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On the sum of the reciprocals of k-generalized
Fibonacci numbers

Adel Alahmadi and Florian Luca

Abstract

In this note, we that if {F (k)
n }n≥0 denotes the k-generalized Fi-

bonacci sequence then for n ≥ 2 the closest integer to the reciprocal
of

∑
m≥n 1/F

(k)
m is F

(k)
n − F

(k)
n−1.

1 The problem and the result

There are many papers in the literature which address the integer part of
the reciprocal of the sum

∑
m≥n 1/Um, where {Un}n≥1 is a binary recurrent

sequence of positive integers. For example, the case of the Fibonacci sequence
was treated by Ohstuka and Nakamura [4], the case of the Pell sequence was
treated by Zhang and Wang [5], and the more general case of Lucas sequences
of characteristic equation x2 − ax − 1 with an integer a ≥ 1 (which includes
the particular case of the Fibonacci sequence for a = 1 and Pell sequence for
a = 2) was treated in [3]. Letting {Un}n≥0 be this last Lucas sequence given
by U0 = 0, U1 = 1 and Un+2 = aUn+1 + Un for all n ≥ 0, one of the main
results of [3] is that for n ≥ 1

∑
m≥n

1

Um

−1
 = Un − Un−1 − δn

where δn = 0 if n is even and δn = 1 if n is odd.
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Here, for an integer k ≥ 2, we prove a result of the same flavour for

the kth order recurrent sequence {F (k)
n }n≥−(k−2) given by F

(k)
i = 0 for i =

−(k − 2), − (k − 3), . . . , 0 and F
(k)
1 = 1 and

F (k)
n = F

(k)
n−1 + · · ·+ F

(k)
n−k for all n ≥ 2.

This sequence coincides with the Fibonacci sequence for k = 2. For any real
number x let bxe be the closest integer to x (when x is at distance 1/2 from
an integer we can pick for bxc to be anyone of bxc or bxc + 1). Our theorem
is the following.

Theorem 1. For k ≥ 2 and n ≥ 2, we have
∑

m≥n

1

F
(k)
m

−1
 = F (k)

n − F (k)
n−1. (1)

Many sequences naturally arising in nature and engineering are modelled

by {F (k)
n }n≥0 for some k ≥ 2. For a fixed k, as a linearly recurrent sequence,

F
(k)
n has a Binet formula. It turns out that this Binet formula has one term

corresponding to the dominant root (see the next section for formal defini-

tions), and then F
(k)
n is the closest integer to this term. Let εn be the error

of this approximation (formally, this also depends on k but we will omit the
dependence on k in order not to clutter the exposition). The proof is then
achieved by approximating the left–hand side of (1) with a natural candidate
arising from the sum of the reciprocals of a certain geometric progression and
relating the error of this approximation to |εn| and |εn−εn−1|. Then the proof
is completed by giving good upper bounds on |εn| and |εn − εn−1|. The proof
uses some ideas from [2].

2 Preliminary results on k-generalized Fibonacci num-
bers

It is known that the characteristic polynomial of the k–generalized Fibonacci

numbers F (k) := (F
(k)
m )m≥2−k, namely

Ψk(x) := xk − xk−1 − · · · − x− 1,

has just one root outside the unit circle. Let α := α(k) denote that single root,
which is located between 2

(
1− 2−k

)
and 2 (see [2]). To simplify notation, in

our application we shall omit the dependence on k of α. We shall use α1, . . . , αk

for all roots of Ψk(x) with the convention that α1 := α.



ON THE SUM OF RECIPROCALS OF K-GENERALIZED FIBONACCI
NUMBERS 33

We now consider for an integer k ≥ 2, the function

fk(z) =
z − 1

2 + (k + 1)(z − 2)
for z ∈ C. (2)

With this notation, Dresden and Du presented in [2] the following “Binet–like”
formula for the terms of F (k):

F (k)
m =

k∑
i=1

fk(αi)αi
m−1. (3)

It was proved in [2] that the contribution of the roots which are inside the unit
circle to the formula (3) is very small, namely that the approximation∣∣∣F (k)

m − fk(α)αm−1
∣∣∣ < 1

2
holds for all m > 2− k. (4)

It was proved by Bravo and Luca in [1] that

αm−2 ≤ F (k)
m ≤ αm−1 holds for all m ≥ 1 and k ≥ 2. (5)

The root α is called the dominant root of {F (k)
m }m≥−(k−2). It is also known,

and it will be useful for us, that

F (k)
n = 2n−2 holds for all n ∈ [2, k + 1],

whereas F
(k)
k+2 = 2k − 1.

Before we conclude this section, we present one more some useful lemma
which was proved by Bravo and Luca in [1].

Lemma 1. Let k ≥ 2, α be the dominant root of {F (k)
m }m≥−(k−2), and con-

sider the function fk(z) defined in (2). Then

1

2
< fk(α) <

3

4
.

3 Two Lemmas

We put εn := Fn − fk(α)αn−1 for n ≥ −(k − 2). As we mentioned in Section
2, in [2] the following result was proved.

Lemma 2. We have |εn| < 1/2 for all n ≥ −(k − 2).
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This lemma was proved in the following way. First it was checked that it
folds for n ∈ [−(k− 2), 1], an interval containing k consecutive integers. Then
since

εn =

n∑
i=2

fk(αi)α
n
i ,

where α2, . . . , αk are all the other roots of Ψk(X) which are complex numbers
inside the unit circle, it follows that εn → 0 as n→∞. Using the recurrence
relation

εn+1 = 2εn − εn−k
valid for all n ≥ 2, it was then shown that the fact that |εn| < 1/2 for
n ∈ [−(k − 2), 1] implies that |εn| < 1/2 for all n ≥ −(k − 2). Here is a slight
generalisation of that result.

Lemma 3. Let N0 ≥ −(k − 2) be an integer, and {δn}n≥N0
be a sequence of

real numbers whose Binet formula is given by

δn =

k∑
i=2

ciα
n
i for all n ≥ N0. (6)

Assume that there are n0 ≥ N0 and λ such that |δn| < λ holds for all n ∈
[n0, n0 + k − 1]. Then |δn| < λ holds for all n ≥ n0.

Proof. Formula (6) shows that δn tends to 0 as n tends to infinity. Also, the
same formula shows that

δn+1 = 2δn − δn−k holds for all n ≥ N0 + k (7)

since recurrence (7) is a consequence of the Binet formula (6). Assume that
there is n1 ≥ n0 such that |δn1

| ≥ λ and let n1 be minimal with this property.
Clearly, n1 ≥ n0 + k. Then the recurrence (7) in n = n1 gives

δn1+1 = 2δn1 − δn1−k

and shows that |δn1+1| ≥ 2|δn1
| − |δn1−k| ≥ |δn1

|. By the same argument, we
then get that |δn1+2| ≥ |δn1+1|. This pattern continues by the same argument,
so we get |δn+1| ≥ |δn| for all n ≥ n1, which contradicts the fact that δn tends
to 0. Thus, |δn| < λ must always hold whenever n ≥ n0.

4 The proof modulo two estimates

The first part of the proof consists of evaluating the sum of a geometric series

and keeping track of the errors of approximation. Since F
(k)
1 = F

(k)
2 = 1 and
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F
(k)
n ≤ 2n−2 holds for all n ≥ 2 and the inequality is strict for n > k + 1 , we

have that

2 =
∑
m≥2

1

2m−2
<
∑
m≥2

1

F
(k)
n

.

This shows that ∑
m≥2

1

F
(k)
m

−1 < 1

2
,

therefore formula (1) holds for n = 2 (both its sides are 0). From now on, we
assume that n ≥ 3. We recall

F (k)
m = fk(α)αm−1 + εm for m ≥ −(k − 2),

where |εm| < 1/2 for all m ≥ −(k − 2) by Lemma 2. We also put

λn := max
m≥n

|εm|.

We then have∑
m≥n

1

F
(k)
m

=
∑
m≥n

1

fk(α)αm−1 +
∑
m≥n

(
1

F
(k)
m

− 1

fk(α)αm−1

)

:=
1

fk(α)αn−1

∑
j≥0

1

αj

+ Tn =
1

fk(α)αn−1(1− 1/α)
+ Tn.

We estimate |Tn|. We have, using estimate (5),

|Tn| =

∣∣∣∣∣∣
∑
m≥n

fk(α)αm−1 − F (k)
m

fk(α)αm−1F
(k)
m

∣∣∣∣∣∣ =

∣∣∣∣∣∣−
∑
m≥n

εm

fk(α)αm−1F
(k)
m

∣∣∣∣∣∣
≤

∑
m≥n

|εm|
fk(α)αm−1F

(k)
m

≤ λn
∑
m≥n

1

fk(α)αm−1F
(k)
m

≤ λn
∑
m≥n

1

fk(α)α2m−3 =
λn

fk(α)α2n−3

∑
j≥0

1

α2j

≤ λn
fk(α)α2n−3(1− 1/α2)

.

Thus, ∑
m≥n

1

F
(k)
m

=
1

fk(α)αn−1(1− 1/α)
(1 + ηn) ,
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where

|ηn| = |Tn|fk(α)αn−1(1− 1/α) ≤ λn
αn−2(1 + 1/α)

. (8)

Since k ≥ 2, α ≥ (1 +
√

5)/2 > 1.6 and n ≥ 3, we have that αn−2(α + 1) > 4
so the above upper bound is at most 1/8. Thus,∑

m≥n

1

F
(k)
m

−1 = fk(α)αn−1(1− 1/α)(1 + ηn)−1.

We use
(1 + ηn)−1 = 1− ηn + η2n − · · · ,

which is valid on our range for ηn. Putting ζn := (1 + ηn)−1 − 1, we have, by
(8), that

|ζn| = |ηn||1− ηn + η2n − · · · |

≤ |ηn|

(
1 +

(
λn

αn−2(1 + 1/α)

)
+

(
λn

αn−2(1 + 1/α)

)2

+ · · ·

)

=
|ηn|

1− λn/(αn−2(1 + 1/α))
≤ λn
αn−2(1 + 1/α)− λn

.

Hence,∑
m≥n

1

F
(k)
m

−1 = fk(α)αn−1 − fk(α)αn−2 +
(
fk(α)αn−1(1− 1/α)ζn

)
:= F (k)

n − F (k)
n−1 − εn + εn−1 + δn, (9)

where

|δn| =
∣∣fk(α)αn−1(1− 1/α)ζn

∣∣ ≤ fk(α)αn−1(1− 1/α)λn
αn−2(1 + 1/α)− λn

=
fk(α)(α− 1)λn

1 + 1/α− λn/αn−2 <
3λn

5
.

The last inequality holds because fk(α) < 3/4 (by Lemma 1), α − 1 < 1,
therefore

fk(α)(α− 1) < 3/4,

while

1 + 1/α− λn/αn−2 ≥ 1 + (1− λn)/α > 1 + 1/(2α) > 5/4,
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where we used the fact that n ≥ 3 and λn < 1/2. Assume that

|εn − εn−1|+
3λn

5
<

1

2
. (10)

Then

| − εn + εn−1 + δn| ≤ |εn − εn−1|+ |δn| < |εn − εn−1|+
3λn

5
<

1

2
,

so, by estimate (9), we get
∑

m≥n

1

F
(k)
m

−1
 = F (k)

n − F (k)
n−1.

This finishes the proof of the theorem modulo proving the following lemma.

Lemma 4. The estimates

λn−1 <
1

3.2
and |εn − εn−1| <

1

3.2
(11)

hold for all n ≥ 3 and k ≥ 3.

Note that if (11) holds, then since λn ≤ λn−1, we have that∣∣∣∣εn − εn−1 +
3λn

5

∣∣∣∣ ≤ |εn − εn−1|+ 3λn−1
5

<
1

3.2

(
1 +

3

5

)
=

1

2
,

so (11) implies (10) and therefore the conclusion of the theorem for n.

5 The proof of the estimates: Lemma 4

Let us start with k = 2. In this case, α = (1 +
√

5)/2, and εn = −βn/
√

5,
where β = −α−1 is the conjugate of α. Thus, for n ≥ 2, we have

|εn| =
1√
5αn

≤ 1√
5α2

< 0.18 <
1

3.2
.

Furthermore, for n ≥ 3, we have

|εn − εn−1| =
|β|n−1(1− β)√

5
=

1√
5αn−2

≤ 1√
5α

< 0.28 <
1

3.2
.

From now on, we assume that k ≥ 3. For what follows, we will need a slightly
better approximation of α than the mere fact that α ∈ (2(1− 1/2k), 2).
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Lemma 5. We have

α = 2− 1

2k
− ck

22k−2
, where ck ∈ (0, k).

Proof. We check that the above estimate holds for k = 2, 3. For k ≥ 4, we
note that α satisfies the equation

0 = αk − αk−1 − · · · − 1 = αk − αk − 1

α− 1
=
αk+1 − 2αk + 1

α− 1
.

Thus,

α = 2− 1

αk
.

Now α = 2(1− ζ/2k), where ζ ∈ (0, 1). Thus,

α = 2− 1

2k

(
1− ζ

2k

)−k
= 2− 1

2k
exp

(
−k log

(
1− ζ

2k

))
.

Using that for x ∈ (0, 1/2) we have log(1 − x) = −y for some y ∈ (0, 2x), we
get that − log(1 − ζ/2k) = η, where η ∈ (0, 1/2k−1). Thus, kη ∈ (0, k/2k−1)
and k/2k−1 ≤ 1/2 for k ≥ 4. Using that exp y = 1 + z for some z ∈ (0, 2y) if
y ∈ (0, 1/2), we have that

exp(−k log(1− ζ/2k)) = exp(kη) = 1 + δ, where δ ∈ (0, k/2k−2).

Thus, writing δ := ck/2
k−2, we have that ck ∈ (0, k) and

α = 2− 1

2k

(
1 +

ck
2k−2

)
= 1− 1

2k
− ck

22k−2
,

which is what we wanted.

In order to prove that (11) holds in the ranges indicated by Lemma 4 it
suffices, by Lemma 3 with δn := εn or δn := εn−εn−1, λ := 1/3.2 and n0 := 3,
to show that inequality (11) holds for the first k values of the ranges indicated
in (1) and (2) of Lemma 4. Let’s get to work.

Lemma 6. We have for n ∈ [2, k + 1],

εn =
n− k

2k+3−n

(
1 +

ck
2k−2

)
+ δn,k, with |δn,k| <

(k + 1)2

2k−3

(
1 +

k

2k−2

)2

.

(12)
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Proof. We use the fact that for n ∈ [2, k + 1], we have for

gk,n(z) := fk(z)zn−1, that gk,n(2) = 2n−2 = F (k)
n .

Thus,

εn = F (k)
n − gk,n(α) = gk,n(2)− gk,n(α) = g′k,n(2)(2− α)− 1

2
g′′k,n(ζ)(α− 2)2

(13)
for some ζ ∈ (α, 2), a formula which is obtained by applying the Taylor formula
to the expansion of gk,n(z) around z = 2. Now

gk,n(z) =
zn

2 + (k + 1)(z − 2)
− zn−1

2 + (k + 1)(z − 2)
,

so

g′k,n(z) =
nzn−1

2 + (k + 1)(z − 2)
− (n− 1)zn−2

2 + (k + 1)(z − 2)

− (k + 1)zn

(2 + (k + 1)(z − 2))2
+

(k + 1)zn−1

(2 + (k + 1)(z − 2))2
. (14)

Evaluating the above in n = 2, we get

g′k,n(2) = n2n−2 − (n− 1)2n−3 − (k + 1)2n−2 + (k + 1)2n−3

= 2n−3(2n− (n− 1)− 2(k + 1) + k + 1) = (n− k)2n−3.

Thus,

g′k,n(2)(2− α) =
(n− k)2n−3

2k

(
1 +

ck
2k−2

)
=

n− k
2k+3−n

(
1 +

ck
2k−2

)
. (15)

This is the main term. For the next term, we take again the derivative of g′k,n
given by formula (14). This formula consists in 8 fractions and we evaluate
them in ζ ∈ (α, 2). The largest numerator is (k+1)2ζn < (k+1)2 ·ζk+1. Since
α− 2 ≥ −1/2k−1, the denominator is at least

2 + (k + 1)(α− 2) ≥ 2− k + 1

2k−1
≥ 1 for k ≥ 3.

Hence,
|g′′k,n(ζ)| < 8(k + 1)2ζk+1 < (k + 1)22k+4.

Since

(α− 2)2 =
1

22k

(
1 +

ck
2k−1

)2
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by Lemma 5, we get that

|δn,k| ≤
(k + 1)22k+4

22k+1

(
1 +

ck
2k−2

)2
=

(k + 1)2

2k−3

(
1 +

k

2k−2

)2

. (16)

The proof follows from (13), (15) and (16).

Proof of Lemma 4. For n = k, the main term in 0 in (12). For n = k−1, the
fraction |n−k|/23+k−n evaluates to 1/16. For n ≤ k−2, putting x := k−n ≥ 1,
the fraction |n− k|/23+k−n equals x/23+x, a function which is decreasing for
x ≥ 2, so its maximal value is at x = 2 and equals again 1/16. The worst
case scenario for n ∈ [2, k+ 1] is therefore in n = k+ 1, for which the fraction
|n− k|/23+n−k evaluates to 1/4. We thus get that for n ∈ [2, k + 1], we have
that

|εn| ≤
1

16

(
1 +

k

2k−2

)
+

(k + 1)2

2k−3

(
1 +

k

2k−2

)2

for n ∈ [2, k],

and

|εk+1| <
1

4

(
1 +

k

2k−2

)
+

(k + 1)2

2k−3

(
1 +

k

2k−2

)2

.

The right–hand sides above are < 1/3.2 for k ≥ 20. In particular, we have
that |εn| ≤ 1/3.2 for all n ∈ [2, k+ 1] if k ≥ 20, and by Lemma 3, |εn| ≤ 1/3.2
for all n ≥ 2.

We now consider

δn := εn − εn−1 for n ∈ [3, k + 2].

By the above arguments, for n ∈ [3, k], we have that

|δn| ≤ |εn|+ |εn−1| ≤
1

8

(
1 +

k

2k−2

)
+

(k + 1)2

2k−4

(
1 +

k

2k−2

)2

. (17)

For n = k + 1, we have

|δk+1| = |εk+1 − εk| ≤
1

4

(
1 +

k

2k−2

)
+

(k + 1)2

2k−4

(
1 +

k

2k−2

)2

, (18)

where we used the fact that at n = k the main term of εn in (12) equals 0.
For n = k + 2, we have

εk+2 = 2εk+1 − ε1,

so
|εk+2 − εk+1| = |εk+1 − ε1|.
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Now

εk+1 =
1

4

(
1 +

ck
2k−2

)
+ δk,k+1,

while

ε1 = 1−fk(α) = 1−(fk(2)+f ′k(ζ)(α−2)) =
1

2
−f ′k(ζ)(α−2) for ζ ∈ (α, 2).

Clearly,

|f ′k(ζ)| =

∣∣∣∣2 + (k + 1)(ζ − 2)− (k + 1)(ζ − 1)

2 + (k + 1)(ζ − 2))2

∣∣∣∣
=

k − 1

(2 + (k + 1)(ζ − 2))2
< k − 1.

Thus,

|δk+2| = |ζk+1 − ζ1|

≤ 1

4
+
ck
2k

+ |δk,k+1|+ |f ′k(ζ)|(2− α)

<
1

4
+

k

2k
+

(k + 1)2

2k−3

(
1 +

k

2k−2

)2

+
k − 1

2k

(
1 +

k

2k−2

)
. (19)

For k ≥ 20, all right–hand sides of (17), (18) and (19) are < 1/3.2. Thus,
|εn − εn−1| < 1/3.2 holds for all n ∈ [3, k + 2], a interval of length k. By
Lemma 3, it holds for all n ≥ 3.

A computer program now checked that |εn| < 1/3.2 also holds for all
k ∈ [3, 19] and all n ∈ [2, k + 1]. For this, we just computed

|2n−2 − fk(α)αn−1| for all k ∈ [3, 19] and n ∈ [2, k + 1].

In fact, the maximum value of |εn| in this range was less than 0.24996 < 1/3.2.
Similarly, we checked that |εn − εn−1| < 1/3.2 holds for all n ∈ [3, k + 2] and
all k ∈ [3, 19]. The way we did it was to compute, for all n ∈ [3, k + 1], the
amount

|εn − εn−1| = |2n−2 − 2n−3 − fk(α)(α− 1)αn−2|,

and to check that it is < 1/3.2 in this range. When n = k + 2, the term
2n−2− 2n−3 = 2n−3 must be replaced by 2n−3− 1 because for this n, we have

F
(k)
n = 2n−2− 1. The maximal value of |εn− εn−1| in this range was less than

0.261 < 1/3.2.
The theorem is proved.
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