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Divisible hypermodules

Hashem Bordbar and Irina Cristea

Abstract

The article is motivated by the recently published studies on injective
and projective hypermodules. We present here a new characterization
of the normal injective hypermodules. First we define the concept of
zero-divisors over a hypermodule and based on it we introduce a new
class of hypermodules, the one of divisible hypermodules. After pre-
senting some of their fundamental properties, we will show that the
class of normal injective R-hypermodules M and the class of divisible
R-hypermodules M coincide whenever R is a hyperring with no zero-
divisors over M . Finally, we answer to an open problem related to canon-
ical hypergroups. In particular, we show that any canonical hypergroup
can be endoweded with a Z-hypermodule structure and it is a normal
injective Z-hypermodule if and only if it is a divisible Z-hypermodule.

1 Introduction

In abstract algebra, an element r of a commutative unitary ring R is called
a zero-divisor if there exists a nonzero element s in R such that rs = 0. If
we consider now an R-module M , we can extend this definition and obtain
the concept of zero-divisors of R over M . Thus, an element r of R is called
zero-divisor over M (or on M) if there exists m ∈M \ {0} such that rm = 0.
In [13] a divisible module is defined as a module A over an integral domain R
having the property rA = A for every r 6= 0, r ∈ R. Since any integral domain
has no nonzero zero-divisors, this definition was then extended to an arbitrary
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unitary ring R. Therefore a module A over a unitary ring R is divisible if,
for all non zero-divisors of R and for all m ∈ M there exists m′ ∈ M such
that m = rm′. Moreover, the injective objects have a fundamental role in
the category theory. For instance, Dedekind-MacNeille completions are the
injective objects in the category of posets [2] or a complete Boolean algebra is
the injective object in the category of Boolean algebras [5]. In the category of
modules, any every injective R-module is divisible, while viceversa holds if R
is a Dedekind-domain [6].

Inspired by this nice characterization of injective modules, in this paper
we aim to obtain a similar result but in hypercompositional algebra. This is
algebra of hypercompositional structures, where the classical operation is sub-
stituted by hyperoperations, called also hyperproducts. A complete overview
of the foundations of this theory has been recently published with a very well
prepared list of references [12]. In 1956 Krasner [7] introduced the notion
of hyperfield and later on the one of hyperring and hypermodule over a hy-
perring, known nowadays as Krasner hyperrings and Krasner hypermodules.
Besides them there are also other types of hyperrings and hypermodules, as
multiplicative hyperrings defined by Rota [16], or generalized hyperrings de-
fined by Vougiouklis [22]. The additive structure of the Krasner hyperrings is
a canonical hypergroup introduced by Mittas [14], that have a similar prop-
erty of the abelian groups, as it is proven in the last part of this article.
The first properties of the Krasner hypermodules were studied by Massouros
[10] in connection with cyclicity and torsion free elements, argument that has
been recently investigated from a categorical approach [15]. The study of the
category of Krasner hypermodules has been initiated by Madanshekaf [9] and
continued by Shojaei et al. [17, 18, 19]. The last group has recently started the
investigation of the injectivity and projectivity properties of Krasner hyper-
modules [1]. This study was then continued by the authors of this manuscript
[3], where they provided an alternative definition for the normal projective and
injective R-hypermodules over Krasner hyperrings R, based on hyperideals of
R and then exact chains of R-hypermodules. This manuscript goes in the
same direction, aiming to provide a new characterization of normal injective
R-hypermodules by using divisible R-hypermodules.

The remainder of this article is structured as follows. In the preliminary
section we gather the basic notions related to Krasner hypermodules and their
several types of homomorphisms, concluding it with the definition and char-
acterization of normal injective hypermodules proved in [3]. Section 3 is ded-
icated to the study of the divisible hypermodules based on the definition of
zero-divisors over a hypermodule. It is important to notice the difference be-
tween the similar concept of divisible module from classical algebra and our
definition in hypercompositional algebra. In the definition of a divisible ele-
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ment of a module, the concept of non zero-divisor of a ring is used, while in the
definition of a divisible element of a hypermodule a non zero-divisor over the
hypermodule is involved. This section contains several fundamental properties
of the divisible hypermodules. Section 4 starts with the construction of a new
structure of R-hypermodule, using a finite or infinite nonempty family of R-
hypermodules. This will help us to state and prove one of the main results of
this paper. In particular, we show that every normal injective R-hypermodule
M is a divisible R-hypermodule, whenever R is a Krasner hyperring with no
zero-divisors over M . In the last part of this section, we answer to one open
problem addressed in [20]. We show that every canonical hypergroup can be
endowed with a Z-hypermodule structure, as in classical algebra every abelian
group has a Z-module structure. Notice that this construction is different by
the trivial one suggested in [21]. The conclusions of this study are covered in
the last section of the manuscript.

2 Preliminaries

Throughout this paper, unless otherwise stated, R denotes a Krasner hyper-
ring, that we will call, by short, hyperring, and P∗(R) denotes the family of
all nonempty subsets of R.

Definition 2.1. [7] A (Krasner) hyperring is a hyperstructure (R,+, ·) where

1. (R,+) is a canonical hypergroup, i.e.,

(a) a, b ∈ R⇒ a+ b ⊆ R,
(b) ∀a, b, c ∈ R, a+ (b+ c) = (a+ b) + c,

(c) ∀a, b ∈ R, a+ b = b+ a,

(d) ∃0 ∈ R,∀a ∈ R, a+ 0 = {a},
(e) ∀a ∈ R,∃ − a ∈ R such that 0 ∈ a+ x⇔ x = −a,
(f) ∀a, b, c ∈ R, c ∈ a+ b⇒ a ∈ c+ (−b).

2. (R, ·) is a semigroup with a bilaterally absorbing element 0, i.e.,

(a) a, b ∈ R⇒ a · b ∈ R,
(b) ∀a, b, c ∈ R, a · (b · c) = (a · b) · c,
(c) ∀a ∈ R, 0 · a = a · 0 = 0.

3. The product distributes from both sides over the hyperaddition, i.e.,

(a) ∀a, b, c ∈ R, a · (b+ c) = a · b+ a · c and (b+ c) · a = b · a+ c · a.
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Moreover, a hyperring is called commutative, if (R, ·) is commutative, i.e.,
∀a, b ∈ R, a ·b = b ·a. Finally, if (R, ·) is a monoid, i.e., ∃1 ∈ R such that ∀a ∈
R, a · 1 = a = 1 · a, then we say that R is a hyperring with a unit element, or
a unitary hyperring.

Definition 2.2. A hyperring homomorphism is a mapping f from a hyperring
(R1,+R1 , ·R1) to a hyperring (R2,+R2 , ·R2) with the unit elements 1R1 and
1R2 such that

1. ∀a, b ∈ R1, f(a+R1
b) = f(a) +R2

f(b).

2. ∀a, b ∈ R1, f(a ·R1
b) = f(a) ·R2

f(b).

3. f(1R1) = 1R2 .

The concept of hypermodule over a Krasner hyperring was introduced by
Krasner himself and studied later on more in detail for its algebraic properties
in [10].

Definition 2.3. Let R be a hyperring with the unit element 1. A canonical
hypergroup (M,+) together with a left external map R ×M −→ M defined
by

(a,m) 7→ a ·m = am ∈M (2.1)

such that for all a, b ∈ R and m1,m2 ∈M we have

1. (a+ b)m1 = am1 + bm1,

2. a(m1 +m2) = am1 + am2,

3. (ab)m1 = a(bm1),

4. a0M = 0Rm1 = 0M ,

5. 1m1 = m1

is called a left Krasner hypermodule over R, or by short, a left R-hypermodule.
Similarly, one may define a right R-hypermodule. For simplicity, in this paper
we consider only left R-hypermodules, that we call R-hypermodules.

Proposition 2.4. [4] Let R be a hyperring with unit element. Then R is an
R-hypermodule.

Definition 2.5. A subhypermodule N of M is a subhypergroup of M which
is also closed under multiplication by elements of R.

In the following lemma, an example of subhypermodule is constructed.
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Lemma 2.6. [3] Let R be a hyperring, M be an R-hypermodule and {Mi}i∈I
be a family of subhypermodules of M . Then the sum of this family is denoted
by

∑
i∈IMi and it is the family of the sets

∑
i∈I mi, where for every i ∈ I,

mi ∈Mi. More specifically,

M1 +M2 = {m1 +m2 | m1 ∈M1,m2 ∈M2}, (2.2)

where m1 +m2 is a set (in particular a subset of M) and not only an element,
since + is a hyperoperation on M , while

M1 +M2 +M3 = {m1 +m2 +m3 | m1 ∈M1,m2 ∈M2,m3 ∈M3},

where the set m1 +m2 +m3 can be written as the union
⋃
m∈m1+m2

m+m3.
Clearly, the structure

∑
i∈IMi is a subhypermodule of M and it is the

smallest subhypermodule of M containing every Mi.

As already mentioned by Krasner and then very clear explained by Mas-
souros [10], we may define more types of homomorphisms between R-hyper-
modules.

Definition 2.7. [10] Let M and N be two R-hypermodules. A multivalued
function f : M −→ P∗(N) is called an R-homomorphism if:

(i) ∀m1,m2 ∈M,f(m1 +M m2) ⊆ f(m1) +N f(m2),

(ii) ∀m ∈M, ∀r ∈ R, f(r ·M m) = r ·N f(m),

while f is called strong homomorphism if instead of (i) we have

(i′) ∀m1,m2 ∈M,f(m1 +M m2) = f(m1) +N f(m2).

A single-valued function f : M −→ N is called a strict R-homomorphism if
axioms (i) and (ii) are valid and it is called a normal R-homomorphism if (i′)
and (ii) are valid.

The family of all normal R-homomorphisms from M to N is denoted by
Homn

R(M,N), while the family of all strict homomorphisms from M to N is
denoted by HomR(M,N).

In the following we will recall some types of R-homomorphisms.

Definition 2.8. [3] Let f ∈ HomR(M,N) (respectively f ∈ Homn
R(M,N)).

Then f is called

(i) a surjective (normal) R-homomorphism if Im(f) = N .

(ii) an injective (normal) R-homomorphism if for all m1,m2 ∈M , f(m1) =
f(m2) implies m1 = m2.
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(iii) (normal) R-isomorphism if it is a bijective (normal) R-homomorphism.

We conclude this section, by recalling the characterizations of a normal
injective R-hypermodule using hyperideals and then using exact chains of R-
hypermodules and normal R-homomorphisms.

Theorem 2.9. [3] Let R be a hyperring and N be an R-hypermodule. Then
the following statements are equivalent:

(1) N is a normal injective R-hypermodule.

(2) For any hyperideal I of R, an inclusion hyperring homomorphism i :
I −→ R and a normal R-homomorphism k : I −→ N , there exists a
normal R-homomorphism h : R −→ N such that the diagram in Figure 1
has the composition structure, i.e., hi = k.

0 I R

N

k

i

∃h

Figure 1: Composition structure of a diagram for a normal injective R-
hypermodule, using hyperideals

Theorem 2.10. [3] An R-hypermodule N is normal injective if it satisfies the
following equivalent conditions.

(i) For any exact chain

0 −→M1
γ−→M2

δ−→M3 −→ 0 (2.3)

of R-hypermodules and normal R-homomorphisms, the chain

0 −→ Homn
R(M3, N)

∆−→ Homn
R(M2, N)

Γ−→ Homn
R(M1, N) −→ 0

(2.4)
is exact, too.

(ii) For any R-hypermodules M1,M2, N and normal R-homomorphisms γ :

M1 −→ M2 and k : M1 −→ N such that the chain 0 −→ M1
γ−→ M2 is

exact, there exists a normal R-homomorphism h : M2 −→ N such that
hγ = k.

(iii) For any hyperideal I of R, any inclusion hyperring homomorphism i :
I −→ R, and normal R-homomorphism k : I −→ N , there exists a
normal R-homomorphism h : R −→ N such that hi = k.
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3 Divisible R-hypermodules

Based on the definition of zero-divisor element in a hyperring, and zero-divisor
element over an R-hypermodule, we will define the concept of divisible R-
hypermodule.

Definition 3.1. Let R be a hyperring. An element r of R is said to be a
right zero-divisor if there exists a nonzero element r′ ∈ R such that r′r = 0.
Similarly, a left zero-divisor element is defined as an element of R such that
rr′ = 0 for an element r′ ∈ R \ {0}. If R is a commutative hyperring, then the
right and the left zero-divisors coincide and we refer to them as zero-divisors
of R.

Definition 3.2. Let R be a hyperring and M be an R-hypermodule. A
nonzero element r ∈ R is said to be a zero-divisor over M if there exists a
nonzero element m ∈M such that r ·M m = 0M .

We denote by Z(R) the set of all zero-divisors of the hyperring R, while
by ZR(M) the set of all zero-divisors elements over M , i.e., ZR(M) = {r ∈
R \ {0} | ∃m ∈M,m 6= 0, r ·M m = 0M}.

Remark 3.3. If we consider the hyperring R as an R-hypermodule based
on Proposition 2.4, then every zero-divisor element over R is a zero-divisor
element of R, i.e., ZR(R) ⊂ Z(R).

Example 3.4. Let M be an R-hypermodule. It is obvious that any element
of the annihilator AnnR(M) = {r ∈ R | ∀m ∈M, r ·Mm = 0} is a zero-divisor
element over M , but the converse is not true in general. For example suppose
that R = {0, 1, 2} and define the hyperaddition “+” and the multiplication
“·” by the following tables:

+ 0 1 2
0 0 1 2
1 1 R 1
2 2 1 {0, 2}

· 0 1 2
0 0 0 0
1 0 1 2
2 0 2 0

Then (R,+, ·) is a hyperring [4]. Based on Proposition 2.4, it is an R-
hypermodule. Now we can check that the element 2 is a zero-divisor element
over the R-hypermodule R, which does not belong to AnnR(R) = {0}.

Lemma 3.5. Let R be a hyperring and M be an arbitrary R-hypermodule. If
R is a hyperring such that ZR(M) = ∅, then R has no zero-divisor elements.

Proof. Suppose that M is an R-hypermodule and ZR(M) = ∅. By reductio
ad absurdum, suppose that R has a zero-divisor element r. Then there exists
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s ∈ R, s 6= 0 such that s ·R r = 0R. Since ZR(M) = ∅, it follows that, for
every m ∈M such that m 6= 0 we have, r ·M m 6= 0M . But

s ·M (r ·M m) = (s ·R r) ·M m = 0R ·M m = 0M ,

which is a contradiction, since s ∈ R and ZR(M) = ∅.

Definition 3.6. Let M be an R-hypermodule. A nonzero element m of M
is said to be divisible, if for every non zero-divisor r ∈ R over M , there exists
m′ ∈ M such that m = rm′. Moreover, if each element of M is a divisible
element, then M is said to be a divisible R-hypermodule.

Example 3.7. On the set R = {0, 1, a, b} define the hyperaddition “+” and
the multiplication “·” by the following tables:

+ 0 1 a b
0 0 1 a b
1 1 R {1, a, b} {1, a, b}
a a {1, a, b} R {1, a, b}
b b {1, a, b} {1, a, b} R

· 0 1 a b
0 0 0 0 0
1 0 1 a b
a 0 a b 1
b 0 b 1 a

Then (R,+, ·) is a hyperring. Based on Proposition 2.4, R is anR-hypermodule.
The divisible elements ofR are 1, a and b. Thus, R is a divisibleR-hypermodule.

Lemma 3.8. Let M be an R-hypermodule. If M is a divisible R-hypermodule,
then M = rM , where r ∈ R is an arbitrary non zero-divisor element over M .
Moreover, if ZR(M) = ∅ and M is a divisible R-hypermodule, then for each
r ∈ R, we have rM = M .

Proof. The proof is straightforward based on Definition 3.6 and Lemma 3.5.

In the following we will investigate some properties of divisible R-hyper-
modules.

Proposition 3.9. Let M1 and M2 be two divisible R-hypermodules. Then the
sum M1 +M2 is a divisible R-hypermodule, too.

Proof. Using Lemma 2.6, M1+M2 is an R-hypermodule in which each element
is a set of the form m1 +m2 with m1 ∈ M1 and m2 ∈ M2. Suppose that the
set m1 + m2 is an arbitrary element of M1 + M2 and r is not a zero-divisor
over M . Since M1 and M2 are divisible R-hypermodules, there exist m′1 ∈M1

and m′2 ∈M2 such that m1 = rm′1 and m2 = rm′2. Thus,

m1 +m2 = rm′1 + rm′2 = r(m′1 +m′2),

where m′1 +m′2 is another element of M1 +M2. Therefore, M1 +M2 is clearly
a divisible R-hypermodule.
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Proposition 3.10. Let M be a divisible R-hypermodule and N be an R-
subhypermodule of M . Then the R-hypermodule quotient M

N is a divisible
hypermodule, too.

Proof. Suppose that the set m + N is an element of the R-hypermodule M
N

and r ∈ R is not a zero-divisor over M . Then there exists m′ ∈ M such that
m = rm′. Thus,

m+N = rm′ +N = r(m′ +N),

which shows that M
N is a divisible R-hypermodule.

Proposition 3.11. Let M and N be R-hypermodules and f ∈ Homn
R(M,N)

be a surjective normal R-homomorphism. If M is a divisible R-hypermodule,
then N is divisible, too.

Proof. The proof is straightforward.

4 Characterization of normal injective hypermodules

The aim of this section is to give a new charazterization of normal injective R-
hypermodules as divisible R-hypermodules, for a particular class of hyperrings
R.

We start this section by defining a new R-hypermodule structure, starting
with a family of R-hypermodules.

Definition 4.1. Let {Mi}i∈I be a nonempty family of R-hypermodules, where
I is an arbitrary finite or infinite index set, and M =

∏
Mi be the set of all fa-

milies {mi}, where i ∈ I and mi ∈Mi. For any r ∈ R and {mi}i∈I , {m′i}i∈I ∈∏
Mi, define

{mi}i∈I +M {m′i}i∈I = {mi +Mi m
′
i}i∈I , (4.1)

r ·M {mi}i∈I = {r ·Mi
mi}i∈I . (4.2)

Since for each i ∈ I, the structure (Mi,+Mi
) is a canonical hypergroup, we

easily conclude that (M,+M ) is a canonical hypergroup, too. Moreover, for
arbitrary elements r, s ∈ R and {mi}i∈I , {m′i}i∈I ∈M we have:

1. (r + s) ·M {mi}i∈I = r ·M {mi}i∈I +M s ·M {mi}i∈I ,

2. r ·M ({mi}i∈I +M {m′i}i∈I) = r ·M {mi}i∈I +M r ·M {m′i}i∈I ,

3. (rs) ·M {mi}i∈I = r ·M (s ·M {mi}i∈I),

4. r ·M 0M = 0R ·M {mi}i∈I = 0M ,

5. 1 ·M {mi}i∈I = {mi}i∈I .
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Therefore, the set M =
∏
Mi is endowed with an R-hypermodule structure.

The next result shows a correspondence between the normal injectivity of
the R-hypermodule

∏
Mi and the same property of the R-hypermodules Mi.

Theorem 4.2. Let {Mi}i∈I be a nonempty family of R-hypermodules. Then
the R-hypermodule

∏
Mi in Definition 4.1 is normal injective if and only if

any R-hypermodule Mi is normal injective, for i ∈ I.

Proof. For each j ∈ I let denote the injection normal R-homomorphism by φj
and define it as follows, for mj ∈Mj :

φj : Mj −→
∏

Mi, φj(mj) = {mk}k∈I , (4.3)

such that mk = mj for k = j and mk = 0Mk
otherwise. Besides, for each

j ∈ I, denote the projection normal R-homomorphism by ψj and define it by

ψj :
∏

Mi −→Mj , ψj({mk}k∈I) = mj . (4.4)

First, suppose that the R-hypermodule
∏
Mi is normal injective. In order

to show that for each i ∈ I, Mi is a normal injective R-hypermodule, we
use the characterizations in Theorem 2.10. Hence, let N1 and N2 be two
arbitrary R-hypermodules, γ : N1 −→ N2 and δ : N1 −→ Mi be normal R-

homomorphisms such that the chain 0 −→ N1
γ−→ N2 is exact. Now, consider

the following diagram

0 N1 N2

Mi

δ

γ

that can be extended to a new one, by using the injection normal R-hyper-
morphism φi : Mi →

∏
Mi. Since

∏
Mi is a normal injective R-hypermodule

and the composition of two injection normal R-homomorphisms is still an in-
jection normal R-homomorphism, by Theorem 2.9, it follows that there exists
f ∈ Homn

R(N2,
∏
Mi) such that the big diagram in Figure 2 has the compo-

sition structure, i.e., fγ = φiδ.
Using the projection normal R-hypermorphism ψi, we can define now g :

N2 −→ Mi by g(n2) = ψif(n2) for each n2 ∈ N2. It is clear that g is a
well-defined normal R-homomorphism. Moreover, for n1 ∈ N1, we have

gγ(n1) = ψifγ(n1) = ψiφiδ(n1) = δ(n1).
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0 N1 N2

Mi

∏
Mi

δ

γ

∃f

∃g

φiψi

Figure 2: Composition structure of a diagram for the R-hypermodule
∏
Mi

Thus, there exists g ∈ Homn
R(N2,Mi) such that the small diagram in

Figure 2 has the composition structure, i.e., gγ = δ. Therefore, Mi is a
normal injective R-hypermodule for each i ∈ I.

Conversely, suppose that for each i ∈ I, the R-hypermodule Mi is normal
injective. In order to show that

∏
Mi is a normal injective R-hypermodule,

consider the following diagram where the row of normal homomorphisms is
exact and N1 and N2 are two arbitrary R-hypermodules:

0 N1 N2

∏
Mi

δ

γ

This diagram can be extended to the following one, by using the pro-
jection normal R-homomorphism ψi :

∏
Mi → Mi, where the composition

ψiδ remains a normal R-homomorphism. Since Mi is a normal injective R-
hypermodule, there exists fi ∈ Homn

R(N2,Mi) such that the diagram in Figure
3 has the composition structure, i.e., fiγ = ψiδ.

0 N1 N2

∏
Mi

Mi

δ

γ

∃fi

ψi

Figure 3: Composition structure of a diagram for the R-hypermodule Mi
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Now define the normal R-homomorphism g : N2 −→
∏
Mi by g(n2) =

φifi(n2) for each n2 ∈ N2, where φi is an injection normal R-homomorphism.
For n1 ∈ N1, we get

gγ(n1) = φifiγ(n1) = φiψiδ(n1) = δ(n1),

which shows that
∏
Mi is a normal injective R-hypermodule.

Proposition 4.3. Let {Mi}i∈I be a nonempty family of divisible R-hyper-
modules, where I is a finite or infinite index set. Then the R-hypermodule
M =

∏
Mi in Definition 4.1 is a divisible R-hypermodule.

Proof. Let r ∈ R be a non zero-divisor element over
∏
Mi and {mi}i∈I be an

element of the R-hypermodule
∏
Mi. Since, for each i ∈ I, Mi is a divisible

R-hypermodule, it follows that there exists m′i ∈Mi such that mi = r ·Mi m
′
i.

Thus,
{mi}i∈I = {r ·Mi

m′i}i∈I = r ·M {m′i}i∈I ,

where {m′i}i∈I is an element of
∏
Mi. Therefore,

∏
Mi is a divisible R-hyper-

module.

The next theorem shows that every normal injective R-hypermodule is a
divisible R-hypermodule, whenever R is a hyperring such that ZR(M) = ∅.

Theorem 4.4. Let M be a normal injective R-hypermodule, where R is a
hyperring such that ZR(M) = ∅. Then M is a divisible R-hypermodule.

Proof. Suppose that M is a normal injective R-hypermodule, where R is a
hyperring with ZR(M) = ∅. In order to show that M is divisible, let m ∈ M
and r ∈ R be such that m 6= 0M and r 6= 0R. Then r is not a zero-divisor
element over M . Suppose that < r >= R ·R r is the hyperideal generated
by r, i.e., R ·R r = {r′ ·R r | r′ ∈ R} and φ :< r >−→ M is defined by
φ(r′ ·R r) = r′ ·M m. Besides, using Proposition 2.4, we know that < r > is an
R-hypermodule. Hence, φ is a multivalued function between R-hypermodules
< r > and M . Moreover, φ is a well defined normal R-homomorphism since
for a1, a2 ∈< r > and r′ ∈ R we have a1 = r1 ·R r and a2 = r2 ·R r where
r1, r2 ∈ R, and then we get

(i)

φ(a1 +<r>a2) = φ(r1 ·R r+<r> r2 ·R r) = φ((r1 +r2) ·R r) = (r1 +r2) ·Mm

= r1 ·M m+M r2 ·M m = φ(r1 ·R r) +M φ(r2 ·R r) = φ(a1) +M φ(a2).
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(ii)
φ(r′ ·<r> a1) = φ(r′ ·R (r1 ·R r)) = φ((r′ ·R r1) ·R r)

= (r′ ·R r1) ·M m = r′ ·M (r1 ·M m) = r′ ·M φ(r1 ·R r) = r′ ·M φ(a1).

(iii) If r′ ·<r> r = 0R, then (r′ ·R r) ·M m = r′ ·M (r ·M m) = 0M . Since r is
not a zero-divisor over M , we conclude that r ·M m 6= 0. Thus, r′ = 0R.
Therefore, φ(r′ ·<r> r) = r′ ·M m = 0M and φ is a well defined normal
R-homomorphism.

Now, consider the following diagram, where φ :< r >−→ M is defined by
φ(r′ ·<r> r) = r′ ·M m and i is the inclusion function.

0 < r > R

M

φ

i

ψ

Figure 4: Diagram for the normal injective R-hypermodule M

Since M is a normal injective R-hypermodule, there exists an R-homomor-
phism ψ : R −→ M such that the diagram in Figure 4 has the composition
structure, i.e., ψi = φ. Thus, for 1R ∈ R we have

φ(1R ·<r> r) = 1R ·M m = m,

and

φ(1R ·<r> r) = ψi(1R ·<r> r) = ψ(i(1R ·<r> r)) = ψ(1R ·R r) = r ·M ψ(1R).

Therefore,
m = r ·M ψ(1R),

which means that M is a divisible R-hypermodule.

We now discuss about the converse of Theorem 4.4.

Theorem 4.5. Let R be a hyperring and M be a divisible R-hypermodule such
that ZR(M) = ∅. Then M is a normal injective R-hypermodule.

Proof. Suppose that R is a hyperring and M is a divisible R-hypermodule,
with ZR(M) = ∅. In order to show thatM is a normal injectiveR-hypermodule,
consider the following diagram, where I is a hyperideal of R, i : I −→ R is
the inclusion hyperring homomorphism and k : I −→ M is a normal R-
homomorphism.
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0 I R

M

k

i

h

Figure 5: Diagram for the divisible R-hypermodule M

Let assume that I 6= 0 and consider a nonzero element a ∈ I. Since M is
a divisible R-hypermodule, we conclude that there exists m ∈ M such that
k(a) = a ·M m. Besides, let t be an arbitrary element of I. Then we have

a ·M k(t) = k(a ·R t) = k(t ·R a) = t ·M k(a) = t ·M (a ·M m) = a ·M (t ·M m).

Thus,
0M ∈ a ·M (k(t)− t ·M m),

then there exists b ∈ k(t)− t ·M m such that 0M = a ·M b. Since ZR(M) = ∅
and a 6= 0, we should have b = 0M . Hence, 0M ∈ k(t) − t ·M m and so
k(t) = t ·M m, for every element t ∈ I, because M has a canonical hypergroup
structure. Now if we define the R-homomorphism h : R −→M for each r ∈ R
by h(r) = r ·M m, then h is a normal R-homomorphism and the diagram in
Figure 5 has the composition structure, i.e., hi = k. Therefore, using Theorem
2.9, M is a normal injective R-hypermodule.

Combining Theorem 4.4 and Theorem 4.5 we obtain the next characteri-
zation of a normal injective R-hypermodule, for R being a hyperring with no
zero-divisors over M .

Corollary 4.6. Let R be a hyperring and M be an R-hypermodule such that
ZR(M) = ∅. Then M is divisible if and only if M is normal injective R-
hypermodule.

We conclude this section with one fundamental result concerning the canon-
ical hypergroups.

Proposition 4.7. Every canonical hypergroup G has a structure of a Z-
hypermodule.

Proof. Let Z be the set of integers. First we endow Z with a structure of
commutative Krasner hyperring with unit. For doing this, define the hyper-
operation ⊕ as follows: for any a1, a2 ∈ Z,

a1 ⊕ a2 = {0, a1 +Z a2} \ {a1, a2}.
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Then we can check that (Z,⊕) is a canonical hypergroup. Moreover if we
consider the operation ·Z as the normal multiplication in Z, then (Z,⊕, ·Z) is
a commutative Krasner hyperring with the unit element 1.

Suppose now that (G,+G) is an arbitrary canonical hypergroup. For all
g ∈ G and n ∈ Z, define the external multiplication · as follows:

n · g =

 g +G g +G . . .+G g (n times) if n > 0,
0G if n = 0,
(−g) +G (−g) +G . . .+G (−g) (−n times) if n < 0.

(4.5)

For all n1, n2 ∈ Z and g1, g2 ∈ G, we have the following properties:

(i) (n1 ⊕ n2) · g1 = n1 · g +G n2 · g,

(ii) n1 · (g1 +G g2) = n1 · g1 +G n1 · g2,

(iii) (n1 ·Z n2) · g1 = n1 · (n2 · g1),

(iv) n1 · 0G = 0Z · g1 = 0G,

(v) 1Z · g = g.

Thus, this multiplication turns G into a Z-hypermodule.

Since Z is a hyperring with no zero-divisors over the Z-hypermodule Z for
any canonical hypergroup G as a Z-hypermodule, we have the following result.

Theorem 4.8. Every canonical hypergroup G is a normal injective Z-hyper-
module if and only if G is a divisible Z-hypermodule.

Proof. Let G be a canonical hypergroup. Using Proposition 4.7, we know that
G is a Z-hypermodule. Moreover, ZZ(G) = ∅, therefore, by using Corollary
4.6, we conclude that G is a divisible Z-hypermodule if and only if G is a
normal injective Z-hypermodule.

Example 4.9. Let R be a commutative Krasner hyperring and let A be a
hyperideal of R. Clearly, R

A = {r + A | r ∈ R} has a canonical hypergroup

structure. We need to provide R
A with a left external map R × R

A −→
R
A . For

this goal, define the multiplication

s · (r +A) = (s ·R r) +A,

for each s ∈ R and r+A ∈ R
A . Let r1, r2 ∈ R be such that r1 +A = r2 +A in

R
A , and let s ∈ R. Thus, r1 − r2 ⊆ A and we conclude that

s ·R (r1 − r2) = s ·R r1 − s ·R r2 ⊆ A.
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Therefore, (s ·R r1) + A = (s ·R r2) + A, which means that the left external
map is well-defined. It is routine to check that R

A becomes an R-hypermodule
with respect to the left external map.

Proposition 4.7 shows that Z is a commutative Krasner hyperring with
the unit element 1. Therefore, Z

6Z is a Z-hypermodule. Moreover, clearly
2 6= 0 in Z and 3 + 6Z 6= 0 Z

6Z
, however, 2 · (3 + 6Z) = 0 Z

6Z
. Thus, 2 ∈ Z is a

zero-divisor element over Z
6Z . Similarly, the elements 3 and 4 are zero-divisor

elements over Z
6Z since 3 · (2 + 6Z) = 0 Z

6Z
and 4 · (3 + 6Z) = 0 Z

6Z
. Therefore,

ZZ( Z
6Z ) = {2, 3, 4}. Besides, for all non zero-divisor elements over Z

6Z , it is

routine to check that each element of Z
6Z is a divisible element. Thus, Z

6Z is a
divisible Z-hypermodule.

5 Conclusions and future work

In hypercompositional algebra, a homomorphism can be seen as a multivalued
function, or as a single-valued one. In the category of Krasner hypermod-
ules, a normal R-homomorphism between two hypermodules M and N over
a Krasner hyperring R is a single-valued function preserving both, the hyper-
addition and the external multiplication, and it is called normal injective if
it is an injective function between M and N . The study of normal injective
R-hypermodules have been started in [3], when the authors presented charac-
terizations of this kind of hypermodules using hyperideals and exact chains.
The goal of this paper has been to state and prove a new equivalent presen-
tation of normal injective R-hypermodules as a new type of R-hypermodules.
For achieving this, we have first defined the notion of zero-divisor element of
a Krasner hyperring R over an R-hypermodule and then the one of divisible
R-hypermodules. We proved that any normal injective R-hypermodule M is
a divisible R-hypermodule whenever R is a hyperring with no zero-divisors
over M . The paper ends with a non-trivial construction of a Z-hypermodule
structure on a canonical hypergroup.

The research on the injectivity of R-hypermodules helps us to investigate
another property that appears also in classical algebra. Mainly, our future goal
is to prove that every R-hypermodule can be embedded in a normal injective
R-hypermodule. Of course, these properties could be extended also to other
classes of hypermodules, as for example the weak hypermodules defined in
[11].
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