− c1z

2
+

(
c21
4
− c2

2

)
z2 −

(
c31
8
− c1c2

2
+
c3
2

)
z3 + . . .

]
+
1

2

(
c1z + c2z

2 + . . .
)2 [

1− c1z

2
+

(
c21
4
− c2

2

)
z2 −

(
c31
8
− c1c2

2
+
c3
2

)
z3 + . . .

]2

+
1

48

(
c1z + c2z

2 + . . .
)3 [

1− c1z

2
+

(
c21
4
− c2

2

)
z2 −

(
c31
8
− c1c2

2
+
c3
2

)
z3 + . . .

]3

+. . .

= 1 +
1

2
c1z +

(
c2
2
− c21

8

)
z2 +

(
c31
48
− c1c2

4
+
c3
2

)
z3 + . . .

On comparing the coefficients of z, z2 and z3 between the equations (22) and
(23) we obtain

a2 =
c1

2 (1 + α)
; (24)

a3 =
c2

4 (1 + 2α)
+

c21
(
1 + 4α− α2

)
16 (1 + 2α) (1 + α)

2 ; (25)

It can be written,

∣∣a3 − a22∣∣ =

∣∣∣∣ c2
4 (1 + 2α)

− c21 (α+ 3)

16 (1 + 2α) (1 + α)

∣∣∣∣ .
Using Lemma 3, we thus know that

∣∣a3 − a22∣∣ =

∣∣∣∣∣x
(
4− c21

)
8 (1 + 2α)

− c21 (1− α)

16 (1 + 2α) (1 + α)

∣∣∣∣∣ .
Letting |x| = t ∈ [0, 1], c1 = c ∈ [0, 2] and applying the triangle inequality, the
above equation reduces to

∣∣a3 − a22∣∣ ≤ t
(
4− c2

)
8 (1 + 2α)

+
c2 (1− α)

16 (1 + 2α) (1 + α)
.

Suppose that

F (c, t) :=
t
(
4− c2

)
8 (1 + 2α)

+
c2 (1− α)

16 (1 + 2α) (1 + α)
,

then we get
∂F

∂t
=

4− c2

8 (1 + 2α)
≥ 0,
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which shows that F (c, t) is an increasing function on the closed interval [0, 1]
about t. Therefore the function F (c, t) can get the maximum value at t = 1,
that is

maxF (c, t) = F (c, 1) =
4− c2

8 (1 + 2α)
+

c2 (1− α)

16 (1 + 2α) (1 + α)
.

Next, let

G (c) =
4− c2

8 (1 + 2α)
+

c2 (1− α)

16 (1 + 2α) (1 + α)
=

1

2 (1 + 2α)
− c2 (1 + 3α)

16 (1 + 2α) (1 + α)
.

The function G (c) has a maximum value at c = 0, which is∣∣a3 − a22∣∣ ≤ G (0) =
1

2 (1 + 2α)

and the proof is done.

Theorem 2. If the function f ∈ SC∗α, where f is given by f(z) = z +∑∞
n=2 anz

n, z ∈ C then we have

|a2a3 − a4| ≤
(
4− c̃2

)
c̃

24
+

3
(
4− c̃2

)
c̃

8
+

4− c̃2

12
+
c̃3ε(ρ)

72
(26)

where

c̃ = −
9
√

499 312
3 − 23 840

3

√
298− 108

298
√

298− 6236
∈ [0, 2]

and ε(ρ) = −2α3 − 14α2 + 17α+ 5, ρ = 1
6

√
2
√

149− 7
3 .

Proof. Knowing that

a4 =
c3

6 (1 + 3α)
−

c1c2
(
4α2 − 9α− 1

)
24 (1 + 3α) (1 + 2α) (1 + α)

+

+
c31
(
4α4 − 31α3 + 21α2 − 17α− 1

)
288 (1 + α)

3
(1 + 2α) (1 + 3α)

; (27)

we have
|a2a3 − a4| =∣∣∣∣∣ c1c2

(
2α2 + 1

)
12 (1 + 3α) (1 + 2α) (1 + α)

− c3
6 (1 + 3α)

−
c31

(
2α4 − 2α3 − 39α2 − 40α− 5

)
144 (1 + α)3 (1 + 2α) (1 + 3α)

∣∣∣∣∣ .
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Again, by applying Lemma 3, we get

|a2a3 − a4| =

∣∣∣∣∣c31
(
−2α4 − 16α3 + 3α2 + 22α+ 5

)
144 (1 + α)

3
(1 + 2α) (1 + 3α)

+

+

(
4− c21

)
c1x

2

24 (1 + 3α)
−

(
4− c21

) (
1− |x|2

)
z

12 (1 + 3α)
−
c1x

(
4− c21

) (
2α2 + 6α+ 1

)
24 (1 + 3α) (1 + 2α) (1 + α)

∣∣∣∣∣∣ .
Assume that |x| = t ∈ [0, 1], c1 = c ∈ [0, 2] . Then, using the triangle inequality,
we deduce that

|a2a3 − a4| ≤
(
4− c2

)
ct2

24 (1 + 3α)
+

(
4− c2

)
ct
(
2α2 + 6α+ 1

)
24 (1 + 3α) (1 + 2α) (1 + α)

+

+

(
4− c2

)
12 (1 + 3α)

+
c3
(
−2α4 − 16α3 + 3α2 + 22α+ 5

)
144 (1 + α)

3
(1 + 2α) (1 + 3α)

.

Setting

F (c, t) :=

(
4− c2

)
ct2

24 (1 + 3α)
+

(
4− c2

)
ct
(
2α2 + 6α+ 1

)
24 (1 + 3α) (1 + 2α) (1 + α)

+

+

(
4− c2

)
12 (1 + 3α)

+
c3
(
−2α4 − 16α3 + 3α2 + 22α+ 5

)
144 (1 + α)

3
(1 + 2α) (1 + 3α)

.

Hence, we have

∂F

∂t
=

(
4− c2

)
ct

12 (1 + 3α)
+

(
4− c2

)
c
(
2α2 + 6α+ 1

)
24 (1 + 3α) (1 + 2α) (1 + α)

≥ 0,

namely, F (c, t) is an increasing function on the closed interval [0, 1] about t.
This implies that the maximum value of F (c, t) occurs at t = 1, which is

maxF (c, t) = F (c, 1) =

(
4− c2

)
c

24 (1 + 3α)
+

(
4− c2

)
c
(
2α2 + 6α+ 1

)
24 (1 + 3α) (1 + 2α) (1 + α)

+

+

(
4− c2

)
12 (1 + 3α)

+
c3
(
−2α4 − 16α3 + 3α2 + 22α+ 5

)
144 (1 + α)

3
(1 + 2α) (1 + 3α)

.

Then

maxF (c, t) ≤
(
4− c2

)
c

24
+

(
4− c2

)
c
(
2α2 + 6α+ 1

)
24

+
4− c2

12
+
c3 (α+ 1) ε(α)

144
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≤
(
4− c2

)
c

24
+

9
(
4− c2

)
c

24
+

4− c2

12
+

2c3ε(ρ)

144

where ε(α) = −2α3− 14α2 + 17α+ 5 which is a positive function, ε(α) ≤ ε(ρ)
and ρ = 1

6

√
2
√

149− 7
3 .

Now, we define

E(c) =

(
4− c2

)
c

24
+

9
(
4− c2

)
c

24
+

4− c2

12
+

2c3ε(ρ)

144
.

Equation E′(c) = 0 which is 3 (−30 + ε(ρ)) c2 − 12c+ 120 = 0 implies

c∗ =
9
√

499 312
3 − 23 840

3

√
298 + 108

298
√

298− 6236
/∈ [0, 2] ,

c̃ = −
9
√

499 312
3 − 23 840

3

√
298− 108

298
√

298− 6236
∈ [0, 2] .

The function E(c) is an increasing function on the closed interval [0, c̃] and
also an decreasing function on the interval [c̃, 2] and the maximum value of
E(c) occurs at c = c̃. Thus |a2a3 − a4| ≤ max

c∈[0,2]
E(c) = E(c̃) ≈ 1.74 and the

proof of the Theorem 2 is completed.

Theorem 3. If the function f ∈ SC∗α, where f is given by f(z) = z +∑∞
n=2 anz

n, z ∈ C then we have∣∣a2a4 − a23∣∣ ≤ 2. (28)

Proof. Suppose that f ∈ SC∗α, then from the equation (25) we have

∣∣a2a4 − a23∣∣ = ∣∣∣∣ c1c3
12 (1 + α) (1 + 3α)

− c22

16 (1 + 2α)2
− c21c2

96
· 7α3 + 5α2 − α+ 1

(1 + α)2 (1 + 2α)2 (1 + 3α)

+
c41
(
5α5 − 25α4 − 262α3 − 394α2 − 175α− 13

)
2304 (1 + α)

4
(1 + 2α)

2
(1 + 3α)

∣∣∣∣∣ .
In view of Lemma 3, we thus obtain

∣∣a2a4 − a23∣∣ =

∣∣∣∣∣c41
(
5α5 + 47α4 − 46α3 − 178α2 − 103α− 13

)
2304 (1 + α)

4
(1 + 2α)

2
(1 + 3α)

+
c21x

(
4− c21

) (
7α3 + 17α2 + 11α+ 1

)
192 (1 + α)

2
(1 + 2α)

2
(1 + 3α)

−
(
4− c21

)
c21x

2

48 (1 + α) (1 + 3α)
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+
c1
(
4− c21

) (
1− |x|2

)
z

24 (1 + α) (1 + 3α)
−
x2
(
4− c21

)2
64 (1 + 2α)

2

∣∣∣∣∣∣ .
Also let |x| = t ∈ [0, 1], c1 = c ∈ [0, 2] . Then, using the triangle inequality we
get ∣∣a2a4 − a23∣∣ ≤ c4

∣∣5α5 + 47α4 − 46α3 − 178α2 − 103α− 13
∣∣

2304 (1 + α)
4

(1 + 2α)
2

(1 + 3α)

+
c2t
(
4− c2

) (
7α3 + 17α2 + 11α+ 1

)
192 (1 + α)

2
(1 + 2α)

2
(1 + 3α)

+

(
4− c2

)
c2t2

48 (1 + α) (1 + 3α)

+
c
(
4− c2

)
24 (1 + α) (1 + 3α)

+
t2
(
4− c2

)2
64 (1 + 2α)

2 .

Knowing that max
α∈[0,1]

∣∣5α5 + 47α4 − 46α3 − 178α2 − 103α− 13
∣∣= 288 the above

inequality can be rewritten

∣∣a2a4 − a23∣∣ ≤ 288c4

2304
+

36c2
(
4− c2

)
192

+

(
4− c2

)
c2

48
+
c
(
4− c2

)
24

+

(
4− c2

)2
64

or equivalent ∣∣a2a4 − a23∣∣ ≤ −39c4 − 24c3 + 408c2 + 96c+ 144

576
.

Next, let

G(c) :=
−39c4 − 24c3 + 408c2 + 96c+ 144

576
.

Now it easily to derive that G(c) is an increasing function on the interval
[0, 2] therefore we have a maximum value at c = 2, also which is

∣∣a2a4 − a23∣∣ ≤
G(c) = 2. The proof of the Theorem 3 is thus completed.

Theorem 4. If the function f ∈ SC∗α, then we have

|H3 (1)| ≤ 18, 001. (29)

Proof. In order to establish the upper bound for H3 (1) we proceed to compute
certain inequalities. Using the form of a5 posted below

a5 =
c1c3 (1 + 7α)

12 (1 + α) (1 + 3α) (1 + 4α)
−
c21c2

(
−188α5 + 184α4 + 340α3 − 2α2 − 44α− 2

)
192 (1 + 4α) (1 + 3α) (1 + 2α)2 (1 + α)2

+
c41

(
484α7 − 2328α6 + 520α5 + 616α4 − 1424α3 − 308α2 + 132α+ 4

)
4608 (1 + 4α) (1 + α)4 (1 + 2α)2 (1 + 3α)

+
c224α (1− α)

32 (1 + 4α) (1 + 2α)2
+

1

8 (1 + 4α)

(
c4 −

1

2
c1c3

)
. (30)
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and the equalities from Lemma 3 we get

a5 =

(
M (α)

4
+
N (α)

2
+ P (α) +

Q (α)

4

)
c41

+

(
M (α)

2
+
N (α)

2
+
Q (α)

2

)
xc21

(
4− c21

)
− M (α)

4
x2c21

(
4− c21

)
+
M (α)

2
c1
(
4− c21

) (
1− |x|2

)
z+

Q (α)

4
x2
(
4− c21

)2
+

1

8 (1 + 4α)

(
c4 −

1

2
c1c3

)
where M (α) = 1+7α

12(1+α)(1+3α)(1+4α) , N (α) = −188α5+184α4+340α3−2α2−44α−2
192(1+4α)(1+3α)(1+2α)2(1+α)2

,

P (α) = 484α7−2328α6+520α5+616α4−1424α3−308α2+132α+4
4608(1+4α)(1+α)4(1+2α)2(1+3α)

and

Q (α) = 4α(1−α)
32(1+4α)(1+2α)2

. According to inequality (12)∣∣∣∣c4 − 1

2
c1c3

∣∣∣∣ ≤ 2.

Let |x| = t ∈ [0, 1], c1 = c ∈ [0, 2]. By making use of the triangle inequality
and the maximum values of the functions M (α) , N (α) , P (α) and Q (α) on
the interval [0, 1] for the argument α we have

|a5| ≤
547

384
c4 +

211

192
c2
(
4− c2

)
+

1

6
c2
(
4− c2

)
+

1

3
c
(
4− c2

)
+

1

128

(
4− c2

)2
+

1

4

or equivalent

|a5| ≤
1

384

(
64c4 − 128c3 + 1920c2 + 512c+ 144

)
≤ 8848

384
.

since the function ϕ(c) = 64c4−128c3 +1920c2 +512c+144 gets its maximum
at c = 2.

For the coefficient a3 , we deduce using triangle inequality

|a3| ≤
|c2|

4 (1 + 2α)
+
|c1|2

∣∣1 + 4α− α2
∣∣

16 (1 + 2α) (1 + α)
2 ≤

2

4
+

4 · 4
16

= 1, 5.

It follows the upper bound for the coefficient a4.

|a4| =

∣∣∣∣∣ c3
6 (1 + 3α)

−
c1c2

(
4α2 − 9α− 1

)
24 (1 + 3α) (1 + 2α) (1 + α)

+
c31

(
4α4 − 31α3 + 21α2 − 17α− 1

)
288 (1 + α)3 (1 + 2α) (1 + 3α)

∣∣∣∣∣
≤ 2

6
+

2 · 2
24

∣∣4α2 − 9α− 1
∣∣+ 1

128
· 8 ·

∣∣4α4 − 31α3 + 21α2 − 17α− 1
∣∣ ≤ 2.
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Because

H3 (1) = a3
(
a2a4 − a23

)
− a4 (a4 − a2a3) + a5

(
a3 − a22

)
by applying the triangle inequality, we obtain the Hankel determinant of order
three

|H3 (1)| ≤ |a3| ·
∣∣a2a4 − a23∣∣+ |a4| · |a4 − a2a3|+ |a5| ·

∣∣a3 − a22∣∣ . (31)

Next, substituting relations (26), (28) , (19) in (31) we get the inequality
(29) . Thus, the proof is completed.
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