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Prime preideals on bounded EQ-algebras

N. Akhlaghinia and R. A. Borzooei and M. Aaly Kologani

Abstract

EQ-algebras were introduced by Novák in [14] as an algebraic struc-
ture of truth values for fuzzy type theory (FFT). In [1], Borzooei et.
al. introduced the notion of preideal in bounded EQ-algebras. In this
paper, we introduce various kinds of preideals on bounded EQ-algebras
such as ∧-prime, ⊗-prime, ∩-prime, ∩-irreducible, maximal and then we
investigate some properties and the relations among them. Specially,
we prove that in a prelinear and involutive bounded EQ-algebra, any
proper preideal is included in a ∧-prime preideal. In the following, we
show that the set of all ∧-prime preideals in a bounded EQ-algebra is
a T0 space and under some conditions, it is compact, connected, and
Hausdorff. Moreover, we show that the set of all maximal preideals of
a prelinear involutive bounded EQ-algebra is an Uryshon (Hausdorff)
space and for a finite EQ-algebra, it is T3 and T4 space. Finally, we
introduce a contravariant functor from the categories of bounded EQ-
algebras to the category of topological spaces.

1 Introduction

Fuzzy type theory was developed as a counterpart of the classical higher-
order logic. Since the algebra of truth values is no longer a residuated lattice,
a specific algebra called an EQ-algebra was proposed by Novák [14] and it
continued in [6], [5]. It is proved EQ-algebras overlap with residuated lattices
but are not identical with them. Novák and De Baets in [14] introduced
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various kinds of EQ-algebras. El-Zekey in [5] introduced prelinear good EQ-
algebras and proved that a prelinear good EQ-algebra is a distributive lattice.
The concepts of prefilter and filter on EQ-algebras were defined in [14] and
in [6], prime (pre)filter was defined and proved the quotient of prelinear EQ-
algebra induced by prime filter is a chain. The other types of (pre)filters of
EQ-algebras were studied in [3], [11], [15], [8]. In [16], by using filter, Yang
et. al. induced uniform topology on EQ-algebras and proved that topological
space is disconnected. Also, in [17], they used filters to construct topological
EQ-algebras and proved the binary operations of EQ-algebras are continuous.
Ideals theory is a very effective tool for studying various algebraic and logical
systems. From logical point of view, various ideals correspond to various of
provable formula. The notions of preideals and ideals in EQ-algebras were
defined in [1]. In [10], prime and maximal ideals of residuated lattices were
introduced and proved the set of all prime (maximal) ideals of a residuated
lattice is a compact T0 (Hausdorff) topological space. With this inspirations,
we define prime, ⊗-prime, ∩-prime, and maximal (pre)ideals of EQ-algebras.
We investigate some properties and the relations between them and prove the
quotient structures induced by ∧-prime and maximal ideals of a prelinear EQ-
algebra is chain or simple, respectively. We show for an EQ-algebra, the set of
all ∧-prime preideals of it, is a T0-topological space and under some conditions,
the set of all ∧-prime preideals is a compact, connected and Hausdorff space.
Also, we prove that the set of all maximal preideals of a prelinear IEQ-algebra
is a Hausdorff and Urysohn topological space and for a finite IEQ-algebra, it
is T3 and T4-space. Finally, we introduce a contravariant functor from the
category of EQ-algebras to the category of topological spaces with continuous
maps.

2 Preliminaries

In this section, we gather some basic notions relevant to EQ- algebras which
will be needed in the next sections.

Definition 2.1. [6] An EQ-algebra is an algebraic structure E = (E,∧,⊗,∼
, 1) of type (2, 2, 2, 0), where for any a, b, c, d ∈ E, the following statements
hold:
(E1) (E,∧, 1) is a ∧-semilattice with top element 1. For any a, b ∈ E, we set
a 6 b if and only if a ∧ b = a.
(E2) (E,⊗, 1) is a (commutative) monoid and ⊗ is isotone with respect to 6.
(E3) a ∼ a = 1.
(E4) ((a ∧ b) ∼ c)⊗ (d ∼ a) 6 (c ∼ (d ∧ b)).
(E5) (a ∼ b)⊗ (c ∼ d) 6 (a ∼ c) ∼ (b ∼ d).
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(E6) (a ∧ b ∧ c) ∼ a 6 (a ∧ b) ∼ a.
(E7) a⊗ b 6 a ∼ b.

The operations ” ∧ ”, ”⊗ ”, and ” ∼ ” are called meet, multiplication, and
fuzzy equality, respectively. For any a, b ∈ E, we defined the binary operation
implication on E by, a → b = (a ∧ b) ∼ a. Also, in particular 1 → a = 1 ∼
a = ã. If E contains a bottom element 0, then we denote it by BEQ-algebra
and an unary operation ¬ is defined on E by ¬a = a ∼ 0 = a→ 0.

Let E = (E,∧,⊗,∼, 1) be an EQ-algebra. Then E is called separated if for
any a, b ∈ E, a ∼ b = 1 implies a = b, good if for any a ∈ E we get a ∼ 1 = a,
involutive (IEQ-algebra), if E is a BEQ-algebra and for any a ∈ E we have
¬¬a = a, lattice-ordered EQ-algebra, if it has a lattice reduct∗, prelinear EQ-
algebra if for any a, b ∈ E the set {a→ b, b→ a} has the unique upper bound
1, lattice EQ-algebra (or `EQ-algebra), if it is a lattice-ordered EQ-algebra
and for any a, b, c, d ∈ E,

((a ∨ b) ∼ c)⊗ (d ∼ a) 6 (d ∨ b) ∼ c.

Definition 2.2. [12] Let E be a lattice-ordered BEQ-algebra. The set of all
a ∈ E such that a ∨ ¬a = 1 and a ∧ ¬a = 0 is called Boolean center of E and
denoted by B(E).

Proposition 2.3. [6] Let E be a good EQ-algebra, {ai}i∈I ⊆ E and c ∈ E.
Then

(
∨
i∈I
ai)→ c =

∧
i∈I

(ai → c)

Proposition 2.4. [11] Let E be an EQ-algebra. Then the following statements
are equivalent:
(i) E is good,
(ii) E is separated and a→ (b→ c) = b→ (a→ c), for any a, b, c ∈ E,
(iii) E is separated and a ≤ (a→ b)→ b, for any a, b ∈ E.

Theorem 2.5. [5] Every prelinear and good EQ-algebra E = (E,∧,⊗,∼, 1)
is an `EQ-algebra, where by for any a, b ∈ E, the join operation is given by
a ∨ b = ((a→ b)→ b) ∧ ((b→ a)→ a).

Proposition 2.6. [6], [5] Let E be an EQ-algebra. Then, for all a, b, c ∈ E,
the following properties hold:
(i) a→ b = a→ (a ∧ b).
(ii) b 6 a→ b.
(iii) a→ b 6 (c→ a)→ (c→ b) and a→ b 6 (b→ c)→ (a→ c).

∗Given an algebra < E,F >, where F is a set of operations on E and F ′ ⊆ F , then the
algebra < E,F ′ > is called the F ′-reduct of < E,F >



PRIME PREIDEALS ON BOUNDED EQ-ALGEBRAS 8

(iv) If a 6 b, then c→ a 6 c→ b and b→ c 6 a→ c.
(v) If E is separated, then a→ b = 1 if and only if a 6 b.
(vi) If E is good, then a→ (b→ c) 6 (a⊗ b)→ c.
(vii) If E is good and prelinear, then (a ∧ b)→ c = (a→ c) ∨ (b→ c).
(viii) If E is good and prelinear, then a→ (b ∨ c) = (a→ b) ∨ (a→ c).

Let E be an EQ-algebra, a, b, c ∈ E and ∅ 6= F ⊆ E. Then F is called
a prefilter of E, if 1 ∈ F and if a ∈ F and a → b ∈ F , then b ∈ F , for any
a, b ∈ E. The set of all prefilters of E is denoted by PF(E). A prefilter F of
E is called a filter of E, if a → b ∈ F , then (a ⊗ c) → (b ⊗ c) ∈ F , for any
a, b, c ∈ E. Proper (pre)filter F is called prime, if a → b ∈ F or b → a ∈ F ,
for any a, b ∈ E (See [6], [11]).

Remark 2.7. [14], [6] (i) Let F be a (pre)filter of EQ-algebra E. If a ∈ F
and a 6 b, then b ∈ F .
(ii) If E is a separated EQ-algebra, then F = {1} ⊆ E is a filter of E.

Let E = (E,∧,⊗,∼, 0, 1) be a BEQ-algebra. For any a, b ∈ E, operation
a⊕ b is defined on E by a⊕ b = ¬a→ b. Moreover, for any n ∈ N, we defined
a⊕ (a⊕ · · · (a⊕ a) · · · ) = na and 0a = 0.

Proposition 2.8. [1] Let E be an IEQ-algebra. Then for any a, b, c ∈ E the
following statements hold: (i) a⊕ b = b⊕ a.
(ii) a⊕ (b⊕ c) = (a⊕ b)⊕ c.
(iii) If E is prelinear, then a ∧ (b⊕ c) 6 (a ∧ b)⊕ (a ∧ c).
(iv) If E is prelinear, then for any n,m ∈ N, na ∧mb 6 (n+m)(a ∧ b).

Let E = (E,∧,⊗,∼, 0, 1) be a BEQ-algebra and I be a non-empty subset
of E. Then I is called a preideal of E, if for any a, b, c ∈ E, (I1): If a 6 b
and b ∈ I, then a ∈ I, (I2): If a, b ∈ I, then a ⊕ b ∈ I. A preideal I of
E is called an ideal of E, if for any a, b, c ∈ E, (I3): If ¬(a → b) ∈ I, then
¬((a⊗ c)→ (b⊗ c)) ∈ I. The set of all preideals of E is denoted by PI(E) and
the set of all ideals of E is denoted by I(E). It is clear that I(E) ⊆ PI(E). (See
[1])

Proposition 2.9. [1] Let ϕ : E→ G be an EQ-homomorphism. If I ∈ PI(G),
then ϕ−1(I) ∈ PI(E).

Theorem 2.10. [1] Let E be good and I be a non-empty subset of E. Then I
is a preideal of E if and only if 0 ∈ I and for any a, b ∈ E, ¬(¬a → ¬b) ∈ I
and a ∈ I imply b ∈ I.

Definition 2.11. [1] Let S be a non-empty subset of E. The smallest preideal
of E containing S is called the generated preideal by S and it is denoted by
(S]P . It is also the intersection of all preideals of E containing S.
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Proposition 2.12. [1] Let E be an EQ-algebra, a, b, x ∈ E, and I ∈ PI(E).
Then the following statements hold:
(i) (x]P = {a ∈ E| ∃n ∈ N such that a 6 nx}.
(ii) If a 6 b, then (a]P ⊆ (b]P .
(iii) If E is involutive, then (I ∪ {a}]P = {x ∈ E|x 6 na ⊕ i for some i ∈
I and n ∈ N}.
(iv) Let I1, I2 ∈ PI(E). If E is involutive, then

I1 ∨ I2 = (I1 ∪ I2]P = {x ∈ E|x 6 i1 ⊕ i2 for some i1 ∈ I1 and i2 ∈ I2}.

(v) If E is involutive, then (a]P ∨ (b]P = (a⊕ b]P .
(vi) If E is involutive and prelinear, then (a]P ∩ (b]P = (a]P ∧ (b]P = (a∧ b]P .

Let X be a subset of E. The set of all complement elements (with respect
to X) is defined by N(X) = {x ∈ E|¬x ∈ X}.

Proposition 2.13. [1] Let E be good. Then the following statements hold:
(i) If I ∈ PI(E), then N(I) ∈ PF(E).
(ii) If F ∈ PF(E), then N(F ) ∈ PI(E).

Theorem 2.14. [1] Let E be good, I ∈ PI(E) and for any a, b ∈ E, binary
relation ≈I on E is defined by a ≈I b if and only if ¬(a ∼ b) ∈ I. Then
(i) ≈I is an equivalence relation on E.
(ii) If I is an ideal of E, then ≈I is a congruence relation.
(iii) If I is an ideal of E, then E/I = (E/I,∧I ,⊗I ,∼I) is a good BEQ-algebra,
where for any a, b ∈ E,

[a] ∧I [b] = [a ∧ b] , [a]⊗I [b] = [a⊗ b] , [a] ∼I [b] = [a ∼ b] ,
[a]→I [b] = [a→ b].

(iv) Let E be good and I ∈ I(E). Then for any a, b ∈ E, the relation [a] 6 [b]
if and only if ¬(a→ b) ∈ I. is an order on E/I.

Note. From now on, in this paper, E = (E,∧,⊗,∼, 1) or simply E is a
BEQ-algebra, unless otherwise state.

3 Prime preideals

In this section, we introduce the notions of various kinds of preideals on BEQ-
algebras such as ∧-prime, ⊗-prime, ∩-prime, ∩-irreducible, and maximal prei-
deals. Also, we investigate some properties and the relations among them.

First, we introduce the concept of ∧-prime preideals on BEQ-algebras and
we show that the induced quotient structure by a ∧-prime ideal is a chain.
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Definition 3.1. Let I be a proper preideal of E. Then I is called a ∧-prime
preideal of E if for any a, b ∈ E, a ∧ b ∈ I, satisfies a ∈ I or b ∈ I.

Note. The notion of ∧- prime ideal on BEQ-algebras, can be defined
similarly.

Example 3.2. Let E = {0, a, b, c, d, e, f, g, 1} be a lattice as Figure 1, and the
operations ⊗ and ∼ are defined on E as Tables 1 and 2.

⊗ 0 a b c d e f g 1
0 0 0 0 0 0 0 0 0 0
a 0 0 a 0 0 a 0 0 a
b 0 a b 0 a b 0 a b
c 0 0 0 0 0 0 c c c
d 0 0 a 0 0 a c c d
e 0 a b 0 a b c d e
f 0 0 0 c c c f f f
g 0 0 a c c d f f g
1 0 a b c d e f g 1

Table 1

∼ 0 a b c d e f g 1
0 1 g f e d c b a 0
a g 1 g d e d a b a
b f g 1 c d e 0 a b
c e d c 1 g f e d c
d d e d g 1 g d e d
e c d e f g 1 c d e
f b a 0 e d c 1 g f
g a b a d e d g 1 g
1 0 a b c d e f g 1

Table 2

→ 0 a b c d e f g 1
0 1 1 1 1 1 1 1 1 1
a g 1 1 g 1 1 g 1 1
b f g 1 f g 1 f g 1
c e e e 1 1 1 1 1 1
d d e e g 1 1 g 1 1
e c d e f g 1 f g 1
f b b b e e e 1 1 1
g a b b d e e g 1 1
1 0 a b c d e f g 1
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Table 3

0

b

a

d

c

f

e g

1

Figure 1

Then E = (E,∧,⊗,∼, 1) is a BEQ-algebra and the operation → is as Table
3. We can see that I1 = {0, a, b}, and I2 = {0, c, f} are ∧-prime preideals of

E. But I3 = {0} is a preideal of E, which is not ∧-prime. Because
a ∧ c = 0 ∈ I3, but a, c /∈ I3.

Proposition 3.3. Let E be good and I ∈ PI(E) be proper. Then the following
statements hold:
(i) If for any a, b ∈ E, ¬(a→ b) ∈ I or ¬(b→ a) ∈ I, then I is ∧-prime.
(ii) If E is prelinear and I is ∧-prime, then for any a, b ∈ E, ¬(a→ b) ∈ I or
¬(b→ a) ∈ I.
(iii) Let E be prelinear. If J ⊆ I and J is a ∧-prime preideal of E, then I is
∧-prime, too.

Proof. (i) Let a, b ∈ E such that a ∧ b ∈ I. Without loss of generality, we
suppose ¬(a → b) ∈ I. By Proposition 2.6(i), we have a → b = a → (a ∧ b).
Thus by Proposition 2.6(iii) and (iv), we get a → (a ∧ b) 6 ¬(a ∧ b) → ¬a
and so

¬
(
¬(a ∧ b)→ ¬a

)
6 ¬(a→ (a ∧ b)) = ¬(a→ b) ∈ I.

By (I1), ¬
(
¬(a ∧ b) → ¬a

)
∈ I and by Theorem 2.10, a ∈ I. Hence, I is

∧-prime.
(ii) Since E is prelinear and good, by Theorem 2.5, E is an `EQ-algebra.
Thus, for any a, b ∈ E, (a → b) ∨ (b → a) = 1. From Proposition 2.3, we get
¬(a → b) ∧ ¬(b → a) = 0 ∈ I. Since I is ∧-prime, we have ¬(a → b) ∈ I or
¬(b→ a) ∈ I.
(iii) Since J is ∧-prime, by (ii) for any a, b ∈ E, ¬(a→ b) ∈ J or ¬(b→ a) ∈ J .
Moreover, since J ⊆ I, by (i), I a ∧-prime, too.
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Theorem 3.4. Let E be good. Then the following statements hold:
(i) If E is prelinear and I is a ∧-prime preideals of E, then N(I) is a prime
prefilter of E.
(ii) If F is a prime prefilter of E, then N(F ) is a ∧-prime preideal of E.

Proof. (i) Let E be good and I be a ∧-prime preideal of E. By Proposition
2.13(i), N(I) ∈ PF(E). By Proposition 3.3(ii), for any a, b ∈ E, a→ b ∈ N(I)
or b→ a ∈ N(I). Thus, N(I) is a prime prefilter of E.
(ii) Let F be a prime prefilter of E. Then by Proposition 2.13(ii), we get
N(F ) ∈ PI(E). Since F is a prime prefilter of E, for any a, b ∈ E, we have
a→ b ∈ F or b→ a ∈ F . By Proposition 2.4(iii), we have a→ b 6 ¬¬(a→ b)
and b→ a 6 ¬¬(b→ a). By Remark 2.7(i), for any a, b ∈ E, ¬¬(a→ b) ∈ F
or ¬¬(b → a) ∈ F . Hence, for any a, b ∈ E, we have ¬(a → b) ∈ N(F )
or ¬(b → a) ∈ N(F ). Therefore, by Proposition 3.3(i), N(F ) is a ∧-prime
preideal of E.

Although, we proved in good EQ-algebras preideals and prefilters are dual
of each others, but the most properties of preideals will be proved in a different
ways.

Theorem 3.5. Let E be good and prelinear and I ∈ I(E). Then I is a ∧-prime
preideal of E if and only if E/I is a chain.

Proof. Let a, b ∈ E and I be a ∧-prime preideal of E. Then by Proposition
3.3(ii), we have ¬(a → b) ∈ I or ¬(b → a) ∈ I. By Theorem 2.14(ii),
[a]I 6 [b]I or [b]I 6 [a]I . Hence, E/I is a chain.
Conversely, suppose E/I is a chain. Thus, for any a, b ∈ E, we have [a]I 6 [b]I
or [b]I 6 [a]I and so ¬(a→ b) ∈ I or ¬(b→ a) ∈ I. Therefore, by Proposition
3.3(i), I is a ∧-prime preideal of E.

Proposition 3.6. Let E be prelinear and involutive. Then the following state-
ments hold:
(i) If P is a ∧-prime preideal of E, then

IP = {x ∈ E|x ∧ y = 0, for some y /∈ P}

is a preideal of E and I ⊆ P .
(ii) If I ∈ PI(E) and a, b ∈ E such that a∧b ∈ I, then (I∪{a}]P∩(I∪{b}]P = I.

Proof. (i) Since 1 /∈ P and 0 ∧ 1 = 0, we have 0 ∈ IP and IP is non-empty.
Let a 6 b and b ∈ IP . Then there exists x /∈ P such that b ∧ x = 0. Thus,
a ∧ x 6 b ∧ x = 0 and a ∈ IP . Suppose a, b ∈ IP . Then there exist x, y /∈ P
such that a∧x = 0 and b∧ y = 0. Since P is a ∧-prime preideal of E, we have
x ∧ y /∈ P . Thus, by Proposition 2.8(iii), we have

(a⊕ b) ∧ (x ∧ y) 6 (a ∧ (x ∧ y))⊕ (b ∧ (x ∧ y)) = 0⊕ 0 = 0,
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and so a ⊕ b ∈ IP . Therefore, IP ∈ PI(E). Also, for any a ∈ IP , there exists
y ∈ E \ P such that a ∧ y = 0 ∈ P . Since P is ∧-prime, we obtain a ∈ P and
so IP ⊆ P .
(ii) It is clear that I ⊆ (I∪{a}]P∩(I∪{b}]P . Now, let x ∈ (I∪{a}]P∩(I∪{b}]P .
Then by Proposition 2.12(iii), there exist n,m ∈ N and i, j ∈ I such that
x 6 na⊕ i and x 6 mb⊕ j. Thus, by Proposition 2.8(ii) and (iii), we have

x 6 (na⊕ i) ∧ (mb⊕ j)
6 (na ∧mb)⊕ (na ∧ j)⊕ (mb ∧ i)⊕ (i ∧ j)
6 ((n+m)(a ∧ b))⊕ (na ∧ j)⊕ (mb ∧ i)⊕ (i ∧ j) ∈ I.

Hence, x ∈ I, and so (I ∪ {a}]P ∩ (I ∪ {b}]P = I.

Definition 3.7. Let S be a non-empty subset of E. Then S is called ∧-closed,
if a ∧ b ∈ S, for any a, b ∈ S.

Example 3.8. Let E be an BEQ-algebra as in Example 3.2. Simply S =
{0, a, c} is a ∧-closed subset of E. But T = {d, f, g} is not a ∧-closed subset
of E. Because d ∧ f = c /∈ T .

Theorem 3.9. Let E be prelinear and involutive and I ∈ PI(E). If S is a non-
empty ∧-closed subset of E such that S ∩ I = ∅, then there exists a ∧-prime
preideal P such that I ⊆ P and P ∩ S = ∅.

Proof. Let
II = {J ∈ PI(E)|I ⊆ J and S ∩ J = ∅}

Since I ∈ II , II 6= ∅. By Zorn’s Lemma, II has a maximal element such as P .
Clear that P ∈ PI(E). Now, we show that P is ∧-prime. By contrary, suppose
that there exist a, b ∈ E such that a ∧ b ∈ P , and a, b /∈ P . By Proposition
3.6(ii), (P ∪ {a}]P ∩ (P ∪ {b}]P = P . Since P is a maximal element of II ,
(P ∪{a}]P ∩S 6= ∅ and (P ∪{b}]P ∩S 6= ∅. Now, suppose s1 ∈ (P ∪{a}]P ∩S
and s2 ∈ (P ∪ {b}]P ∩ S. Thus, there exist n,m ∈ N and i, j ∈ P such that
s1 6 na ⊕ i and s2 6 mb ⊕ j. Since S is a ∧-closed subset of E, we have
s1 ∧ s2 ∈ S. On the other hand,

s1 ∧ s2 6 (na⊕ i) ∧ (mb⊕ j)
6 (na ∧mb)⊕ (na ∧ j)⊕ (mb ∧ i)⊕ (i ∧ j)
6 ((n+m)(a ∧ b))⊕ (na ∧ j)⊕ (mb ∧ i)⊕ (i ∧ j) ∈ P.

Hence, s1 ∧ s2 ∈ P , and so P ∩ S 6= ∅, which is a contradiction. Therefore, P
is ∧-prime.
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Corollary 3.10. Let E be prelinear and involutive and I ∈ PI(E). Then the
following statements hold:
(i) For any a ∈ E \ I, there exists ∧-prime preideal P such that I ⊆ P , and
a /∈ P .
(ii) I is the intersection of all ∧-prime preideals of E which contain I.
(iii) The intersections of all ∧-prime preideals of E is {0}

In the follows, we define the notion of⊗-prime(∩-prime) preideals onBEQ-
algebras.

Definition 3.11. Let I be a proper preideal of E. Then I is called an
(i) ⊗-prime, if for any a, b ∈ E, a⊗ b ∈ I satisfies a ∈ I or b ∈ I.
(ii) ∩-prime, if for any I1, I2 ∈ PI(E), I1 ∩ I2 ⊆ I satisfies I1 ⊆ I or I2 ⊆ I.

Example 3.12. (i) Let E be a BEQ-algebra as in Example 3.2 and I1 = {0},
I2 = {0, a, b}, and I3 = {0, c, f}. Then we can see that I2 and I3 are ∩-
prime preideals of E. But I3 is a preideals of E which is not ⊗-prime, because
a⊗ d = 0 ∈ I3 and a, d /∈ I3. Also, I1 is a preideals of E which is not ∩-prime,
because I2 ∩ I3 = I1 but I2 * I1 and I3 * I1.
(ii) Let E = {0, a, b, c, d, e, f, 1} be a lattice as Figure 2, and the operations ⊗
and ∼ are defined on E as Tables 4 and 5.

⊗ 0 a b c d e f 1
0 0 0 0 0 0 0 0 0
a 0 0 0 0 0 0 0 a
b 0 0 0 0 0 0 0 b
c 0 0 0 0 0 0 0 c
d 0 0 0 0 d d d d
e 0 0 0 0 d e d e
f 0 0 0 0 d d d f
1 0 a b c d e f 1

Table 4

∼ 0 a b c d e f 1
0 1 e f d c a b 0
a e 1 d f c a c a
b f d 1 e c c b b
c d f e 1 c c c c
d c c c c 1 f e d
e a a c c f 1 d e
f b c b c e d 1 f
1 0 a b c d e f 1

Table 5
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→ 0 a b c d e f 1
0 1 1 1 1 1 1 1 1
a e 1 e 1 1 1 1 1
b f f 1 1 1 1 1 1
c d f e 1 1 1 1 1
d c c c c 1 1 1 1
e a a c c f 1 f 1
f b c b c e e 1 1
1 0 a b c d e f 1

Table 6

0

ba

d

c

fe

1

Figure 2

Then E = (E,∧,⊗,∼, 0, 1) is a BEQ-algebra and the operation → is as Table
6 [14]. Let I = {0, a, b, c}. It is easy to see that I is an ⊗-prime preideal of E.

Proposition 3.13. Any ⊗-prime preideal of E is ∧-prime.

Proof. Let I be an ⊗-prime preideal of E and for a, b ∈ E, a ∧ b ∈ I. Since
a⊗ b 6 a∧ b, we have a⊗ b ∈ I and so a ∈ I or b ∈ I. Thus I is ∧-prime.

In the following example, we show that the converse of Proposition 3.13
may not be true, in general.

Example 3.14. Let E be a BEQ-algebra as in Example 3.2. Then I1 =
{0, a, b} is a ∧-prime preideal of E, while it is not ⊗-prime. Because e ⊗ d =
a ∈ I1, but e /∈ I1 and d /∈ I1.

Definition 3.15. Let I be a proper preideal of E. Then I is called an ∩-
irreducible, if for any I1, I2 ∈ PI(E), I1 ∩ I2 = I satisfies I1 = I or I2 = I

Example 3.16. Let E be a BEQ-algebra as in Example 3.2. Then I1 =
{0, a, b} and I2 = {0, c, f} are ∩-irreducible preideals of E.
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Theorem 3.17. Let I ∈ PI(E). Then the following statements hold:
(i) If I is ∧-prime, then I is ∩-prime.
(ii) If I is ∩-prime, then I is ∩-irreducible.

Proof. (i) Let I1, I2 ∈ PI(E) such that I1 ∩ I2 ⊆ I. If I1 * I and I2 * I, then
there exist a ∈ I1 \ I and b ∈ I2 \ I. Since a ∧ b 6 a, b, we have a ∧ b ∈ I1 ∩ I2
and so a ∧ b ∈ I. Also, from I is ∧-prime, we have a ∈ I or b ∈ I, which is a
contradiction. Hence, I1 ⊆ I or I2 ⊆ I.
(ii) The proof is clear

In the following example, we can see that the converse of Theorem 3.17
does not hold, in general.

Example 3.18. Let E = {0, a, b, c, d, , e, f,m, 1} be a lattice as Figure 3 and
the operations ⊗ and ∼ are defined on E as Tables 7 and 8.

⊗ 0 a b c d e f m 1
0 0 0 0 0 0 0 0 0 0
a 0 0 0 0 0 0 0 0 a
b 0 0 0 0 0 0 0 0 b
c 0 0 0 0 0 0 0 0 c
d 0 0 0 0 0 0 0 0 d
e 0 0 0 0 0 0 0 0 e
f 0 0 0 0 0 0 0 0 f
m 0 0 0 0 0 0 0 0 m
1 0 a b c d e f m 1

Table 7

∼ 0 a b c d e f m 1
0 1 m m m m m m m 0
a m 1 m m m m m m a
b m m 1 m m m m m b
c m m m 1 m m m m c
d m m m m 1 m m m d
e m m m m m 1 m m e
f m m m m m m 1 m f
m m m m m m m m 1 m
1 0 a b c d e f m 1

Table 8
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→ 0 a b c d e f m 1
0 1 1 1 1 1 1 1 1 1
a m 1 m 1 m 1 m 1 1
b m m 1 1 m m 1 1 1
c m m m 1 m m m 1 1
d m m m m 1 1 1 1 1
e m m m m m 1 m 1 1
f m m m m m m 1 1 1
m m m m m m m m 1 1
1 0 a b c d e f m 1

Table 9

0

ba d

c fe

m

1

Figure 3

Then E = (E,∧,⊗,∼, 1) is a non-involutive BEQ-algebra and the operation
→ is as Table 9. It is easy to check that, I = {0} is the only proper preideal
of E and so I is ∩-prime and ∩-irreducible. But I is not ∧-prime, because
a ∧ b = 0 ∈ I, but a, b /∈ I.

Theorem 3.19. Let E be prelinear and involutive and I ∈ PI(E). If I is
∩-irreducible, then I is ∧-prime.

Proof. Let a ∧ b ∈ I such that a, b /∈ I. Then by Proposition 3.6(ii), (I ∪
{a}]P ∩ (I ∪ {b}]P = I. Thus (I ∪ {a}]P = I or (I ∪ {b}]P = I. Hence, a ∈ I
or b ∈ I.

Corollary 3.20. In prelinear IEQ-algebras, ∧-prime, ∩-prime, and ∩-irreducible
preideals are coincide.

Proof. By Theorems 3.17 and 3.19, the proof is clear.
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Lemma 3.21. Let E be involutive and prelinear and I, J,K ∈ PI(E). Then
I ∩ J ⊆ K if and only if J ⊆ I → K.

Proof. Let I ∩ J ⊆ K. If a ∈ J , then (a]P ⊆ J and so, (a]P ∩ I ⊆ J ∩ I ⊆ K.
Thus, a ∈ I → K and so J ⊆ I → K. Conversely, let a ∈ I ∩ J . Then
a ∈ J ⊆ I → K and so a ∈ I → K. Thus (a]P ∩I ⊆ K and (a]p = (a]p∩I ⊆ K.
Hence, a ∈ K and so I ∩ J ⊆ K.

Lemma 3.22. Let E be involutive and prelinear and I,K ∈ PI(E). Then

I → K = sup{J ∈ PI(E)|I ∩ J ⊆ K}.

Proof. The proof is straightforward.

Theorem 3.23. Let E be involutive and prelinear and P ∈ PI(E). Then the
following statements are equivalent:
(i) P is ∧-prime,
(ii) for any a, b ∈ E \ P , there exists c ∈ E \ P such that c 6 a and c 6 b,
(iii) for any a, b ∈ E, if (a]P ∩ (b]P ⊆ P , then a ∈ P or b ∈ P ,
(iv) for any I ∈ PI(E), I → P = P or I ⊆ P .

Proof. (i)⇒ (ii) By the contrary, suppose that for any c ∈ E, such that c 6 a
and c 6 b, we consider c ∈ P . Since a∧ b 6 a, b, we get a∧ b ∈ P and so a ∈ P
or b ∈ P . This is a contradiction.
(ii)⇒ (i) Suppose P is not ∧-prime. Then there exist I1, I2 ∈ PI(E) such that
I1 ∩ I2 = P and P 6= I1, P 6= I2. There exist a ∈ I1 \ P and b ∈ I2 \ P . By
(ii), there exists c ∈ E \ P such that c 6 a and c 6 b. Thus, c ∈ I1 and c ∈ I2
and so c ∈ I1 ∩ I2 = P . Which is a contradiction. Therefore, P is ∧-prime.
(ii) ⇒ (iii) Let a, b ∈ E such that (a]P ∩ (b]P ⊆ P . By contrary, suppose
a, b /∈ P . Then there exists c ∈ E \ P such that c 6 a and c 6 b. Thus,
c ∈ (a]P ∩ (b]P ⊆ P , which is a contradiction. Hence, a ∈ P or b ∈ P .
(iii)⇒ (i) Suppose a∧ b ∈ P . Then (a∧ b]P ⊆ P and by Proposition 2.12(vi),
we get (a]P ∩ (b]P = (a ∧ b]P ⊆ P . Hence, by assumption, we have a ∈ P or
b ∈ P and so P is ∧-prime.
(i) ⇒ (iv) Let P is ∧-prime and I ∈ PI(E). By lemma 3.22, we have I →
P = sup{J ∈ PI(E)|I ∩ J ⊆ P}. Since P is ∧-prime, by Theorem 3.17, we
have I → P = sup{J ∈ PI(E)|I ⊆ P or J ⊆ P}. Thus, we have I ⊆ P or
I → P = P .
(iv)⇒ (i) Let I, J ∈ PI(E) such that I ∩J = P . By Lemma 3.21, I ⊆ J → P .
By (iv), I ⊆ J → P = P or J ⊆ P . Thus, I ⊆ P or J ⊆ P and by Theorem
3.17, P is ∧-prime.

Finally, we introduce the concept of maximal preideals of BEQ-algebras
and show the quotient structure induced by the maximal ideal is simple.
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Definition 3.24. Let I be a proper preideal of E. Then I is called a maximal
preideal of E, if I is not strictly contained in a proper preideal of E.

Note. The notion of maximal ideal of BEQ-algebras can be defined, sim-
ilarly.

Example 3.25. Let E be a BEQ-algebra as in Example 3.2 and I1 = {0},
I2 = {0, a, b}, and I3 = {0, c, f}. Then I2 and I3 are maximal preideals of E,
but I1 is not maximal because, I1 $ I2 and I1 $ I3.

Proposition 3.26. For any proper preideal I, there exists a unique maximal
preideal of E which contains I.

Proof. Let II = {M ∈ PI(E)|M 6= E, I ⊆ M}. Since I ∈ II , we have II 6= ∅.
By Zorn’s Lemma we get II has a maximal element M which is a maximal
preideal of E and contains I.

Theorem 3.27. Let E be good and M ∈ I(E). Then M is maximal if and
only if |I(E/M)| = 2.

Proof. Let M be a maximal ideal of E. Then for any I ∈ PI(E) such that
M & I, we have I/M ∈ I(E/M). Since M is maximal and M $ I, we have
I = E and so E/M has only trivial ideals, which are 0/M and E/M . Thus,
|I(E/M)| = 2.
Conversely, let |I(E/M)| = 2. Suppose I ∈ I(E) such that M $ I. If I 6= E,
then [0] = M/M $ I/M $ E/M . Thus, |I(E/M)| > 2 which is a contradiction.
Hence, M is a maximal ideal of E.

Corollary 3.28. Let E be good and prelinear. Then any maximal ideal of E

is ∧-prime.

Proof. Let M be a maximal ideal of E. Then by Theorem 3.27, E/I has only
trivial ideals and so E/I is a chain. Thus, by Theorem 3.5, I is ∧-prime.

In the following example, we show the condition in Corollary 3.28, is nec-
essary.

Example 3.29. Let E be a BEQ-algebra as in Example 3.18. Then I = {0}
is a maximal preideal of E and it is not ∧-prime. Also, it is not an ideal of E.
Because, 1→ 0 = 0 ∈ {0} but 1⊗m→ 0⊗m = m→ 0 = m /∈ {0}.

Remark 3.30. Let I ∈ PI(E). Then for any a ∈ E and n ∈ N, a ∈ I if and
only if na ∈ I.
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Proposition 3.31. Let E be involutive. If M is a proper preideal of E, then
the following statements are equivalent:
(i) M is maximal,
(ii) if x /∈M , then there exist m ∈M and n ∈ N such that nx⊕m = 1,
(iii) for any x ∈ E, x /∈M if and only if for some n ∈ N, ¬(nx) ∈M .

Proof. (i) ⇒ (ii) If x /∈ M , then M ⊆ (M ∪ {x}]P . Since M is maximal, we
get (M ∪ {x}]P = E and so 1 ∈ (M ∪ {x}]P . Thus, by Proposition 2.12(iii),
there exist n ∈ N and m ∈M such that 1 6 nx⊕m. Hence nx⊕m = 1.
(ii) ⇒ (iii) Let x /∈ M . By (ii), there exist n ∈ N and m ∈ M such that
nx⊕m = 1. Thus, by Proposition 2.6(vi), we obtain

1 = 1→ (¬nx→ m) 6 (1⊗ (¬nx))→ m = (¬nx)→ m.

Thus by Proposition 2.6(v), ¬nx 6 m and so ¬nx ∈M .
Now, suppose that for some n ∈ N, ¬nx ∈M . Since M is proper, nx⊕(¬nx) =
1 /∈M and so nx /∈M . Hence, by Remark 3.30, x /∈M .
(iii)⇒ (i) Let M ′ be a proper preideal of E such that M ⊆ M ′. If M 6= M ′,
then there exists x ∈ M ′ \ M . From (iii), there exists n ∈ N, such that
¬nx ∈M ⊆M ′. By Remark 3.30, nx ∈M ′ and so 1 = (¬nx)→ (¬nx) ∈M ′.
Hence, M ′ = E, which is a contradiction.

Proposition 3.32. Let M be a maximal preideal of E. Then the following
statements hold:
(i) M is ∩-irreducible.
(ii) If E is prelinear and involutive, then every maximal preideal of E is ∧-
prime.

Proof. (i) Let M be a maximal preideal of E. If there exist I, J ∈ PI(E) such
that M = I ∩ J , then M ⊆ I and M ⊆ J . By maximality of M , we have
M = I = J . Thus, M is ∩-irreducible.
(ii) By (i) and Corollary 3.20, we get M is ∧-prime.

In the following example, we show that the involutive condition in Propo-
sition 3.32(ii), is necessary.

Example 3.33. Let E be a BEQ-algebra as in Example 3.18. Then I = {0}
is the only proper preideal of E and so I is maximal. But I is not a ∧-prime
preideal of E. Because a ∧ b = 0 ∈ I, but a, b /∈ I.

The following diagram shows the relation among maximal, ∧-prime, ⊗-
prime, ∩-prime, and ∩-irreducible preideals of an EQ-algebra:
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prelinear and
involutive

⊗-prime ∧-prime ∩-prime

∩-irreduciblemaximal

4 Spectrum Topology on BEQ-algebras

We denote the set of all ∧-prime and maximal preideals of E by SpecP (E) and
MaxPI(E), respectively. By this notions, we introduce a spectrum topology on
good EQ-algebras and show that SpecP (E) with this topology is a compact
T0-space. Moreover, we prove that under some conditions MaxPI(E) is a
Urysohn space.

Recall that a set E with a family τ of subsets of E is called a topological
space, denoted by (E, τ), if E, ∅ ∈ τ , the intersection of any finite members of
τ is in τ , and the arbitrary union of members of τ is in τ . The members of τ
are called open sets of E, and the complement of an open set U , E \ U , is a
closed set. A subfamily {Uα}α∈I of τ is called a base of τ if for each x ∈ U ∈ τ
there is an α ∈ I such that x ∈ Uα ⊆ U . A collection {Uα}α∈I of subsets of
E is said to be an open covering if its elements are open subsets of E and the
union of the elements of it is equal to E. The set X ⊆ E is said to be compact
if every open covering of X contains a finite sub-collection that also covers
X. Consider the topological space (E, τ). Then it is called compact space if
each open covering of E is reducible to a finite open cover, called T0, if for all
x, y ∈ E and x 6= y, there is an open set in E that contains x or y, but not both
of them, is called T1, if for all x, y ∈ E and x 6= y, there are open sets U1 and
U2 in E such that x ∈ U1 and y ∈ U2 but y /∈ U1 and x /∈ U2, is called T2, if for
all x, y ∈ E and x 6= y, there are two distinct open sets U1 and U2 in E such
that x ∈ U1, y ∈ U2 and U1∩U2 = ∅, is called T2 1

2
, if for all x, y ∈ E and x 6= y,

there are two distinct close sets V1 and V2 in E such that x ∈ V1, y ∈ V2 and
V1∩V2 = ∅, is called T3, if for all closed subset A and x ∈ E \A, there are two
distinct open sets V1 and V2 in E such that x ∈ V1, A ⊆ V2 and V1∩V2 = ∅, is
called T4, if for all disjoint closed subsets A,B there are two distinct open sets
V1 and V2 in E such that A ⊆ V1, B ⊆ V2 and V1 ∩ V2 = ∅. The T2, T2 1

2
, T3

and T4-spaces are also known as a Hausdorff, Urysohn, regular Hausdorff, and
normal Hausdorff spaces, respectively. A topological space (E, τ) is said to be
disconnected if it is the union of two disjoint non-empty open sets. Otherwise,
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E is said to be connected.

Definition 4.1. Let X ⊆ E. The set of all ∧-prime preideals of E containing
X is denoted by V (X) = {P ∈ SpecP (E)|X ⊆ P}. For any a ∈ E, we denote
V ({a}) by V (a) and V (a) = {P ∈ SpecP (E)|a ∈ P}.

Example 4.2. Let E be the EQ-algebra as in Example 3.2. Then SpecP (E) =
{{0, a, b}︸ ︷︷ ︸

I2

, {0, c, f}︸ ︷︷ ︸
I3

}. If X = {a, b}, then V (X) = {I2}. Also, V (d) = ∅ and

V (0) = {I2, I3}.

Definition 4.3. Let X ⊆ E. Then the complement of V (X) in SpecP (E) is
denoted by D(X). Then

D(X) = {P ∈ SpecP (E)|X * P}.

For any a ∈ E, we denote D({a}) by D(a) and D(a) = {P ∈ SpecP (E)|a /∈ P}.

Proposition 4.4. Let E be good and I ∈ PI(E). Then for any a, b ∈ E, the
following statements hold:
(i) If a, b ∈ I and a ∨ b exists, then a ∨ b ∈ I.
(ii) If E is prelinear, then for any n ∈ N, n(a⊕ b) 6 2n(a ∨ b).
(iii) If E is prelinear, then (a⊕ b]P = (a ∨ b]P .

Proof. (i) By Proposition 2.6(ii), b 6 ¬a → b = a ⊕ b. Moreover, since E is
good, by Propositions 2.6(iv) and 2.4(iii), a ≤ ¬¬a 6 ¬a→ b = a⊕ b. Thus,
a ∨ b 6 a⊕ b and so by (I1) we have a ∨ b ∈ I.
(ii) First, we show a ⊕ b 6 2(a ∨ b). By Propositions 2.3 and 2.6(vii) and
(viii), we have

2(a ∨ b) = (¬(a ∨ b))→ (a ∨ b) = (¬a ∧ ¬b)→ (a ∨ b)
= (¬a→ (a ∨ b)) ∨ (¬b→ (a ∨ b))
= (¬a→ (a ∨ b)) ∨ ((¬b→ a) ∨ (¬b→ b)).

By Proposition 2.6(ii), we have a ⊕ b = ¬a → b 6 ¬a → (a ∨ b). Thus,
a⊕ b 6 2(a ∨ b) and so by induction on n, we get n(a⊕ b) 6 2n(a ∨ b).
(iii) By (ii), the proof is clear.

Proposition 4.5. Let X,Xi ⊆ E, for any i ∈ Γ. Then for any i, j ∈ Γ, the
following statements hold:
(i) If Xi ⊆ Xj, then D(Xi) ⊆ D(Xj).
(ii) D({1}) = D(E) = SpecP (E) and D({0}) = D(∅) = ∅.
(iii)

⋃
i∈Γ

D(Xi) = D(
⋃
i∈Γ

Xi).
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(iv) D(X) = D((X]P ).
(v) Let E be prelinear and involuitve. If D(X) = SpecP (E), then (X]P = E.
(vi) Let E be prelinear and involutive. If D(Xi) = D(Xj), then (Xi]P = (Xj ]P .
(vii) For any a, b ∈ E, D(a ∧ b) = D(a) ∩D(b).
(viii) D(Xi)∩D(Xj) = D((Xi]P ∩ (Xj ]P ). Also, if I, J ∈ PI(E), then D(I)∩
D(J) = D(I ∩ J).
(ix) Let E be involutive and prelinear. Then for any a, b ∈ E,

D(a ∨ b) = D(a) ∪D(b) = D(a⊕ b).

Proof. (i) Let Xi ⊆ Xj and P ∈ V (Xi). Then Xi * P and so Xj * P . Thus
P ∈ D(Xj).
(ii) Let P ∈ SpecP (E). Since P is a proper preideal of E, we have 1 /∈ P
and so P ∈ D({1}). Also, for any P ∈ SpecP (E), we have E * P and so
D(E) ⊆ SpecP (E), For any P ∈ Spec(E), we have 0 ∈ P . Thus P /∈ D({0})
and D({0}) = D(∅) = ∅.
(iii) Let P ∈

⋃
i∈Γ

D(Xi). Then there exists j ∈ Γ, such that P ∈ D(Xj) and

so Xj * P . Thus,
⋃
i∈Γ

Xi * P and P ∈ D(
⋃
i∈Γ

Xi).

Conversely, let P ∈ D(
⋃
i∈Γ

Xi). Then
⋃
i∈Γ

Xi * P and there exists j ∈ Γ such

that Xj * P . Hence, P ∈ D(XJ) and so P ∈
⋃
I∈Γ

D(Xi).

(iv) Since X ⊆ (X]P , by (i) we have D(X) ⊆ D((x]P ). Let P ∈ D((X]P ).
Then (X]P * P and so X * P . Thus, P ∈ D(X) and so D(X) = D((X]P ).
(v) Let D(X) = SpecP (E). Then for any P ∈ SpecP (E), X * P . Suppose by
contrary (X]P 6= E. Thus, there exists a ∈ E \ (X]P and by Corollary 3.10(i),
there exists P ∈ SpecP (E) such that (X]P ⊆ P , which is a contradiction.
Therefore, (X]P = E.
(vi) Let D(Xi) = D(Xj). It is clear that V (Xi) = V (Xj). If (Xi]P = E, then
D(Xi) = D(Xj) = Spec(E). By (v), we get (Xj ]P = E. If (Xi]P is a proper
preideal of E, then by Corollary 3.10(ii),

(Xi]P =
⋂
{P ∈ SpecP (E)|(Xi]P ⊆ P}

=
⋂
{P ∈ SpecP (E)|P ∈ V ((Xi]P )}

=
⋂
{P ∈ SpecP (E)|(Xj ]P ⊆ P}

= (Xj ]P .

(vii) Since (a ∧ b]P ⊆ (a]P and (a ∧ b]P ⊆ (b]P , by (i) and (iv) we have
D(a ∧ b) ⊆ D(a) ∩D(b). Conversely, let P ∈ D(a) ∩D(b). Then a /∈ P and
b /∈ P , and so a ∧ b /∈ P . Thus, P ∈ D(a ∧ b) and D(a ∧ b) = D(a) ∩D(b).
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(viii) Since (Xi]P ∩ (Xj ]P ⊆ (Xi]P , (Xj ]P , by (i) we have D((Xi]P ∩ (Xj ]P ) ⊆
D(Xi) ∩D(Xj).
Conversely, let P ∈ D(Xi) ∩ D(Xj). Then Xi * P and Xj * P and so
(Xi]P * P and (Xj ]P * P . By Theorem 3.17, we have (Xi]P ∩ (Xj ]P * P
and so P ∈ D((Xi]P ∩(Xj ]P ). Therefore, D(Xi)∩D(Xj) = D((Xi]P ∩(Xj ]P ).
The rest of proof is similar.
(ix) By Proposition 4.4(iii), we have (a ∨ b]P = (a ⊕ b]P . Thus, D(a ∨ b) =
D(a⊕b). Since a, b 6 a∨b, by Proposition 2.12(ii), (a]P , (b]P ⊆ (a∨b]P and so
by (i), we have D(a)∪D(b) ⊆ D(a∨ b). Let P ∈ D(a∨ b). Then a∨ b /∈ P and
by Proposition 4.4(i), we have a /∈ P or b /∈ P . Thus P ∈ D(a) or P ∈ D(b)
and so P ∈ D(a) ∪D(b). Hence, D(a ∨ b) = D(a) ∪D(b) = D(a⊕ b).
Since a, b 6 a ∨ b, we have D(a), D(b) ⊆ D(a ∨ b). Thus, D(a) ∪ D(b) ⊆
D(a ∨ b).

Theorem 4.6. Let τE = {D(X)}X⊆E. Then τE is a topology on SpecP (E).

Proof. By Proposition 4.5(ii), (iii), and (viii) the proof is clear.

Theorem 4.7. Let E be good. Then the family {D(x)}x∈E is a basis for the
topology of SpecP (E).

Proof. Let X ⊆ E and D(X) be an open subset of SpecP (E). Then by Propo-
sition 4.5(iii), D(X) = D(

⋃
x∈X
{x}) =

⋃
x∈X

D(x). Hence, any open subset of

SpecP (E) is the union of subsets from the family {D(x)}x∈E .

Example 4.8. Let E be an BEQ-algebra as in Example 3.2. Then τE =
{∅, {I2}, {I3}, {I2, I3}}.

Proposition 4.9. Let E be involutive and prelinear. Then the following state-
ments hold:
(i) For any a ∈ E, D(a) is compact in SpecP (E).
(ii) The compact open subsets of SpecP (E) are exactly the finite unions of
basic open sets.
(iii) The (SpecP (E), τE) is compact.

Proof. (i) Let a ∈ E. By Theorem 4.7, there exist {ai}i∈Γ ⊆ E such that
D(a) =

⋃
i∈Γ

D(ai) = D(
⋃
i∈Γ

{ai}). By Theorem 2.5 and Proposition 4.5(vi), we

get (a]P = (
⋃
i∈Γ

ai]P and so a ∈ (
⋃
i∈Γ

ai]P . By Proposition 2.12(i), there exist

i1, i2, · · · , in ∈ Γ such that a 6 ai1 ⊕ ai2 ⊕ · · · ⊕ ain . Thus by Proposition
4.5(i) and (ix), we have

D(a) ⊆ D(ai1 ⊕ ai2 ⊕ · · · ⊕ ain) = D(ai1) ∪D(ai2) ∪ · · · ∪D(ain)
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Moreover, since

D(ai1 ⊕ ai2 ⊕ · · · ⊕ ain) = D(ai1) ∪D(ai2) ∪ · · · ∪D(ain) ⊆
⋃
i∈Γ

D(ai) = D(a),

we have

D(a) = D(ai1 ⊕ ai2 ⊕ · · · ⊕ ain) = D(ai1) ∪D(ai2) ∪ · · · ∪D(ain)

and so D(a) is compact.
(ii) Since any basic open set is compact open, we get a finite union of basic
open sets is compact open, too. Now, let D(X) be a compact open subset of
SpecP (E). Since D(X) is open, D(X) is a union of basic open sets.
(iii) By Proposition 4.5(ii), SpecP (E) = D({1}). From (i), we have SpecP (E)
is compact.

Theorem 4.10. The (SpecP (E), τ) is a T0-topological space.

Proof. Let P,Q ∈ SpecP (E) such that P 6= Q. Then P * Q or Q * P .
Without loss of generality, we can suppose P * Q. Thus there exists a ∈ P
such that a /∈ Q. Let D = D(a). Then Q ∈ D and P /∈ D. Hence, SpecP (E)
is T0-topological space.

Example 4.11. Let E be the BEQ-algebra as in Example 4.8. Then I2, I3 ∈
SpecP (E). Since there is not any open subset D ∈ τE such that I2 ∈ D and
I3 /∈ D, then SpecP (E) is not a T1-space. Also, it is not a Hausdorff space.

Lemma 4.12. Let B(E) = E and P ∈ SpecP (E). Then a ∈ P if and only if
¬a /∈ P .

Proof. Let a ∈ P . By contrary, suppose ¬a ∈ P . Then ¬a → ¬a ∈ P ,
which is a contradiction. Conversely, suppose ¬a /∈ P . Since for any a ∈ E,
0 = a ∧ ¬a ∈ P , we get a ∈ P .

Theorem 4.13. Let E be involutive and prelinear. If B(E) = {0, 1}, then
(SpecP (E), τ) is connected.

Proof. Let (SpecP (E), τ) be connected and there exists a ∈ B(E) such that
a 6= 0, 1. Since E is involutive, ¬a 6= 0, 1. By Proposition 4.5(ii) and (ix),
D(a), D(¬a) 6= ∅ and D(a), D(¬a) 6= SpecP (E). By Proposition 4.5(vii) and
(ix), we get D(a)∩D(¬a) = D(a∧¬a) = ∅ and D(a)∪D(¬a) = D(a∨¬a) =
SpecP (E). Since (SpecP (E), τ) is connected, we should have D(a) = ∅ or
D(¬a) = ∅, which is a contradiction. Therefore, B(E) = {0, 1}.
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Open Problem. In what conditions, the converse of Theorem 4.13 will
be true?

Form Proposition 3.32, we know that if E is involutive and prelinear, then
MaxPI(E) ⊆ SpecP (E). Thus, we can endow MaxPI(E) with the topology
induced by the topology τE on SpecP (E). The maximal preideals space of E is
a topological space and denoted by (M(E), τM(E)). The open and closed sets
of M(E)for any X ⊆ E are as follows:

Dmax(X) = D(X) ∩MaxPI(E) = {P ∈MaxPI(E)|X * P},
Vmax(X) = V (X) ∩MaxPI(E) = {P ∈MaxPI(E)|X ⊆ P}.

Also, for any a ∈ E, Dmax(a) = D(a)∩MaxPI(E) = {P ∈MaxPI(E)|a /∈ P}.
The family {Dmax(a)}a∈E is a basis for the induced topology on M(E). Hence,
all the results of Propositions 4.5 hold. Therefore, M(E) is a compact T0-space.

Proposition 4.14. Let E be prelinear and involutive and P ∈ SpecP (E).
Then the set {P} is closed if and only if P ∈MaxPI(E).

Proof. Let {P} be a closed in SpecP (E). Then there exists a proper subset
X ⊆ E such that V (X) = {P}. By Proposition 3.26, there exists a maximal
preideal M such that P ⊆ M . Thus, X ⊆ P ⊆ M and so by Proposition
3.32(ii), M ∈ V (X) = {P}. Hence, P = M ∈ MaxPI(E). Conversely,
let P ∈ MaxPI(E). Then V (P ) = {Q ∈ SpecP (E)|P ⊆ Q $ E} = {P}.
Therefore, {P} is a closed in SpecP (E)

Theorem 4.15. Let E be involutive and prelinear. Then the following state-
ments hold:
(i) The M(E) space is Hausdorff.
(ii) The M(E) space is Urysohn.

Proof. (i) Let P,Q ∈ M(E) such that P 6= Q. Then P * Q or Q * P and so
there exist a ∈ P \Q or b ∈ Q \P . Let x = ¬(¬a→ ¬b) and y = ¬(¬b→ ¬a).
Since a ∈ P and b /∈ P , then x /∈ P . Analogously, y /∈ Q. By Proposition 2.3,
we have

x ∧ y = ¬(¬a→ ¬b) ∧ ¬(¬b→ ¬a) = ¬
(
(¬a→ ¬b) ∨ (¬b→ ¬a)

)
= ¬1 = 0.

Thus, Dmax(x) ∩ Dmax(y) = Dmax(0) = ∅. Also, since P ∈ Dmax(x) and
Q ∈ Dmax(y), we have M(E) is Hausdorff.
(ii) By (i) and Proposition 4.14, the proof is clear.

Theorem 4.16. [13] Every compact subset of a Hausdorff space is closed.
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Proposition 4.17. Let E be involutive and prelinear. If E is finite, then the
following statements hold:
(i) Every open subset in M(E) is closed.
(ii) Every closed subset in M(E) is open.

Proof. (i) For any a ∈ E, D(a) is compact. Since E is Hausdorff, by Theorem
4.16 D(a) is closed. Thus for any X ⊆ E, D(X) is finite union of closed subset
and so D(X) is closed.
(ii) Let F be a closed subset of M(E). Then there exists an open subset D
such that F = M(E) \D. Thus M(E) \F = D is open. By (i), D is closed and
so F is open.

Theorem 4.18. Let E be finite. Then (M(E), τM(E)) is a normal Hausdorff
space.

Proof. Let F,H be two disjoint closed subsets of M(E). By Proposition 4.17,
F and H are open and so (M(E), τM(E)) is a normal Hausdorff space.

Open Problem. We use Proposition 4.17 for proving Theorem 4.18.
Unfortunately, we can not either prove Proposition 4.17 or give an counter
example for infinite EQ-algebras. Thus, we state an open problem: Is there
any conditions for an infinite EQ-algebra E such that (M(E), τM(E)) be a
normal Hausdorff space?

The categories of EQ-algebras and topological spaces are denoted by EQ

and Top, respectively.

Theorem 4.19. Let f : E→ G be an EQ-homomorphism. Then the following
statements hold:
(i) If P ∈ SpecP (G), then f−1(P ) ∈ SpecP (E).
(ii) Let S : EQ → Top be a map such that S(E) = SpecP (E). If S(f) = f−1 :
SpecP (G)→ SpecP (E), then S is a contravariant functor.

Proof. (i) By Proposition 2.9, f−1(P ) ∈ PI(E). Since 1 /∈ P , we have 1 /∈
f−1(P ). For any a, b ∈ E, if a ∧ b ∈ f−1(P ), then f(a ∧ b) = f(a) ∧ f(b) ∈ P
and so f(a) ∈ P or f(b) ∈ P . Thus, a ∈ f−1(P ) or b ∈ f−1(P ). Therefore,
f−1(P ) ∈ SpecP (E).
(ii) We prove S(f) is continuous. Let D(X) be an open set in SpecP (E). Then

(S(f))−1(D(X)) = {Q ∈ SpecP (G)|S(f)(Q) ∈ D(X)}
= {Q ∈ SpecP (G)|f−1(Q) ∈ D(X)}
= {Q ∈ SpecP (G)|X * f−1(Q)}
= {Q ∈ SpecP (E)|f(X) * Q}
= D(f(X))
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which is an open set in SpecP (G). Thus, S(f) is continuous. Also, we show
that the following diagram is commutative.

E G

SpecP (E) SpecP (G)

S

f

S

S(f)

Let a ∈ E. We prove S(f)
(
D(f(a))

)
= D(a). Suppose P ∈ D(a), then

a /∈ P and so f(a) /∈ f(P ). Thus, f(P ) ∈ D(f(a)) and P ∈ f−1
(
D(f(a))

)
.

Hence, D(a) ⊆ S(f)
(
D(f(a))

)
. Conversely, let P ∈ S(f)

(
D(f(a))

)
. Then

P ∈ f−1(D(f(a))) and so f(P ) ∈ D(f(a)). Thus, f(a) /∈ f(P ) and a /∈ P .
Hence, P ∈ D(a) and so S(f)

(
D(f(a))

)
⊆ D(a). Therefore, the diagram is

commutative.

5 Conclusions and future works

In this paper, notions of various preideals in EQ-algebras such as ∧-prime, ∩-
prime, and maximal are introduced and some properties and relations between
them are investigated. It is proved that an ideal in perlinear EQ-algebra is
prime (maximal) if and only if the quotient structure induced by it, is chain
(simple). In prelinear IEQ-algebras, every maximal preideal is ∧-prime. For
any EQ-algebra E, the set of all ∧-prime preideals of E, which is denoted
by SpecP (E) is a T0-topological space and if E is a prelinear IEQ-algebra,
then SpecP (E) is compact. Under some conditions, SpecP (E) is connected
or Hausdorff. The set of all maximal preideals of a prelinear IEQ-algebra,
which is denoted by M(E), is a Hausdorff topological space. If E is a finite
and prelinear IEQ-algebra, then M(E) is a normal Hausdorff space. Finally,
a contravariant functor from the category of EQ-algebras to the category of
topological spaces is introduced. In the future works, we will study the other
topological properties in SpecP (E) and MaxPI(E). Also, we will try to yield
a sheaf representations of EQ-algebras.
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