sciendo

On the Upper Bound of the Third Hankel Determinant for Certain Class of Analytic Functions Related with Exponential Function

Daniel Breaz, Adriana Cătaş and Luminiţa-Ioana Cotîrlă

Abstract

In the present paper we introduce a new class of analytic functions f in the open unit disk normalized by $f(0)=f^{\prime}(0)-1=0$, associated with exponential functions. The aim of the present paper is to investigate the third-order Hankel determinant $H_{3}(1)$ for this function class and obtain the upper bound of the determinant $H_{3}(1)$.

1 Introduction

Let \mathcal{A} denote the class of analytic functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

in the open unit disk $\Delta=\{z \in \mathbb{C}:|z|<1\}$ and normalized with $f(0)=$ $f^{\prime}(0)-1=0$. Also we denote by \mathcal{S} the subclass of \mathcal{A} consisting of univalent functions f in Δ. The familiar coefficient conjecture for the function $f \in \mathcal{S}$ of the form (1) was first presented by the Bieberbach [1] in 1916 and proved by de-Branges [2] in 1985. During 1916-1985 many mathematicians struggled to prove or disprove this conjecture. As result they defined several subfamilies of

[^0]the set \mathcal{S} connected with different image domains. Further, we recall some of them. Let the notations $\mathcal{S}^{*}, \mathcal{C}$ and \mathcal{K} indicate the families of starlike, convex and close-to-convex functions respectively with the following Taylor-Maclaurin series representations:
\[

$$
\begin{gather*}
\mathcal{S}^{*}=\left\{f \in S: \frac{z f^{\prime}(z)}{f(z)} \prec \frac{1+z}{1-z}, z \in \Delta\right\} ; \tag{2}\\
\mathcal{C}=\left\{f \in S: 1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec \frac{1+z}{1-z}, z \in \Delta\right\} ; \tag{3}\\
\mathcal{K}=\left\{f \in S: \frac{f^{\prime}(z)}{g^{\prime}(z)} \prec \frac{1+z}{1-z}, \text { for } g \in C, z \in \Delta\right\}, \tag{4}
\end{gather*}
$$
\]

where the symbol " \prec "denotes the familiar concept of differential subordination between analytic functions. Now, we recall here the definition of subordination.

Suppose that f and g are two analytic functions in Δ. We say that the function f is subordinate to g and we write $f(z) \prec g(z)$, if there exists a Schwarz function w analytic in Δ with $w(0)=0$ and $|w(z)|<1$ such that (see [14]) $f(z)=g(w(z))$. Thus, $f(z) \prec g(z)$ implies $f(\Delta) \subset g(\Delta)$. In case of univalency of f in Δ, the function f is subordinate to g if and only if $f(0)=$ $g(0)$ and $f(\Delta) \subset g(\Delta)$.

Assume that \mathcal{P} denote the class of analytic functions p normalized by

$$
\begin{equation*}
p(z)=1+c_{1} z+c_{2} z^{2}+\ldots \tag{5}
\end{equation*}
$$

and satisfying the condition $\Re p(z)>0, z \in \Delta$. It is easy to see that if $p \in \mathcal{P}$, then there exists a Schwarz function w analytic in Δ with $w(0)=0$ and $|w(z)|<1$ such that (see [25])

$$
\begin{equation*}
p(z)=\frac{1+w(z)}{1-w(z)} \tag{6}
\end{equation*}
$$

Padmanabhan and Parvatham introduced in the paper [20] a unified families of starlike and convex functions using familiar notion of convolution with the function $z /(1-z)^{a}$, for all $a \in \mathbb{R}$. Later on Shanmugam [23] generalized the idea of paper [20] and introduced the set

$$
\begin{equation*}
\mathcal{S}_{h}^{*}(\phi)=\left\{f \in \mathcal{A}: \frac{z(f * h)^{\prime}}{(f * h)} \prec \phi(z), \quad z \in \Delta\right\} \tag{7}
\end{equation*}
$$

where the symbol "*"stands for the familiar notion of convolution, ϕ is convex and h is a fixed function in \mathcal{A}. We obtain the families $\mathcal{S}^{*}(\phi)$ and $\mathcal{C}(\phi)$ when taking $z / 1-z$ and $z /(1-z)^{2}$ instead of h in $\mathcal{S}_{h}^{*}(\phi)$ respectively.

In 1992, Ma and Minda [12] reduced the above restriction to a weaker supposition that ϕ is a function, with $\Re \phi>0$ in Δ with, whose image domain is symmetric about the real axis and starlike with respect to $\phi(0)=1$ with $\phi^{\prime}(0)>0$ and discussed some properties. Here are these classes:

$$
\begin{gathered}
\mathcal{S}^{*}(\phi)=\left\{f \in \mathcal{A}: \frac{z f^{\prime}(z)}{f(z)} \prec \phi(z), \quad z \in \Delta\right\} ; \\
\mathcal{C}(\phi)=\left\{f \in \mathcal{A}: 1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec \phi(z), \quad z \in \Delta\right\} .
\end{gathered}
$$

The classes $\mathcal{S}^{*}(\phi)$ and $C(\phi)$ unify various subclasses of starlike \mathcal{S}^{*} or convex \mathcal{C} functions in Δ. For example, the class $\mathcal{S}^{*}(\phi)$ generalizes various subfamilies of the set \mathcal{A} as follows:

1. If the function $\phi(z)=\frac{1+A z}{1+B z}$ with $-1 \leq B<A \leq 1$, then $\mathcal{S}^{*}[A, B]:=$ $\mathcal{S}^{*}\left(\frac{1+A z}{1+B z}\right)$ is the set of Janowski starlike functions defined in [8]. Further, if $A=1-2 \alpha$ and $B=-1$ with $0 \leq \alpha<1$, then we get the set $\mathcal{S}^{*}(\phi)$ of starlike function of order α.
2. The family $\mathcal{S}_{L}^{*}:=\mathcal{S}^{*}(\sqrt{1+z})$ was introduced by Sokol and Stankiewicz in [24], consisting of functions $f \in \mathcal{A}$ such that $z f^{\prime}(z) / f(z)$ lies in the region bounded by the right-half of the lemniscate of Bernoulli given by $\left|w^{2}-1\right|<1$.
3. For the function $\phi(z)=1+\sin z$, the class $\mathcal{S}^{*}(\phi)$ leads to the class $\mathcal{S}_{\mathrm{sin}}^{*}$, introduced in [3].
4. The family $\mathcal{S}_{e}^{*}:=\mathcal{S}^{*}\left(e^{z}\right)$ was introduced by Mediratta et al. in [13] given as:

$$
\begin{equation*}
\mathcal{S}_{e}^{*}=\left\{f \in \mathcal{S}: \frac{z f^{\prime}(z)}{f(z)} \prec e^{z}, \quad z \in \Delta\right\} \tag{8}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\mathcal{S}_{e}^{*}=\left\{f \in \mathcal{S}:\left|\log \frac{z f^{\prime}(z)}{f(z)}\right| \prec e^{z}, \quad z \in \Delta\right\} . \tag{9}
\end{equation*}
$$

By using Alexander type relation, we also recall [13] by the following set:

$$
\mathcal{C}_{e}=\left\{f \in \mathcal{S}: \frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)} \prec e^{z}, \quad z \in \Delta\right\} .
$$

The above mentioned families \mathcal{S}_{e}^{*} and \mathcal{C}_{e} are symmetric about the real axis.

In [15], Noonan and Thomas studied the $q^{t h}$ Hankel determinants $H_{q}(n)$ of functions $f \in \mathcal{A}$ of the form (1) for $q \geq 1$ and $n \geq 1$ which is defined by

$$
H_{q}(n)=\left|\begin{array}{cccc}
a_{n} & a_{n+1} & \ldots & a_{n+q-1} \tag{10}\\
a_{n+1} & a_{n+2} & \ldots & a_{n+q} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n+q-1} & a_{n+q} & \ldots & a_{n+2 q-2}
\end{array}\right|, \quad\left(a_{1}=1\right) .
$$

In particular

$$
H_{3}(1)=\left|\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
a_{2} & a_{3} & a_{4} \\
a_{3} & a_{4} & a_{5}
\end{array}\right|, \quad\left(a_{1}=1\right)
$$

Since $f \in \mathcal{S}, a_{1}=1$, thus

$$
H_{3}(1)=a_{3}\left(a_{2} a_{4}-a_{3}^{2}\right)-a_{4}\left(a_{4}-a_{2} a_{3}\right)+a_{5}\left(a_{3}-a_{2}^{2}\right) .
$$

The concept of Hankel determinant is very useful in the theory of singularities [4] and in the study of power series with integral coefficients. The Hankel determinant $H_{q}(n)$ have been investigated by several authors to study its rate of growth as $n \rightarrow \infty$ and to determine bounds on it for specific values of q and n. For example, Pommerenke [22] proved that the Hankel determinants of univalent functions satisfy $\left|H_{q}(n)\right|<k n^{-\left(\frac{1}{2}+\beta\right) q+\frac{3}{2}},(n=1,2, \ldots, q=2,3, \ldots)$ where $\beta>1 / 1400$ and k depends only on q. Note that the Hankel determinant $H_{2}(1)=a_{3}-a_{2}^{2}$ is related to the well-known Fekete-Szegő functional [7] for univalent functions. Although we know many sharp bounds of $\mathrm{H}_{2}(2)$ and significantly less sharp bounds of $H_{3}(1)$ for some proper subfamilies of \mathcal{S}, the sharp results for the whole class \mathcal{S} are not known. Moreover, we are even unable to formulate a reasonable conjecture about it. Ehrenborg studied Hankel determinant of the exponential polynomials [6] and Noor studied Hankel determinant for Bazilevic functions in [18] and for functions with bounded boundary rotations in [17] and [16]; also for close-to-convex functions in [19]. Until now, very few researches have studied the above determinants for the function class, subordinate to e^{z}. Thus, in this paper, we aim to investigate the third-order Hankel determinant $H_{3}(1)$ for a certain class defined below, which is associated with exponential function and obtain the upper bound of the determinant. To derive our results, we shall need the following results.

2 Preliminary results

Some preliminary results required in the following section are now listed.

Lemma 1. ([5]) If $p \in \mathcal{P}$ and has the form (5) then

$$
\begin{equation*}
\left|c_{n}\right| \leq 2, n=1,2, \ldots \tag{11}
\end{equation*}
$$

and the inequality is sharp.
Lemma 2. ([21], [9]) If $p \in \mathcal{P}$ and has the form (5) then

$$
\begin{align*}
\left|c_{n+k}-\mu c_{n} c_{k}\right| & <2 \text { for } 0 \leq \mu \leq 1 \tag{12}\\
\left|c_{m} c_{n}-c_{k} c_{l}\right| & \leq 4 \text { for } m+n=k+l \tag{13}\\
\left|c_{n+2 k}-\mu c_{n} c_{k}^{2}\right| & \leq 2(1+2 \mu) \text { for } \mu<-\frac{1}{2} \tag{14}\\
\left|c_{2}-\frac{c_{1}^{2}}{2}\right| & <2-\frac{\left|c_{1}\right|^{2}}{2} \tag{15}
\end{align*}
$$

and for the complex number λ, we have

$$
\begin{equation*}
c_{2}-\lambda c_{1}^{2} \leq 2 \max \{1,|2 \lambda-1|\} . \tag{16}
\end{equation*}
$$

For the inequalities (12), (13), (14), (15) see [21] and (16) is given in [9].
Lemma 3. ([10], [11]) If the function $p \in \mathcal{P}$ is given by (5), then exists some x, z with $|x| \leq 1,|z| \leq 1$ such that

$$
\begin{gather*}
2 c_{2}=c_{1}^{2}+x\left(4-c_{1}^{2}\right) \tag{17}\\
4 c_{3}=c_{1}^{3}+2 c_{1} x\left(4-c_{1}^{2}\right)-\left(4-c_{1}^{2}\right) c_{1} x^{2}+2\left(4-c_{1}^{2}\right)\left(1-|x|^{2}\right) z \tag{18}
\end{gather*}
$$

3 Main results

Definition 1. A function $f \in \mathcal{S}$ is said to be in the class $S C_{\alpha}^{*}, \alpha \in[0,1]$, if satisfies the following condition:

$$
(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \prec e^{z}
$$

Remark. For $\alpha=0$, the family $S C_{0}^{*}:=\mathcal{S}_{e}^{*}=\mathcal{S}^{*}\left(e^{z}\right)$ was introduced by Mediratta et al. in [13] and for $\alpha=1$, we reobtain the set $S C_{1}^{*}:=C_{e}$.

Theorem 1. If the function $f \in S C_{\alpha}^{*}$, where f is given by $f(z)=z+$ $\sum_{n=2}^{\infty} a_{n} z^{n}, z \in \mathbb{C}$ then we have

$$
\begin{equation*}
\left|a_{3}-a_{2}^{2}\right| \leq \frac{1}{2(1+2 \alpha)} \tag{19}
\end{equation*}
$$

Proof. Because $f \in S C_{\alpha}^{*}$, from the definition of subordination, we know that exists a Schwartz function $w(z)$, with $w(0)=0$ and $|w(z)|<1$ such that

$$
(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)=e^{w(z)}
$$

But

$$
\begin{gather*}
(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}= \\
=(1-\alpha)\left[1+a_{2} z+\left(2 a_{3}-a_{2}^{2}\right) z^{2}+\left(a_{2}^{3}-3 a_{2} a_{3}+3 a_{4}\right) z^{3}+\ldots\right] \tag{20}\\
\quad \alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)=\alpha\left(1+\frac{\sum_{n=2}^{\infty} n a_{n}(n-1) z^{n-1}}{1+\sum_{n=2}^{\infty} n a_{n} z^{n-1}}\right)= \tag{21}\\
=\alpha\left[1+2 a_{2} z+\left(6 a_{3}-4 a_{2}^{2}\right) z^{2}+\left(12 a_{4}-18 a_{2} a_{3}+8 a_{2}^{3}\right) z^{3}+\ldots\right] .
\end{gather*}
$$

From the relations (20) and (21) we obtain

$$
\begin{gather*}
(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)= \tag{22}\\
=1+z a_{2}(1+\alpha)+z^{2}\left[2 a_{3}(1+2 \alpha)-a_{2}^{2}(1+3 \alpha)\right]+ \\
+z^{3}\left[a_{2}^{3}(1+7 \alpha)-3 a_{2} a_{3}(1+5 \alpha)+3 a_{4}(1+3 \alpha)\right]+\ldots
\end{gather*}
$$

We define a function

$$
p(z)=\frac{1+w(z)}{1-w(z)}=1+c_{1} z+c_{2} z^{2}+\ldots
$$

$p(z) \in \mathcal{P}$ and

$$
w(z)=\frac{p(z)-1}{p(z)+1}=\frac{c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\ldots}{2+c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\ldots} .
$$

But

$$
\begin{gather*}
e^{w(z)}=1+w(z)+\frac{[w(z)]^{2}}{2!}+\frac{[w(z)]^{3}}{3!}+\ldots= \\
=1+\frac{c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\ldots}{2+c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\ldots}+\frac{1}{2}\left(\frac{c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\ldots}{2+c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\ldots}\right)^{2}+ \\
+\frac{1}{6}\left(\frac{c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\ldots}{2+c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\ldots}\right)^{3}+\ldots= \tag{23}
\end{gather*}
$$

ON THE UPPER BOUND OF THE THIRD HANKEL DETERMINANT FOR CERTAIN CLASS OF ANALYTIC FUNCTIONS RELATED WITH

$$
\begin{aligned}
= & 1+\frac{1}{2}\left(c_{1} z+c_{2} z^{2}+\ldots\right)\left[1-\frac{c_{1} z}{2}+\left(\frac{c_{1}^{2}}{4}-\frac{c_{2}}{2}\right) z^{2}-\left(\frac{c_{1}^{3}}{8}-\frac{c_{1} c_{2}}{2}+\frac{c_{3}}{2}\right) z^{3}+\ldots\right] \\
& +\frac{1}{2}\left(c_{1} z+c_{2} z^{2}+\ldots\right)^{2}\left[1-\frac{c_{1} z}{2}+\left(\frac{c_{1}^{2}}{4}-\frac{c_{2}}{2}\right) z^{2}-\left(\frac{c_{1}^{3}}{8}-\frac{c_{1} c_{2}}{2}+\frac{c_{3}}{2}\right) z^{3}+\ldots\right]^{2} \\
+ & \frac{1}{48}\left(c_{1} z+c_{2} z^{2}+\ldots\right)^{3}\left[1-\frac{c_{1} z}{2}+\left(\frac{c_{1}^{2}}{4}-\frac{c_{2}}{2}\right) z^{2}-\left(\frac{c_{1}^{3}}{8}-\frac{c_{1} c_{2}}{2}+\frac{c_{3}}{2}\right) z^{3}+\ldots\right]^{3}+\ldots \\
= & 1+\frac{1}{2} c_{1} z+\left(\frac{c_{2}}{2}-\frac{c_{1}^{2}}{8}\right) z^{2}+\left(\frac{c_{1}^{3}}{48}-\frac{c_{1} c_{2}}{4}+\frac{c_{3}}{2}\right) z^{3}+\ldots
\end{aligned}
$$

On comparing the coefficients of z, z^{2} and z^{3} between the equations (22) and (23) we obtain

$$
\begin{align*}
& a_{2}=\frac{c_{1}}{2(1+\alpha)} \tag{24}\\
& a_{3}=\frac{c_{2}}{4(1+2 \alpha)}+\frac{c_{1}^{2}\left(1+4 \alpha-\alpha^{2}\right)}{16(1+2 \alpha)(1+\alpha)^{2}} \tag{25}
\end{align*}
$$

It can be written,

$$
\left|a_{3}-a_{2}^{2}\right|=\left|\frac{c_{2}}{4(1+2 \alpha)}-\frac{c_{1}^{2}(\alpha+3)}{16(1+2 \alpha)(1+\alpha)}\right|
$$

Using Lemma 3, we thus know that

$$
\left|a_{3}-a_{2}^{2}\right|=\left|\frac{x\left(4-c_{1}^{2}\right)}{8(1+2 \alpha)}-\frac{c_{1}^{2}(1-\alpha)}{16(1+2 \alpha)(1+\alpha)}\right|
$$

Letting $|x|=t \in[0,1], c_{1}=c \in[0,2]$ and applying the triangle inequality, the above equation reduces to

$$
\left|a_{3}-a_{2}^{2}\right| \leq \frac{t\left(4-c^{2}\right)}{8(1+2 \alpha)}+\frac{c^{2}(1-\alpha)}{16(1+2 \alpha)(1+\alpha)}
$$

Suppose that

$$
F(c, t):=\frac{t\left(4-c^{2}\right)}{8(1+2 \alpha)}+\frac{c^{2}(1-\alpha)}{16(1+2 \alpha)(1+\alpha)}
$$

then we get

$$
\frac{\partial F}{\partial t}=\frac{4-c^{2}}{8(1+2 \alpha)} \geq 0
$$

ON THE UPPER BOUND OF THE THIRD HANKEL DETERMINANT FOR CERTAIN CLASS OF ANALYTIC FUNCTIONS RELATED WITH EXPONENTIAL FUNCTION
which shows that $F(c, t)$ is an increasing function on the closed interval $[0,1]$ about t. Therefore the function $F(c, t)$ can get the maximum value at $t=1$, that is

$$
\max F(c, t)=F(c, 1)=\frac{4-c^{2}}{8(1+2 \alpha)}+\frac{c^{2}(1-\alpha)}{16(1+2 \alpha)(1+\alpha)}
$$

Next, let

$$
G(c)=\frac{4-c^{2}}{8(1+2 \alpha)}+\frac{c^{2}(1-\alpha)}{16(1+2 \alpha)(1+\alpha)}=\frac{1}{2(1+2 \alpha)}-\frac{c^{2}(1+3 \alpha)}{16(1+2 \alpha)(1+\alpha)}
$$

The function $G(c)$ has a maximum value at $c=0$, which is

$$
\left|a_{3}-a_{2}^{2}\right| \leq G(0)=\frac{1}{2(1+2 \alpha)}
$$

and the proof is done.
Theorem 2. If the function $f \in S C_{\alpha}^{*}$, where f is given by $f(z)=z+$ $\sum_{n=2}^{\infty} a_{n} z^{n}, z \in \mathbb{C}$ then we have

$$
\begin{equation*}
\left|a_{2} a_{3}-a_{4}\right| \leq \frac{\left(4-\widetilde{c}^{2}\right) \widetilde{c}}{24}+\frac{3\left(4-\widetilde{c}^{2}\right) \widetilde{c}}{8}+\frac{4-\widetilde{c}^{2}}{12}+\frac{\widetilde{c}^{3} \varepsilon(\rho)}{72} \tag{26}
\end{equation*}
$$

where

$$
\widetilde{c}=-\frac{9 \sqrt{\frac{499312}{3}-\frac{23840}{3} \sqrt{298}}-108}{298 \sqrt{298}-6236} \in[0,2]
$$

and $\varepsilon(\rho)=-2 \alpha^{3}-14 \alpha^{2}+17 \alpha+5, \rho=\frac{1}{6} \sqrt{2} \sqrt{149}-\frac{7}{3}$.

Proof. Knowing that

$$
\begin{align*}
a_{4}= & \frac{c_{3}}{6(1+3 \alpha)}-\frac{c_{1} c_{2}\left(4 \alpha^{2}-9 \alpha-1\right)}{24(1+3 \alpha)(1+2 \alpha)(1+\alpha)}+ \\
& +\frac{c_{1}^{3}\left(4 \alpha^{4}-31 \alpha^{3}+21 \alpha^{2}-17 \alpha-1\right)}{288(1+\alpha)^{3}(1+2 \alpha)(1+3 \alpha)} \tag{27}
\end{align*}
$$

we have

$$
\begin{gathered}
\left|a_{2} a_{3}-a_{4}\right|= \\
\left|\frac{c_{1} c_{2}\left(2 \alpha^{2}+1\right)}{12(1+3 \alpha)(1+2 \alpha)(1+\alpha)}-\frac{c_{3}}{6(1+3 \alpha)}-\frac{c_{1}^{3}\left(2 \alpha^{4}-2 \alpha^{3}-39 \alpha^{2}-40 \alpha-5\right)}{144(1+\alpha)^{3}(1+2 \alpha)(1+3 \alpha)}\right| .
\end{gathered}
$$

Again, by applying Lemma 3, we get

$$
\begin{gathered}
\left|a_{2} a_{3}-a_{4}\right|=\left\lvert\, \frac{c_{1}^{3}\left(-2 \alpha^{4}-16 \alpha^{3}+3 \alpha^{2}+22 \alpha+5\right)}{144(1+\alpha)^{3}(1+2 \alpha)(1+3 \alpha)}+\right. \\
\left.+\frac{\left(4-c_{1}^{2}\right) c_{1} x^{2}}{24(1+3 \alpha)}-\frac{\left(4-c_{1}^{2}\right)\left(1-|x|^{2}\right) z}{12(1+3 \alpha)}-\frac{c_{1} x\left(4-c_{1}^{2}\right)\left(2 \alpha^{2}+6 \alpha+1\right)}{24(1+3 \alpha)(1+2 \alpha)(1+\alpha)} \right\rvert\, .
\end{gathered}
$$

Assume that $|x|=t \in[0,1], c_{1}=c \in[0,2]$. Then, using the triangle inequality, we deduce that

$$
\begin{aligned}
& \left|a_{2} a_{3}-a_{4}\right| \leq \frac{\left(4-c^{2}\right) c t^{2}}{24(1+3 \alpha)}+\frac{\left(4-c^{2}\right) c t\left(2 \alpha^{2}+6 \alpha+1\right)}{24(1+3 \alpha)(1+2 \alpha)(1+\alpha)}+ \\
& \quad+\frac{\left(4-c^{2}\right)}{12(1+3 \alpha)}+\frac{c^{3}\left(-2 \alpha^{4}-16 \alpha^{3}+3 \alpha^{2}+22 \alpha+5\right)}{144(1+\alpha)^{3}(1+2 \alpha)(1+3 \alpha)}
\end{aligned}
$$

Setting

$$
\begin{aligned}
& F(c, t):=\frac{\left(4-c^{2}\right) c t^{2}}{24(1+3 \alpha)}+\frac{\left(4-c^{2}\right) c t\left(2 \alpha^{2}+6 \alpha+1\right)}{24(1+3 \alpha)(1+2 \alpha)(1+\alpha)}+ \\
& \quad+\frac{\left(4-c^{2}\right)}{12(1+3 \alpha)}+\frac{c^{3}\left(-2 \alpha^{4}-16 \alpha^{3}+3 \alpha^{2}+22 \alpha+5\right)}{144(1+\alpha)^{3}(1+2 \alpha)(1+3 \alpha)}
\end{aligned}
$$

Hence, we have

$$
\frac{\partial F}{\partial t}=\frac{\left(4-c^{2}\right) c t}{12(1+3 \alpha)}+\frac{\left(4-c^{2}\right) c\left(2 \alpha^{2}+6 \alpha+1\right)}{24(1+3 \alpha)(1+2 \alpha)(1+\alpha)} \geq 0
$$

namely, $F(c, t)$ is an increasing function on the closed interval $[0,1]$ about t. This implies that the maximum value of $F(c, t)$ occurs at $t=1$, which is

$$
\begin{gathered}
\max F(c, t)=F(c, 1)=\frac{\left(4-c^{2}\right) c}{24(1+3 \alpha)}+\frac{\left(4-c^{2}\right) c\left(2 \alpha^{2}+6 \alpha+1\right)}{24(1+3 \alpha)(1+2 \alpha)(1+\alpha)}+ \\
+\frac{\left(4-c^{2}\right)}{12(1+3 \alpha)}+\frac{c^{3}\left(-2 \alpha^{4}-16 \alpha^{3}+3 \alpha^{2}+22 \alpha+5\right)}{144(1+\alpha)^{3}(1+2 \alpha)(1+3 \alpha)}
\end{gathered}
$$

Then

$$
\begin{aligned}
\max F(c, t) \leq & \frac{\left(4-c^{2}\right) c}{24}+\frac{\left(4-c^{2}\right) c\left(2 \alpha^{2}+6 \alpha+1\right)}{24} \\
& +\frac{4-c^{2}}{12}+\frac{c^{3}(\alpha+1) \varepsilon(\alpha)}{144}
\end{aligned}
$$

ON THE UPPER BOUND OF THE THIRD HANKEL DETERMINANT FOR CERTAIN CLASS OF ANALYTIC FUNCTIONS RELATED WITH EXPONENTIAL FUNCTION

$$
\leq \frac{\left(4-c^{2}\right) c}{24}+\frac{9\left(4-c^{2}\right) c}{24}+\frac{4-c^{2}}{12}+\frac{2 c^{3} \varepsilon(\rho)}{144}
$$

where $\varepsilon(\alpha)=-2 \alpha^{3}-14 \alpha^{2}+17 \alpha+5$ which is a positive function, $\varepsilon(\alpha) \leq \varepsilon(\rho)$ and $\rho=\frac{1}{6} \sqrt{2} \sqrt{149}-\frac{7}{3}$.

Now, we define

$$
E(c)=\frac{\left(4-c^{2}\right) c}{24}+\frac{9\left(4-c^{2}\right) c}{24}+\frac{4-c^{2}}{12}+\frac{2 c^{3} \varepsilon(\rho)}{144}
$$

Equation $E^{\prime}(c)=0$ which is $3(-30+\varepsilon(\rho)) c^{2}-12 c+120=0$ implies

$$
\begin{aligned}
& c^{*}=\frac{9 \sqrt{\frac{499312}{3}-\frac{23840}{3} \sqrt{298}}+108}{298 \sqrt{298}-6236} \notin[0,2], \\
& \widetilde{c}=-\frac{9 \sqrt{\frac{499312}{3}-\frac{23840}{3} \sqrt{298}}-108}{298 \sqrt{298}-6236} \in[0,2] .
\end{aligned}
$$

The function $E(c)$ is an increasing function on the closed interval $[0, \widetilde{c}]$ and also an decreasing function on the interval $[\widetilde{c}, 2]$ and the maximum value of $E(c)$ occurs at $c=\widetilde{c}$. Thus $\left|a_{2} a_{3}-a_{4}\right| \leq \max _{c \in[0,2]} E(c)=E(\widetilde{c}) \approx 1.74$ and the proof of the Theorem 2 is completed.

Theorem 3. If the function $f \in S C_{\alpha}^{*}$, where f is given by $f(z)=z+$ $\sum_{n=2}^{\infty} a_{n} z^{n}, z \in \mathbb{C}$ then we have

$$
\begin{equation*}
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq 2 \tag{28}
\end{equation*}
$$

Proof. Suppose that $f \in S C_{\alpha}^{*}$, then from the equation (25) we have

$$
\begin{aligned}
\left|a_{2} a_{4}-a_{3}^{2}\right|= & \left\lvert\, \frac{c_{1} c_{3}}{12(1+\alpha)(1+3 \alpha)}-\frac{c_{2}^{2}}{16(1+2 \alpha)^{2}}-\frac{c_{1}^{2} c_{2}}{96} \cdot \frac{7 \alpha^{3}+5 \alpha^{2}-\alpha+1}{(1+\alpha)^{2}(1+2 \alpha)^{2}(1+3 \alpha)}\right. \\
& \left.+\frac{c_{1}^{4}\left(5 \alpha^{5}-25 \alpha^{4}-262 \alpha^{3}-394 \alpha^{2}-175 \alpha-13\right)}{2304(1+\alpha)^{4}(1+2 \alpha)^{2}(1+3 \alpha)} \right\rvert\,
\end{aligned}
$$

In view of Lemma 3, we thus obtain

$$
\begin{aligned}
& \left|a_{2} a_{4}-a_{3}^{2}\right|=\left\lvert\, \frac{c_{1}^{4}\left(5 \alpha^{5}+47 \alpha^{4}-46 \alpha^{3}-178 \alpha^{2}-103 \alpha-13\right)}{2304(1+\alpha)^{4}(1+2 \alpha)^{2}(1+3 \alpha)}\right. \\
& +\frac{c_{1}^{2} x\left(4-c_{1}^{2}\right)\left(7 \alpha^{3}+17 \alpha^{2}+11 \alpha+1\right)}{192(1+\alpha)^{2}(1+2 \alpha)^{2}(1+3 \alpha)}-\frac{\left(4-c_{1}^{2}\right) c_{1}^{2} x^{2}}{48(1+\alpha)(1+3 \alpha)}
\end{aligned}
$$

ON THE UPPER BOUND OF THE THIRD HANKEL DETERMINANT FOR CERTAIN CLASS OF ANALYTIC FUNCTIONS RELATED WITH EXPONENTIAL FUNCTION

$$
\left.+\frac{c_{1}\left(4-c_{1}^{2}\right)\left(1-|x|^{2}\right) z}{24(1+\alpha)(1+3 \alpha)}-\frac{x^{2}\left(4-c_{1}^{2}\right)^{2}}{64(1+2 \alpha)^{2}} \right\rvert\,
$$

Also let $|x|=t \in[0,1], c_{1}=c \in[0,2]$. Then, using the triangle inequality we get

$$
\begin{gathered}
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{c^{4}\left|5 \alpha^{5}+47 \alpha^{4}-46 \alpha^{3}-178 \alpha^{2}-103 \alpha-13\right|}{2304(1+\alpha)^{4}(1+2 \alpha)^{2}(1+3 \alpha)} \\
+\frac{c^{2} t\left(4-c^{2}\right)\left(7 \alpha^{3}+17 \alpha^{2}+11 \alpha+1\right)}{192(1+\alpha)^{2}(1+2 \alpha)^{2}(1+3 \alpha)}+\frac{\left(4-c^{2}\right) c^{2} t^{2}}{48(1+\alpha)(1+3 \alpha)} \\
+\frac{c\left(4-c^{2}\right)}{24(1+\alpha)(1+3 \alpha)}+\frac{t^{2}\left(4-c^{2}\right)^{2}}{64(1+2 \alpha)^{2}} .
\end{gathered}
$$

Knowing that $\max _{\alpha \in[0,1]}\left|5 \alpha^{5}+47 \alpha^{4}-46 \alpha^{3}-178 \alpha^{2}-103 \alpha-13\right|=288$ the above inequality can be rewritten

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{288 c^{4}}{2304}+\frac{36 c^{2}\left(4-c^{2}\right)}{192}+\frac{\left(4-c^{2}\right) c^{2}}{48}+\frac{c\left(4-c^{2}\right)}{24}+\frac{\left(4-c^{2}\right)^{2}}{64}
$$

or equivalent

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{-39 c^{4}-24 c^{3}+408 c^{2}+96 c+144}{576}
$$

Next, let

$$
G(c):=\frac{-39 c^{4}-24 c^{3}+408 c^{2}+96 c+144}{576}
$$

Now it easily to derive that $G(c)$ is an increasing function on the interval $[0,2]$ therefore we have a maximum value at $c=2$, also which is $\left|a_{2} a_{4}-a_{3}^{2}\right| \leq$ $G(c)=2$. The proof of the Theorem 3 is thus completed.

Theorem 4. If the function $f \in S C_{\alpha}^{*}$, then we have

$$
\begin{equation*}
\left|H_{3}(1)\right| \leq 18,001 \tag{29}
\end{equation*}
$$

Proof. In order to establish the upper bound for $H_{3}(1)$ we proceed to compute certain inequalities. Using the form of a_{5} posted below

$$
\begin{align*}
a_{5}= & \frac{c_{1} c_{3}(1+7 \alpha)}{12(1+\alpha)(1+3 \alpha)(1+4 \alpha)}-\frac{c_{1}^{2} c_{2}\left(-188 \alpha^{5}+184 \alpha^{4}+340 \alpha^{3}-2 \alpha^{2}-44 \alpha-2\right)}{192(1+4 \alpha)(1+3 \alpha)(1+2 \alpha)^{2}(1+\alpha)^{2}} \\
& +\frac{c_{1}^{4}\left(484 \alpha^{7}-2328 \alpha^{6}+520 \alpha^{5}+616 \alpha^{4}-1424 \alpha^{3}-308 \alpha^{2}+132 \alpha+4\right)}{4608(1+4 \alpha)(1+\alpha)^{4}(1+2 \alpha)^{2}(1+3 \alpha)} \\
& +\frac{c_{2}^{2} 4 \alpha(1-\alpha)}{32(1+4 \alpha)(1+2 \alpha)^{2}}+\frac{1}{8(1+4 \alpha)}\left(c_{4}-\frac{1}{2} c_{1} c_{3}\right) . \tag{30}
\end{align*}
$$

ON THE UPPER BOUND OF THE THIRD HANKEL DETERMINANT FOR CERTAIN CLASS OF ANALYTIC FUNCTIONS RELATED WITH EXPONENTIAL FUNCTION
and the equalities from Lemma 3 we get

$$
\begin{gathered}
a_{5}=\left(\frac{M(\alpha)}{4}+\frac{N(\alpha)}{2}+P(\alpha)+\frac{Q(\alpha)}{4}\right) c_{1}^{4} \\
+\left(\frac{M(\alpha)}{2}+\frac{N(\alpha)}{2}+\frac{Q(\alpha)}{2}\right) x c_{1}^{2}\left(4-c_{1}^{2}\right)-\frac{M(\alpha)}{4} x^{2} c_{1}^{2}\left(4-c_{1}^{2}\right) \\
+\frac{M(\alpha)}{2} c_{1}\left(4-c_{1}^{2}\right)\left(1-|x|^{2}\right) z+\frac{Q(\alpha)}{4} x^{2}\left(4-c_{1}^{2}\right)^{2}+\frac{1}{8(1+4 \alpha)}\left(c_{4}-\frac{1}{2} c_{1} c_{3}\right)
\end{gathered}
$$

where $M(\alpha)=\frac{1+7 \alpha}{12(1+\alpha)(1+3 \alpha)(1+4 \alpha)}, N(\alpha)=\frac{-188 \alpha^{5}+184 \alpha^{4}+340 \alpha^{3}-2 \alpha^{2}-44 \alpha-2}{192(1+4 \alpha)(1+3 \alpha)(1+2 \alpha)^{2}(1+\alpha)^{2}}$, $P(\alpha) \quad=\quad \frac{484 \alpha^{7}-2328 \alpha^{6}+520 \alpha^{5}+616 \alpha^{4}-1424 \alpha^{3}-308 \alpha^{2}+132 \alpha+4}{4608(1+4 \alpha)(1+\alpha)^{4}(1+2 \alpha)^{2}(1+3 \alpha)} \quad$ and $Q(\alpha)=\frac{4 \alpha(1-\alpha)}{32(1+4 \alpha)(1+2 \alpha)^{2}}$. According to inequality (12)

$$
\left|c_{4}-\frac{1}{2} c_{1} c_{3}\right| \leq 2
$$

Let $|x|=t \in[0,1], c_{1}=c \in[0,2]$. By making use of the triangle inequality and the maximum values of the functions $M(\alpha), N(\alpha), P(\alpha)$ and $Q(\alpha)$ on the interval $[0,1]$ for the argument α we have
$\left|a_{5}\right| \leq \frac{547}{384} c^{4}+\frac{211}{192} c^{2}\left(4-c^{2}\right)+\frac{1}{6} c^{2}\left(4-c^{2}\right)+\frac{1}{3} c\left(4-c^{2}\right)+\frac{1}{128}\left(4-c^{2}\right)^{2}+\frac{1}{4}$
or equivalent

$$
\left|a_{5}\right| \leq \frac{1}{384}\left(64 c^{4}-128 c^{3}+1920 c^{2}+512 c+144\right) \leq \frac{8848}{384}
$$

since the function $\varphi(c)=64 c^{4}-128 c^{3}+1920 c^{2}+512 c+144$ gets its maximum at $c=2$.

For the coefficient a_{3}, we deduce using triangle inequality

$$
\left|a_{3}\right| \leq \frac{\left|c_{2}\right|}{4(1+2 \alpha)}+\frac{\left|c_{1}\right|^{2}\left|1+4 \alpha-\alpha^{2}\right|}{16(1+2 \alpha)(1+\alpha)^{2}} \leq \frac{2}{4}+\frac{4 \cdot 4}{16}=1,5
$$

It follows the upper bound for the coefficient a_{4}.

$$
\begin{aligned}
\left|a_{4}\right| & =\left|\frac{c_{3}}{6(1+3 \alpha)}-\frac{c_{1} c_{2}\left(4 \alpha^{2}-9 \alpha-1\right)}{24(1+3 \alpha)(1+2 \alpha)(1+\alpha)}+\frac{c_{1}^{3}\left(4 \alpha^{4}-31 \alpha^{3}+21 \alpha^{2}-17 \alpha-1\right)}{288(1+\alpha)^{3}(1+2 \alpha)(1+3 \alpha)}\right| \\
& \leq \frac{2}{6}+\frac{2 \cdot 2}{24}\left|4 \alpha^{2}-9 \alpha-1\right|+\frac{1}{128} \cdot 8 \cdot\left|4 \alpha^{4}-31 \alpha^{3}+21 \alpha^{2}-17 \alpha-1\right| \leq 2 .
\end{aligned}
$$

Because

$$
H_{3}(1)=a_{3}\left(a_{2} a_{4}-a_{3}^{2}\right)-a_{4}\left(a_{4}-a_{2} a_{3}\right)+a_{5}\left(a_{3}-a_{2}^{2}\right)
$$

by applying the triangle inequality, we obtain the Hankel determinant of order three

$$
\begin{equation*}
\left|H_{3}(1)\right| \leq\left|a_{3}\right| \cdot\left|a_{2} a_{4}-a_{3}^{2}\right|+\left|a_{4}\right| \cdot\left|a_{4}-a_{2} a_{3}\right|+\left|a_{5}\right| \cdot\left|a_{3}-a_{2}^{2}\right| . \tag{31}
\end{equation*}
$$

Next, substituting relations (26), (28), (19) in (31) we get the inequality (29). Thus, the proof is completed.

References

[1] Bieberbach, L.: Über die Koeffizienten derjenigen Potenzreihein welche eine schlichte Abbildung des Einheitskreises veritteln, Reimer in Komm: Berlin, Germany, (1916).
[2] De Branges, L.: A proof of the Bieberbach conjecture. Acta Math. 154 (1), 137-152 (1985).
[3] Cho, N.E., Kumar, V., Kumar, S.S., Ravichandran, V.: Radius problems for starlike functions associated with the sine function. Bull. Iran. Math. Soc. 45, 213-232 (2019).
[4] Dienes, P.: The Taylor Series: An Introduction to the Theory of Functions of a Complex Variable. NewYork-Dover: Mineola, NY, USA, (1957).
[5] Duren, P. L.: Univalent Functions. vol. 259 of Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, (1983).
[6] Ehrenborg, R.: The Hankel determinant of exponential polynomials. Amer. Math. Monthly, 107, 557-560 (2000).
[7] Fekete, M., Szegö, G.: Eine Benberkung uber ungerada Schlichte funktionen. J. London Math. Soc. 8, 85-89 (1933).
[8] Janowski, W.: Extremal problems for a family of functions with positive real part and for some related families. Annales Polonici Mathematici. 23, 159-177 (1970).
[9] Keogh, F.R., Merkes, E.P.: A coefficient inequality for certain classes of analytic functions. Proc. Am. Math. Soc. 20, 8-12 (1969).
[10] Libera R. J., Złotkiewicz E. J.: Early coefficients of the inverse of a regular convex function. Proc. Amer. Math. Soc. 85(2), 225-230 (1982).
[11] Libera R. J., Złotkiewicz E. J.: Coefficient bounds for the inverse of a function with derivative in \mathcal{P}. Proc. Amer. Math. Soc. 87(2), 251-257 (1983).
[12] Ma, W., Minda. D.: A unified treatment of some special classes of univalent functions. Proceedings of the International Conference on Complex Analysis at the Nankai Institute of Mathematics, Tianjin, pp. 157-169 (1992).
[13] Mendiratta, R., Nagpal, S., Ravichandran, V.: On a subclass of strongly starlike functions associated with exponential function. Bull. Malays. Math. Sci. Soc. 38, 365-386 (2015).
[14] Miller, S.S., Mocanu, P.T.: Differential Subordination. Theory and Applications. Pure and Applied Mathematics, Marcel Dekker Inc., p. 225 (2000).
[15] Noonan, J. W., Thomas, D. K.: On the second Hankel determinant of areally mean p-valent functions. Trans. Amer. Math. Soc. 223(2), 337346 (1976).
[16] Noor, K. I.: On analytic functions related with function of bounded boundary rotation. Comment. Math. Univ. St. Pauli. 30(2), 113-118 (1981).
[17] Noor, K. I.: Hankel determinant problem for the class of function with bounded boundary rotation. Rev. Roum. Math. Pures Et Appl. 28, 731739 (1983).
[18] Noor, K. I., Al-Bany, S. A.: On Bazilevic functions. Int. J. Math. Math. Sci. 10(1), 79-88 (1987).
[19] Noor, K. I.: Higer order close-to-convex functions. Math. Japon. 37(1), 1-8 (1992).
[20] Padmanabhan, K.S., Parvatham, R.: Some applications of differential subordination. Bull. Aust. Math. Soc. 32, 321-330 (1985).
[21] Pommerenke, C., Jensen, G.: Univalent Functions. Vandenhoeck and Ruprecht: Gottingen, Germany, (1975).
[22] Pommerenke, C.: On the coefficients and Hankel determinant of univalent functions. J. Lond. Math. Soc. 41, 111-112 (1966).
[23] Shanmugam, T.N.: Convolution and differential subordination. Int. J. Math. Math. Sci. 12, 333-340 (1989).
[24] Sókol, J., Stankiewicz, J.: Radius of convexity of some subclasses of strongly starlike functions. Zeszyty Naukowe/Oficyna Wydawnicza al. Powstanców Warszawy. 19, 101-105 (1996).

ON THE UPPER BOUND OF THE THIRD HANKEL DETERMINANT FOR
CERTAIN CLASS OF ANALYTIC FUNCTIONS RELATED WITH
EXPONENTIAL FUNCTION
[25] Srivastava, H.M., Owa, S. (Eds.): Current Topics in Analytic Function Theory, World Scientific Publishing Company, London, UK. (1992).

[^1]ON THE UPPER BOUND OF THE THIRD HANKEL DETERMINANT FOR CERTAIN CLASS OF ANALYTIC FUNCTIONS RELATED WITH EXPONENTIAL FUNCTION

[^0]: Key Words: Elementary, operators, Compact operators, orthogonality, Gateaux derivative. 2010 Mathematics Subject Classification: Primary 46G05, 46L05; Secondary 47A30, 47B47.

 Received: 30.12.2020
 Accepted: 28.05.2021

[^1]: Daniel Breaz,
 Department of Mathematics,
 University of Alba Iulia, Romania.
 Email: dbreaz@uab.ro
 Adriana Cătaş,
 Department of Mathematics,
 University of Oradea, Romania.
 Email: acatas@gmail.com
 Luminiţa-Ioana Cotîrlă,
 Department of Mathematics,
 Technical University of Cluj-Napoca, Romania.
 Email: luminita.cotirla@yahoo.com, Luminita.Cotirla@math.utcluj.ro

