sciendo

On the sum of the reciprocals of k-generalized Fibonacci numbers

Adel Alahmadi and Florian Luca

Abstract

In this note, we that if $\left\{F_{n}^{(k)}\right\}_{n \geq 0}$ denotes the k-generalized Fibonacci sequence then for $n \geq 2$ the closest integer to the reciprocal of $\sum_{m \geq n} 1 / F_{m}^{(k)}$ is $F_{n}^{(k)}-F_{n-1}^{(k)}$.

1 The problem and the result

There are many papers in the literature which address the integer part of the reciprocal of the sum $\sum_{m \geq n} 1 / U_{m}$, where $\left\{U_{n}\right\}_{n \geq 1}$ is a binary recurrent sequence of positive integers. For example, the case of the Fibonacci sequence was treated by Ohstuka and Nakamura [4], the case of the Pell sequence was treated by Zhang and Wang [5], and the more general case of Lucas sequences of characteristic equation $x^{2}-a x-1$ with an integer $a \geq 1$ (which includes the particular case of the Fibonacci sequence for $a=1$ and Pell sequence for $a=2$) was treated in [3]. Letting $\left\{U_{n}\right\}_{n \geq 0}$ be this last Lucas sequence given by $U_{0}=0, U_{1}=1$ and $U_{n+2}=a U_{n+1}+U_{n}$ for all $n \geq 0$, one of the main results of [3] is that for $n \geq 1$

$$
\left\lfloor\left(\sum_{m \geq n} \frac{1}{U_{m}}\right)^{-1}\right\rfloor=U_{n}-U_{n-1}-\delta_{n}
$$

where $\delta_{n}=0$ if n is even and $\delta_{n}=1$ if n is odd.

[^0]Here, for an integer $k \geq 2$, we prove a result of the same flavour for the k th order recurrent sequence $\left\{F_{n}^{(k)}\right\}_{n \geq-(k-2)}$ given by $F_{i}^{(k)}=0$ for $i=$ $-(k-2),-(k-3), \ldots, 0$ and $F_{1}^{(k)}=1$ and

$$
F_{n}^{(k)}=F_{n-1}^{(k)}+\cdots+F_{n-k}^{(k)} \quad \text { for all } \quad n \geq 2
$$

This sequence coincides with the Fibonacci sequence for $k=2$. For any real number x let $\lfloor x\rceil$ be the closest integer to x (when x is at distance $1 / 2$ from an integer we can pick for $\lfloor x\rfloor$ to be anyone of $\lfloor x\rfloor$ or $\lfloor x\rfloor+1$). Our theorem is the following.

Theorem 1. For $k \geq 2$ and $n \geq 2$, we have

$$
\begin{equation*}
\left\lfloor\left(\sum_{m \geq n} \frac{1}{F_{m}^{(k)}}\right)^{-1}\right\rceil=F_{n}^{(k)}-F_{n-1}^{(k)} \tag{1}
\end{equation*}
$$

Many sequences naturally arising in nature and engineering are modelled by $\left\{F_{n}^{(k)}\right\}_{n \geq 0}$ for some $k \geq 2$. For a fixed k, as a linearly recurrent sequence, $F_{n}^{(k)}$ has a Binet formula. It turns out that this Binet formula has one term corresponding to the dominant root (see the next section for formal definitions), and then $F_{n}^{(k)}$ is the closest integer to this term. Let ε_{n} be the error of this approximation (formally, this also depends on k but we will omit the dependence on k in order not to clutter the exposition). The proof is then achieved by approximating the left-hand side of (1) with a natural candidate arising from the sum of the reciprocals of a certain geometric progression and relating the error of this approximation to $\left|\varepsilon_{n}\right|$ and $\left|\varepsilon_{n}-\varepsilon_{n-1}\right|$. Then the proof is completed by giving good upper bounds on $\left|\varepsilon_{n}\right|$ and $\left|\varepsilon_{n}-\varepsilon_{n-1}\right|$. The proof uses some ideas from [2].

2 Preliminary results on k-generalized Fibonacci numbers

It is known that the characteristic polynomial of the k-generalized Fibonacci numbers $F^{(k)}:=\left(F_{m}^{(k)}\right)_{m \geq 2-k}$, namely

$$
\Psi_{k}(x):=x^{k}-x^{k-1}-\cdots-x-1
$$

has just one root outside the unit circle. Let $\alpha:=\alpha(k)$ denote that single root, which is located between $2\left(1-2^{-k}\right)$ and 2 (see [2]). To simplify notation, in our application we shall omit the dependence on k of α. We shall use $\alpha_{1}, \ldots, \alpha_{k}$ for all roots of $\Psi_{k}(x)$ with the convention that $\alpha_{1}:=\alpha$.

We now consider for an integer $k \geq 2$, the function

$$
\begin{equation*}
f_{k}(z)=\frac{z-1}{2+(k+1)(z-2)} \quad \text { for } \quad z \in \mathbb{C} \tag{2}
\end{equation*}
$$

With this notation, Dresden and Du presented in [2] the following "Binet-like" formula for the terms of $F^{(k)}$:

$$
\begin{equation*}
F_{m}^{(k)}=\sum_{i=1}^{k} f_{k}\left(\alpha_{i}\right) \alpha_{i}^{m-1} \tag{3}
\end{equation*}
$$

It was proved in [2] that the contribution of the roots which are inside the unit circle to the formula (3) is very small, namely that the approximation

$$
\begin{equation*}
\left|F_{m}^{(k)}-f_{k}(\alpha) \alpha^{m-1}\right|<\frac{1}{2} \text { holds for all } m \geqslant 2-k \tag{4}
\end{equation*}
$$

It was proved by Bravo and Luca in [1] that

$$
\begin{equation*}
\alpha^{m-2} \leq F_{m}^{(k)} \leq \alpha^{m-1} \quad \text { holds for all } \quad m \geq 1 \quad \text { and } \quad k \geq 2 \tag{5}
\end{equation*}
$$

The root α is called the dominant root of $\left\{F_{m}^{(k)}\right\}_{m \geq-(k-2)}$. It is also known, and it will be useful for us, that

$$
F_{n}^{(k)}=2^{n-2} \quad \text { holds for all } \quad n \in[2, k+1]
$$

whereas $F_{k+2}^{(k)}=2^{k}-1$.
Before we conclude this section, we present one more some useful lemma which was proved by Bravo and Luca in [1].

Lemma 1. Let $k \geq 2$, α be the dominant root of $\left\{F_{m}^{(k)}\right\}_{m \geq-(k-2)}$, and consider the function $\bar{f}_{k}(z)$ defined in (2). Then

$$
\frac{1}{2}<f_{k}(\alpha)<\frac{3}{4}
$$

3 Two Lemmas

We put $\varepsilon_{n}:=F_{n}-f_{k}(\alpha) \alpha^{n-1}$ for $n \geq-(k-2)$. As we mentioned in Section 2 , in [2] the following result was proved.

Lemma 2. We have $\left|\varepsilon_{n}\right|<1 / 2$ for all $n \geq-(k-2)$.

This lemma was proved in the following way. First it was checked that it folds for $n \in[-(k-2), 1]$, an interval containing k consecutive integers. Then since

$$
\varepsilon_{n}=\sum_{i=2}^{n} f_{k}\left(\alpha_{i}\right) \alpha_{i}^{n}
$$

where $\alpha_{2}, \ldots, \alpha_{k}$ are all the other roots of $\Psi_{k}(X)$ which are complex numbers inside the unit circle, it follows that $\varepsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$. Using the recurrence relation

$$
\varepsilon_{n+1}=2 \varepsilon_{n}-\varepsilon_{n-k}
$$

valid for all $n \geq 2$, it was then shown that the fact that $\left|\varepsilon_{n}\right|<1 / 2$ for $n \in[-(k-2), 1]$ implies that $\left|\varepsilon_{n}\right|<1 / 2$ for all $n \geq-(k-2)$. Here is a slight generalisation of that result.

Lemma 3. Let $N_{0} \geq-(k-2)$ be an integer, and $\left\{\delta_{n}\right\}_{n \geq N_{0}}$ be a sequence of real numbers whose Binet formula is given by

$$
\begin{equation*}
\delta_{n}=\sum_{i=2}^{k} c_{i} \alpha_{i}^{n} \quad \text { for all } \quad n \geq N_{0} \tag{6}
\end{equation*}
$$

Assume that there are $n_{0} \geq N_{0}$ and λ such that $\left|\delta_{n}\right|<\lambda$ holds for all $n \in$ $\left[n_{0}, n_{0}+k-1\right]$. Then $\left|\delta_{n}\right|<\lambda$ holds for all $n \geq n_{0}$.

Proof. Formula (6) shows that δ_{n} tends to 0 as n tends to infinity. Also, the same formula shows that

$$
\begin{equation*}
\delta_{n+1}=2 \delta_{n}-\delta_{n-k} \quad \text { holds for all } \quad n \geq N_{0}+k \tag{7}
\end{equation*}
$$

since recurrence (7) is a consequence of the Binet formula (6). Assume that there is $n_{1} \geq n_{0}$ such that $\left|\delta_{n_{1}}\right| \geq \lambda$ and let n_{1} be minimal with this property. Clearly, $n_{1} \geq n_{0}+k$. Then the recurrence (7) in $n=n_{1}$ gives

$$
\delta_{n_{1}+1}=2 \delta_{n_{1}}-\delta_{n_{1}-k}
$$

and shows that $\left|\delta_{n_{1}+1}\right| \geq 2\left|\delta_{n_{1}}\right|-\left|\delta_{n_{1}-k}\right| \geq\left|\delta_{n_{1}}\right|$. By the same argument, we then get that $\left|\delta_{n_{1}+2}\right| \geq\left|\delta_{n_{1}+1}\right|$. This pattern continues by the same argument, so we get $\left|\delta_{n+1}\right| \geq\left|\delta_{n}\right|$ for all $n \geq n_{1}$, which contradicts the fact that δ_{n} tends to 0 . Thus, $\left|\delta_{n}\right|<\lambda$ must always hold whenever $n \geq n_{0}$.

4 The proof modulo two estimates

The first part of the proof consists of evaluating the sum of a geometric series and keeping track of the errors of approximation. Since $F_{1}^{(k)}=F_{2}^{(k)}=1$ and
$F_{n}^{(k)} \leq 2^{n-2}$ holds for all $n \geq 2$ and the inequality is strict for $n>k+1$, we have that

$$
2=\sum_{m \geq 2} \frac{1}{2^{m-2}}<\sum_{m \geq 2} \frac{1}{F_{n}^{(k)}}
$$

This shows that

$$
\left(\sum_{m \geq 2} \frac{1}{F_{m}^{(k)}}\right)^{-1}<\frac{1}{2}
$$

therefore formula (1) holds for $n=2$ (both its sides are 0). From now on, we assume that $n \geq 3$. We recall

$$
F_{m}^{(k)}=f_{k}(\alpha) \alpha^{m-1}+\varepsilon_{m} \quad \text { for } \quad m \geq-(k-2)
$$

where $\left|\varepsilon_{m}\right|<1 / 2$ for all $m \geq-(k-2)$ by Lemma 2 . We also put

$$
\lambda_{n}:=\max _{m \geq n}\left|\varepsilon_{m}\right|
$$

We then have

$$
\begin{aligned}
\sum_{m \geq n} \frac{1}{F_{m}^{(k)}} & =\sum_{m \geq n} \frac{1}{f_{k}(\alpha) \alpha^{m-1}}+\sum_{m \geq n}\left(\frac{1}{F_{m}^{(k)}}-\frac{1}{f_{k}(\alpha) \alpha^{m-1}}\right) \\
& :=\frac{1}{f_{k}(\alpha) \alpha^{n-1}}\left(\sum_{j \geq 0} \frac{1}{\alpha^{j}}\right)+T_{n}=\frac{1}{f_{k}(\alpha) \alpha^{n-1}(1-1 / \alpha)}+T_{n}
\end{aligned}
$$

We estimate $\left|T_{n}\right|$. We have, using estimate (5),

$$
\begin{aligned}
\left|T_{n}\right| & =\left|\sum_{m \geq n} \frac{f_{k}(\alpha) \alpha^{m-1}-F_{m}^{(k)}}{f_{k}(\alpha) \alpha^{m-1} F_{m}^{(k)}}\right|=\left|-\sum_{m \geq n} \frac{\epsilon_{m}}{f k(\alpha) \alpha^{m-1} F_{m}^{(k)}}\right| \\
& \leq \sum_{m \geq n} \frac{\left|\varepsilon_{m}\right|}{f_{k}(\alpha) \alpha^{m-1} F_{m}^{(k)}} \leq \lambda_{n} \sum_{m \geq n} \frac{1}{f_{k}(\alpha) \alpha^{m-1} F_{m}^{(k)}} \\
& \leq \lambda_{n} \sum_{m \geq n} \frac{1}{f_{k}(\alpha) \alpha^{2 m-3}}=\frac{\lambda_{n}}{f_{k}(\alpha) \alpha^{2 n-3}} \sum_{j \geq 0} \frac{1}{\alpha^{2 j}} \\
& \leq \frac{\lambda_{n}}{f_{k}(\alpha) \alpha^{2 n-3}\left(1-1 / \alpha^{2}\right)} .
\end{aligned}
$$

Thus,

$$
\sum_{m \geq n} \frac{1}{F_{m}^{(k)}}=\frac{1}{f_{k}(\alpha) \alpha^{n-1}(1-1 / \alpha)}\left(1+\eta_{n}\right)
$$

where

$$
\begin{equation*}
\left|\eta_{n}\right|=\left|T_{n}\right| f_{k}(\alpha) \alpha^{n-1}(1-1 / \alpha) \leq \frac{\lambda_{n}}{\alpha^{n-2}(1+1 / \alpha)} \tag{8}
\end{equation*}
$$

Since $k \geq 2, \alpha \geq(1+\sqrt{5}) / 2>1.6$ and $n \geq 3$, we have that $\alpha^{n-2}(\alpha+1)>4$ so the above upper bound is at most $1 / 8$. Thus,

$$
\left(\sum_{m \geq n} \frac{1}{F_{m}^{(k)}}\right)^{-1}=f_{k}(\alpha) \alpha^{n-1}(1-1 / \alpha)\left(1+\eta_{n}\right)^{-1}
$$

We use

$$
\left(1+\eta_{n}\right)^{-1}=1-\eta_{n}+\eta_{n}^{2}-\cdots
$$

which is valid on our range for η_{n}. Putting $\zeta_{n}:=\left(1+\eta_{n}\right)^{-1}-1$, we have, by (8), that

$$
\begin{aligned}
\left|\zeta_{n}\right| & =\left|\eta_{n}\right|\left|1-\eta_{n}+\eta_{n}^{2}-\cdots\right| \\
& \leq\left|\eta_{n}\right|\left(1+\left(\frac{\lambda_{n}}{\alpha^{n-2}(1+1 / \alpha)}\right)+\left(\frac{\lambda_{n}}{\alpha^{n-2}(1+1 / \alpha)}\right)^{2}+\cdots\right) \\
& =\frac{\left|\eta_{n}\right|}{1-\lambda_{n} /\left(\alpha^{n-2}(1+1 / \alpha)\right)} \leq \frac{\lambda_{n}}{\alpha^{n-2}(1+1 / \alpha)-\lambda_{n}}
\end{aligned}
$$

Hence,

$$
\begin{align*}
\left(\sum_{m \geq n} \frac{1}{F_{m}^{(k)}}\right)^{-1} & =f_{k}(\alpha) \alpha^{n-1}-f_{k}(\alpha) \alpha^{n-2}+\left(f_{k}(\alpha) \alpha^{n-1}(1-1 / \alpha) \zeta_{n}\right) \\
& :=F_{n}^{(k)}-F_{n-1}^{(k)}-\varepsilon_{n}+\varepsilon_{n-1}+\delta_{n} \tag{9}
\end{align*}
$$

where

$$
\begin{aligned}
\left|\delta_{n}\right| & =\left|f_{k}(\alpha) \alpha^{n-1}(1-1 / \alpha) \zeta_{n}\right| \leq \frac{f_{k}(\alpha) \alpha^{n-1}(1-1 / \alpha) \lambda_{n}}{\alpha^{n-2}(1+1 / \alpha)-\lambda_{n}} \\
& =\frac{f_{k}(\alpha)(\alpha-1) \lambda_{n}}{1+1 / \alpha-\lambda_{n} / \alpha^{n-2}}<\frac{3 \lambda_{n}}{5}
\end{aligned}
$$

The last inequality holds because $f_{k}(\alpha)<3 / 4$ (by Lemma 1), $\alpha-1<1$, therefore

$$
f_{k}(\alpha)(\alpha-1)<3 / 4
$$

while

$$
1+1 / \alpha-\lambda_{n} / \alpha^{n-2} \geq 1+\left(1-\lambda_{n}\right) / \alpha>1+1 /(2 \alpha)>5 / 4
$$

where we used the fact that $n \geq 3$ and $\lambda_{n}<1 / 2$. Assume that

$$
\begin{equation*}
\left|\varepsilon_{n}-\varepsilon_{n-1}\right|+\frac{3 \lambda_{n}}{5}<\frac{1}{2} \tag{10}
\end{equation*}
$$

Then

$$
\left|-\varepsilon_{n}+\varepsilon_{n-1}+\delta_{n}\right| \leq\left|\varepsilon_{n}-\varepsilon_{n-1}\right|+\left|\delta_{n}\right|<\left|\varepsilon_{n}-\varepsilon_{n-1}\right|+\frac{3 \lambda_{n}}{5}<\frac{1}{2}
$$

so, by estimate (9), we get

$$
\left\lfloor\left(\sum_{m \geq n} \frac{1}{F_{m}^{(k)}}\right)^{-1}\right\rceil=F_{n}^{(k)}-F_{n-1}^{(k)}
$$

This finishes the proof of the theorem modulo proving the following lemma.
Lemma 4. The estimates

$$
\begin{equation*}
\lambda_{n-1}<\frac{1}{3.2} \quad \text { and } \quad\left|\varepsilon_{n}-\varepsilon_{n-1}\right|<\frac{1}{3.2} \tag{11}
\end{equation*}
$$

hold for all $n \geq 3$ and $k \geq 3$.
Note that if (11) holds, then since $\lambda_{n} \leq \lambda_{n-1}$, we have that

$$
\left|\varepsilon_{n}-\varepsilon_{n-1}+\frac{3 \lambda_{n}}{5}\right| \leq\left|\varepsilon_{n}-\varepsilon_{n-1}\right|+\frac{3 \lambda_{n-1}}{5}<\frac{1}{3.2}\left(1+\frac{3}{5}\right)=\frac{1}{2}
$$

so (11) implies (10) and therefore the conclusion of the theorem for n.

5 The proof of the estimates: Lemma 4

Let us start with $k=2$. In this case, $\alpha=(1+\sqrt{5}) / 2$, and $\varepsilon_{n}=-\beta^{n} / \sqrt{5}$, where $\beta=-\alpha^{-1}$ is the conjugate of α. Thus, for $n \geq 2$, we have

$$
\left|\varepsilon_{n}\right|=\frac{1}{\sqrt{5} \alpha^{n}} \leq \frac{1}{\sqrt{5} \alpha^{2}}<0.18<\frac{1}{3.2}
$$

Furthermore, for $n \geq 3$, we have

$$
\left|\varepsilon_{n}-\varepsilon_{n-1}\right|=\frac{|\beta|^{n-1}(1-\beta)}{\sqrt{5}}=\frac{1}{\sqrt{5} \alpha^{n-2}} \leq \frac{1}{\sqrt{5} \alpha}<0.28<\frac{1}{3.2}
$$

From now on, we assume that $k \geq 3$. For what follows, we will need a slightly better approximation of α than the mere fact that $\alpha \in\left(2\left(1-1 / 2^{k}\right), 2\right)$.

Lemma 5. We have

$$
\alpha=2-\frac{1}{2^{k}}-\frac{c_{k}}{2^{2 k-2}}, \quad \text { where } \quad c_{k} \in(0, k)
$$

Proof. We check that the above estimate holds for $k=2,3$. For $k \geq 4$, we note that α satisfies the equation

$$
0=\alpha^{k}-\alpha^{k-1}-\cdots-1=\alpha^{k}-\frac{\alpha^{k}-1}{\alpha-1}=\frac{\alpha^{k+1}-2 \alpha^{k}+1}{\alpha-1}
$$

Thus,

$$
\alpha=2-\frac{1}{\alpha^{k}} .
$$

Now $\alpha=2\left(1-\zeta / 2^{k}\right)$, where $\zeta \in(0,1)$. Thus,

$$
\alpha=2-\frac{1}{2^{k}}\left(1-\frac{\zeta}{2^{k}}\right)^{-k}=2-\frac{1}{2^{k}} \exp \left(-k \log \left(1-\frac{\zeta}{2^{k}}\right)\right)
$$

Using that for $x \in(0,1 / 2)$ we have $\log (1-x)=-y$ for some $y \in(0,2 x)$, we get that $-\log \left(1-\zeta / 2^{k}\right)=\eta$, where $\eta \in\left(0,1 / 2^{k-1}\right)$. Thus, $k \eta \in\left(0, k / 2^{k-1}\right)$ and $k / 2^{k-1} \leq 1 / 2$ for $k \geq 4$. Using that $\exp y=1+z$ for some $z \in(0,2 y)$ if $y \in(0,1 / 2)$, we have that

$$
\exp \left(-k \log \left(1-\zeta / 2^{k}\right)\right)=\exp (k \eta)=1+\delta, \quad \text { where } \quad \delta \in\left(0, k / 2^{k-2}\right)
$$

Thus, writing $\delta:=c_{k} / 2^{k-2}$, we have that $c_{k} \in(0, k)$ and

$$
\alpha=2-\frac{1}{2^{k}}\left(1+\frac{c_{k}}{2^{k-2}}\right)=1-\frac{1}{2^{k}}-\frac{c_{k}}{2^{2 k-2}}
$$

which is what we wanted.
In order to prove that (11) holds in the ranges indicated by Lemma 4 it suffices, by Lemma 3 with $\delta_{n}:=\varepsilon_{n}$ or $\delta_{n}:=\varepsilon_{n}-\varepsilon_{n-1}, \lambda:=1 / 3.2$ and $n_{0}:=3$, to show that inequality (11) holds for the first k values of the ranges indicated in (1) and (2) of Lemma 4. Let's get to work.

Lemma 6. We have for $n \in[2, k+1]$,

$$
\begin{equation*}
\varepsilon_{n}=\frac{n-k}{2^{k+3-n}}\left(1+\frac{c_{k}}{2^{k-2}}\right)+\delta_{n, k}, \quad \text { with } \quad\left|\delta_{n, k}\right|<\frac{(k+1)^{2}}{2^{k-3}}\left(1+\frac{k}{2^{k-2}}\right)^{2} \tag{12}
\end{equation*}
$$

Proof. We use the fact that for $n \in[2, k+1]$, we have for

$$
g_{k, n}(z):=f_{k}(z) z^{n-1}, \quad \text { that } \quad g_{k, n}(2)=2^{n-2}=F_{n}^{(k)}
$$

Thus,

$$
\begin{equation*}
\varepsilon_{n}=F_{n}^{(k)}-g_{k, n}(\alpha)=g_{k, n}(2)-g_{k, n}(\alpha)=g_{k, n}^{\prime}(2)(2-\alpha)-\frac{1}{2} g_{k, n}^{\prime \prime}(\zeta)(\alpha-2)^{2} \tag{13}
\end{equation*}
$$

for some $\zeta \in(\alpha, 2)$, a formula which is obtained by applying the Taylor formula to the expansion of $g_{k, n}(z)$ around $z=2$. Now

$$
g_{k, n}(z)=\frac{z^{n}}{2+(k+1)(z-2)}-\frac{z^{n-1}}{2+(k+1)(z-2)},
$$

so

$$
\begin{align*}
g_{k, n}^{\prime}(z) & =\frac{n z^{n-1}}{2+(k+1)(z-2)}-\frac{(n-1) z^{n-2}}{2+(k+1)(z-2)} \\
& -\frac{(k+1) z^{n}}{(2+(k+1)(z-2))^{2}}+\frac{(k+1) z^{n-1}}{(2+(k+1)(z-2))^{2}} \tag{14}
\end{align*}
$$

Evaluating the above in $n=2$, we get

$$
\begin{aligned}
g_{k, n}^{\prime}(2) & =n 2^{n-2}-(n-1) 2^{n-3}-(k+1) 2^{n-2}+(k+1) 2^{n-3} \\
& =2^{n-3}(2 n-(n-1)-2(k+1)+k+1)=(n-k) 2^{n-3}
\end{aligned}
$$

Thus,

$$
\begin{equation*}
g_{k, n}^{\prime}(2)(2-\alpha)=\frac{(n-k) 2^{n-3}}{2^{k}}\left(1+\frac{c_{k}}{2^{k-2}}\right)=\frac{n-k}{2^{k+3-n}}\left(1+\frac{c_{k}}{2^{k-2}}\right) . \tag{15}
\end{equation*}
$$

This is the main term. For the next term, we take again the derivative of $g_{k, n}^{\prime}$ given by formula (14). This formula consists in 8 fractions and we evaluate them in $\zeta \in(\alpha, 2)$. The largest numerator is $(k+1)^{2} \zeta^{n}<(k+1)^{2} \cdot \zeta^{k+1}$. Since $\alpha-2 \geq-1 / 2^{k-1}$, the denominator is at least

$$
2+(k+1)(\alpha-2) \geq 2-\frac{k+1}{2^{k-1}} \geq 1 \quad \text { for } \quad k \geq 3
$$

Hence,

$$
\left|g_{k, n}^{\prime \prime}(\zeta)\right|<8(k+1)^{2} \zeta^{k+1}<(k+1)^{2} 2^{k+4}
$$

Since

$$
(\alpha-2)^{2}=\frac{1}{2^{2 k}}\left(1+\frac{c_{k}}{2^{k-1}}\right)^{2}
$$

by Lemma 5 , we get that

$$
\begin{equation*}
\left|\delta_{n, k}\right| \leq \frac{(k+1)^{2} 2^{k+4}}{2^{2 k+1}}\left(1+\frac{c_{k}}{2^{k-2}}\right)^{2}=\frac{(k+1)^{2}}{2^{k-3}}\left(1+\frac{k}{2^{k-2}}\right)^{2} \tag{16}
\end{equation*}
$$

The proof follows from (13), (15) and (16).
Proof of Lemma 4. For $n=k$, the main term in 0 in (12). For $n=k-1$, the fraction $|n-k| / 2^{3+k-n}$ evaluates to $1 / 16$. For $n \leq k-2$, putting $x:=k-n \geq 1$, the fraction $|n-k| / 2^{3+k-n}$ equals $x / 2^{3+x}$, a function which is decreasing for $x \geq 2$, so its maximal value is at $x=2$ and equals again $1 / 16$. The worst case scenario for $n \in[2, k+1]$ is therefore in $n=k+1$, for which the fraction $|n-k| / 2^{3+n-k}$ evaluates to $1 / 4$. We thus get that for $n \in[2, k+1]$, we have that

$$
\left|\varepsilon_{n}\right| \leq \frac{1}{16}\left(1+\frac{k}{2^{k-2}}\right)+\frac{(k+1)^{2}}{2^{k-3}}\left(1+\frac{k}{2^{k-2}}\right)^{2} \quad \text { for } \quad n \in[2, k]
$$

and

$$
\left|\varepsilon_{k+1}\right|<\frac{1}{4}\left(1+\frac{k}{2^{k-2}}\right)+\frac{(k+1)^{2}}{2^{k-3}}\left(1+\frac{k}{2^{k-2}}\right)^{2}
$$

The right-hand sides above are $<1 / 3.2$ for $k \geq 20$. In particular, we have that $\left|\varepsilon_{n}\right| \leq 1 / 3.2$ for all $n \in[2, k+1]$ if $k \geq 20$, and by Lemma $3,\left|\varepsilon_{n}\right| \leq 1 / 3.2$ for all $n \geq 2$.

We now consider

$$
\delta_{n}:=\varepsilon_{n}-\varepsilon_{n-1} \quad \text { for } \quad n \in[3, k+2] .
$$

By the above arguments, for $n \in[3, k]$, we have that

$$
\begin{equation*}
\left|\delta_{n}\right| \leq\left|\varepsilon_{n}\right|+\left|\varepsilon_{n-1}\right| \leq \frac{1}{8}\left(1+\frac{k}{2^{k-2}}\right)+\frac{(k+1)^{2}}{2^{k-4}}\left(1+\frac{k}{2^{k-2}}\right)^{2} \tag{17}
\end{equation*}
$$

For $n=k+1$, we have

$$
\begin{equation*}
\left|\delta_{k+1}\right|=\left|\varepsilon_{k+1}-\varepsilon_{k}\right| \leq \frac{1}{4}\left(1+\frac{k}{2^{k-2}}\right)+\frac{(k+1)^{2}}{2^{k-4}}\left(1+\frac{k}{2^{k-2}}\right)^{2} \tag{18}
\end{equation*}
$$

where we used the fact that at $n=k$ the main term of ε_{n} in (12) equals 0 . For $n=k+2$, we have

$$
\varepsilon_{k+2}=2 \varepsilon_{k+1}-\varepsilon_{1}
$$

so

$$
\left|\varepsilon_{k+2}-\varepsilon_{k+1}\right|=\left|\varepsilon_{k+1}-\varepsilon_{1}\right|
$$

Now

$$
\varepsilon_{k+1}=\frac{1}{4}\left(1+\frac{c_{k}}{2^{k-2}}\right)+\delta_{k, k+1}
$$

while
$\varepsilon_{1}=1-f_{k}(\alpha)=1-\left(f_{k}(2)+f_{k}^{\prime}(\zeta)(\alpha-2)\right)=\frac{1}{2}-f_{k}^{\prime}(\zeta)(\alpha-2) \quad$ for $\quad \zeta \in(\alpha, 2)$.
Clearly,

$$
\begin{aligned}
\left|f_{k}^{\prime}(\zeta)\right| & =\left|\frac{2+(k+1)(\zeta-2)-(k+1)(\zeta-1)}{2+(k+1)(\zeta-2))^{2}}\right| \\
& =\frac{k-1}{(2+(k+1)(\zeta-2))^{2}}<k-1
\end{aligned}
$$

Thus,

$$
\begin{align*}
\left|\delta_{k+2}\right| & =\left|\zeta_{k+1}-\zeta_{1}\right| \\
& \leq \frac{1}{4}+\frac{c_{k}}{2^{k}}+\left|\delta_{k, k+1}\right|+\left|f_{k}^{\prime}(\zeta)\right|(2-\alpha) \\
& <\frac{1}{4}+\frac{k}{2^{k}}+\frac{(k+1)^{2}}{2^{k-3}}\left(1+\frac{k}{2^{k-2}}\right)^{2}+\frac{k-1}{2^{k}}\left(1+\frac{k}{2^{k-2}}\right) \tag{19}
\end{align*}
$$

For $k \geq 20$, all right-hand sides of (17), (18) and (19) are $<1 / 3.2$. Thus, $\left|\varepsilon_{n}-\varepsilon_{n-1}\right|<1 / 3.2$ holds for all $n \in[3, k+2]$, a interval of length k. By Lemma 3, it holds for all $n \geq 3$.

A computer program now checked that $\left|\varepsilon_{n}\right|<1 / 3.2$ also holds for all $k \in[3,19]$ and all $n \in[2, k+1]$. For this, we just computed

$$
\left|2^{n-2}-f_{k}(\alpha) \alpha^{n-1}\right| \quad \text { for all } \quad k \in[3,19] \quad \text { and } \quad n \in[2, k+1] .
$$

In fact, the maximum value of $\left|\varepsilon_{n}\right|$ in this range was less than $0.24996<1 / 3.2$. Similarly, we checked that $\left|\varepsilon_{n}-\varepsilon_{n-1}\right|<1 / 3.2$ holds for all $n \in[3, k+2]$ and all $k \in[3,19]$. The way we did it was to compute, for all $n \in[3, k+1]$, the amount

$$
\left|\varepsilon_{n}-\varepsilon_{n-1}\right|=\left|2^{n-2}-2^{n-3}-f_{k}(\alpha)(\alpha-1) \alpha^{n-2}\right|
$$

and to check that it is $<1 / 3.2$ in this range. When $n=k+2$, the term $2^{n-2}-2^{n-3}=2^{n-3}$ must be replaced by $2^{n-3}-1$ because for this n, we have $F_{n}^{(k)}=2^{n-2}-1$. The maximal value of $\left|\varepsilon_{n}-\varepsilon_{n-1}\right|$ in this range was less than $0.261<1 / 3.2$.

The theorem is proved.

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah under grant No. (DF-595-130-1441). The authors therefore gratefully acknowledge DSR technical and financial support.

References

[1] J. J. Bravo and F. Luca. "On a conjecture about repdigits in k-generalized Fibonacci sequences", Publ. Math. Debrecen 82(2013), 623-639.
[2] G. P. B. Dresden and Z. Du, "A simplified Binet formula for k-generalized Fibonacci numbers", J. Integer Seq. 17 (2014), no. 4, Article 14.4.7.
[3] S. Holliday and T. Komatsu, "On the sum of reciprocal generalized Fibonacci number", Integers 11 (2011), 441-455.
[4] H. Ohtsuka and S. Nakamura, "On the sum of reciprocal Fibonacci numbers", Fibonacci Quart. 46/47 (2008/2009), 153-159.
[5] W. Zhang and T. Wang, "The infinite reciprocal sum of Pell numbers", Appl. Mathematics and Computation, 218 (2012), 6164-6167.

[^1]
[^0]: Key Words: Linearly recurrent sequences
 2010 Mathematics Subject Classification: Primary 11B39.
 Received: 07.05.2021
 Accepted: 25.07.2021

[^1]: Adel ALAHMADI
 Research Group in Algebraic Structures and Applications,
 King Abdulaziz University,
 P. O. Box 1540, Jeddah, Saudi Arabia.

 Email: adelnife2@yahoo.com
 Florian LUCA,
 School of Maths, Wits University,
 1 Jan Smuts, Braamfontein 2000, Johannesburg, South Africa and
 Research Group in Algebraic Structures and Applications,
 King Abdulaziz University, Jeddah, Saudi Arabia and
 Max Plack Institute for Mathematics,
 Bonn, Germany.
 Email: florian.luca@wits.ac.za

