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Class of Sheffer stroke BCK-algebras
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Abstract

In this paper, Sheffer stroke BCK-algebra is defined and its fea-
tures are investigated. It is indicated that the axioms of a Sheffer stroke
BCK-algebra are independent. The relationship between a Sheffer stroke
BCK-algebra and a BCK-algebra is stated. After describing a commu-
tative, an implicative and an involutory Sheffer stroke BCK-algebras,
some of important properties are proved. The relationship of this struc-
tures is demonstrated. A Sheffer stroke BCK-algebra with condition
(S) is described and the connection with other structures is shown. Fi-
nally, it is proved that for a Sheffer stroke BCK-algebra to be a Boolean
lattice, it must be an implicative Sheffer stroke BCK-algebra.

1 Introduction

The study of BCK-algebra was initiated by Imai and Iséki in 1966 [6]. This
notion is originated from two different ways. One of the motivations is based on
set theory. Another motivation is from classical and non-classical propositional
calculi. The BCK-operator * is an analogue of the set theoretical difference.
BCK-algebras have been applied to many branches of mathematics such as
group theory, functional analysis, probability theory and topology. For the
general development of BCK-algebras, the ideal theory plays an important
role. Since then quite literature has been produced on the theory of BCK-
algebras, especially, emphasis seems to have been put on the ideal theory of
BCK-algebras.
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The Sheffer stroke operation, which was first introduced by H. M. Sheffer
[18], engages many scientists’ attention, because any Boolean function or ax-
iom can be expressed by means of this operation [9]. It reducts axiom systems
of many algebraic structures. So, many researchers want to use this operation
on their studies. For example, Sheffer stroke non-associative MV-algebras [3]
and filters [13], (fuzzy) filters of Sheffer stroke BL-algebras [14], Sheffer stroke
Hilbert algebras [11] and filters [12], Sheffer stroke UP-algebras [15], Sheffer
stroke BG-algebras [16], Sheffer stroke BE-algebras[17] and Sheffer operation
in ortholattices [2] are given as some research on Sheffer stroke operation in
recent years.

After giving definitions of a Sheffer operation and a BCK-algebra, by us-
ing Sheffer stroke operation, we reduce the axioms of BCK-algebra. This
axioms make easier our work. It is proved that the axiom system of a Sheffer
stroke BCK-algebra is independent and presented its some properties. Then
a partial order on a Sheffer stroke BCK-algebra is determined and it is stated
that this algebra has the greatest element 1 and the least element 0. It is
demonstrated the relationships between a Sheffer stroke BCK-algebra and a
(bounded) BCK-algebra. It is proved that every Sheffer stroke BCK-algebra
is a Sheffer stroke BE-algebra. A commutative, an implicative and an invo-
lutory Sheffer stroke BCK-algebras are defined, respectively. Some of their
properties are shown and the connection of this structures is given. It is in-
dicated that every implicative Sheffer stroke BCK-algebra is a commutative
and positive implicative Sheffer stroke BCK-algebra. A Sheffer stroke BCK-
algebra with condition (S) is identified and it is stated that every involutory
Sheffer stroke BCK-algebra A is with the condition (S). It is presented that
if a positive implicative Sheffer stroke BCK-algebra with condition (S) is a
lattice, then it must be distributive. The necessary condition for a Sheffer
stroke BCK-algebra to be a Boolean lattice is shown.

2 Preliminaries

In this section, we give the fundamental concepts of a Sheffer stroke and a
BCK-algebra.

Definition 2.1. [2] Let A = (A,|) be a groupoid. The operation | is said to
be Sheffer stroke if it satisfies the following conditions:

(S1) x|y = yl=,

(82) (z|x)|(zly) = =,

(83) x| ((y]2)I(y]2)) = ((=[y)|(x|y))|z,

(84) (z|((z|2)](y|y)|(z]((z]x)[(yly))) = .
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Lemma 2.1. [2] Let A = (A,|) be a groupoid. The binary relation < defined
on A as below
r<y&zxly=czlx

1s an order on A.

Lemma 2.2. [2] Let | be Sheffer stroke on A and < the induced order of
A= (A,|). Then

(i) x <y if and only if yly < x|z,

(i1) z|(y|(z|z)) = x|z is the identity of A,

(i1i) © <y implies y|z < x|z,

(v) a <z and a <y imply x|y < ala.

Definition 2.2. [7] Let A be a set with a binary operation x and a constant
0. Then (A,*,0) is called a BCK-algebra if it satisfies the following azioms:
(BCK-1) ((xxy) * (x % 2)) * (zxy) =0,
(BCOK-2) (xx (x xy)) xy =0,
(BCK-3) xxx =0,
(BCK-4) xxy=0 and yxx =0 imply x =y,
(BCK-5) 0%z =0,
for all x,y,z € A.
A partial order < on A can be defined by x <y if and only if x xy = 0.

Definition 2.3. [1, 7, 10, 19] Let A be a BCK-algebra. Then

(i) A is called a positive implicative BCK-algebra if (xxy)xz = (x*xz)* (y*z),
(ii) A is called an implicative BCK-algebra if x x (y x x) = z,

(iii) A is called a commutative BCK-algebra if x x (x xy) =y * (y x ),

(iv) A is called a bounded BCK-algebra, if there exists the greatest element 1
of A and 1 % x is denoted by Nx for any x € A,

(v) A is called involutory BCK-algebra, if NNz = x for all x € A.

Definition 2.4. [5, 8] Let A be a BCK-algebra. Then

(i) A is said to have condition (S), if the set A(z,y) ={t € A:t*xx <y} has
the greatest element which is denoted by x o y for any x,y € A,

(ii) (A,*,<) is called a BCK-lattice, if (A,<) is a lattice, where < is the
partial order on A, which has been introduced in Definition 2.2.

Definition 2.5. [4] Let P be a set. An order (or partial order) on P is a
binary relation < on P such that:

(i) <z,

(it) x <y andy < x imply v =y,

(iti) x <y and y < z imply x < z.

for all x,y,z € P. A set P equipped with an order relation < is said to be an
ordered set.
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Definition 2.6. [}/ Let P be a non-empty ordered set. If tVy and x Ay exist
for all x,y € P, then P is called a lattice.

3 Sheffer stroke BCK-algebras

In this paper, we introduce a Sheffer stroke BCK-algebra and give some prop-
erties.

Definition 3.1. A Sheffer stroke BCK-algebra is a structure (4, ],0) of type
(2,0) such that 0 is the constant in A, | is a Sheffer operation on A and the
following axioms are satisfied for all x,y,z € A

(sBCK-1) ((((z|(y|y)(@|(yly) ) (| (212D (((@|(yly)|(z](yly)](](2]2))))]
(2|(yly)) = 0l0,

(sBCK-2) (x|(yly))|(z|(yly)) = 0 and (y|(z|z))ly|(z|z)) = 0 imply x = y.
A partial order < on A can be defined by

<y < (2l(yly)l(=l(yly)) = 0.

A Sheffer stroke BCK-algebra is called bounded if it has the greatest ele-
ment.

Remark 3.1. The azioms (sBCK-1) and (sBCK-2) are independent:

To prove this claim, we construct a model for each axiom in which this
axiom is true while the other is false.

Let U = {0, 1} be the universe of our model. The symbol | is interpreted
as a binary operation on U. Let (U, |) be an algebra.

(1) Independence of (sBCK-1):
We define the operation | on U as in the following Cayley table:

Table 1:

|10 1
01 0O
111 0

Then (sBCK-2) holds while (sBCK-1) does not when z = 0, y = 1 and
z=1.

(2) Independence of (sBCK-2):

We define the operation | on U as in the following Cayley table:
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Then (sBCK-1) holds while (sBCK-2) does not when z = 0 and y = 1.
We get (0](1]1))](0](1]1)) = 0]0 = 0 and (1](0]0))|(1|(0]0)) = 0|0 = 0 and then
0#1.g

Example 3.1. Consider (A4,],0) with the following Hasse diagram, where
A={0,2,y,2,1}:

Figure 1:

The binary operation | has Cayley table as follow:

Table 3:
T

—_—e 8 O—
— == RO
8 8 ~ PR
o8 L =

1
Y
1
Y

Then (A,1,0) is a Sheffer stroke BCK-algebra.

Lemma 3.1. Let A be a Sheffer stroke BCK-algebra. Then the following fea-
tures hold for all xz,y,z € A:

(1) (z|(z|x))|(z]x) = =,

(2) (z|(z|x))|(z[(z]z)) =0,
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(3) z|(((=|(yly)) [y ([ (yly)I(yly))) = 0]0,
(4) (0[0)[(z]z) = =,

(5) 2|0 = 00,
(6) (z](0]0))[(x[(0[0)) =

(7) (0|(z[2))|(0[(z|z)) =

(8) =|((y[(2[2))|(y|(2]2)) =yl((f\(ZIZ))I(x\(ZIZ))),

g% ([ (Il @I(212)) (2] ([2) [(y](2] (] 2)](](2]2))))) =

(10) ((x[([(yly))I(«|(2(y]y)))I(yly) = 0[0.

Proof. (1) Substituting [y := (z|x)] in (S2), we obtain (z|x)|(z|(z|x)) = .
Then (z|(z|z))|(z|x) = x from (S1).

(2) In (sBCK-1), by substituting [y := z|z] and [z := z] simultaneously
and using (S2), (S3) and (1), we have

000 = ((((z[((x]2)|(z[2))] ([ ((z])|(z|2))))]| (2] (z]) (2] (2
|| (@]2)) (| ((2|2)] (z]2))] (@] (z]2)))| (2| ((2]2)](z])))
= ((((zfa)|(2|2)[ (x| (2]2)[((x]2)] (z]2))| (2] (z])))|(z]x)
= ((@[(z|(2]2)[(| (2] (x]2))))|(z]x)
= 2| (((2](z]x))[(z]2)|((2|(z]x))|(z]2)))
= zf(z|z)

From (S2), we obtain (z|(z|z))|(z|(z|z)) =
(3) In (S3), by substituting [y := z|(y|y)] and [z := y|y] and applying (S1),
(S3) and (2), we obtain

z| (@] (yly)) [y ([ (yly)] (y]y))

z| (Yl @[y (W) [(@|(y]y))))
(@[l (= (yly)) (| (yly))
(=] I(

|
= (@|(yly)I((=|(yly)[(z[(y]y)))
= 00.

(4) (00)[(z|z) = (z[(x|2))|(z]x) = @ from (1), (2) and (S2).
(5) By using (4), (S1) and (S2),

z|0 = x|
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(6) By using (S1), (S2) and (4),

([(0[0))I(=(0]0)) = ((0[0)[((x[)[(x|2)))I((O0)[((x]x)|(x|2)))
= (z|z)|(z]x)

= X.

(7) From (5), (S1) and (S2), we have (0|(z|x))|(0|(z|z)) = (0]0)](0]0) = 0.
(8) By using (S1) and (S3), we have

z[((yl(=[2)I(Wl(z12)) = (((z[y)l(z]y))(z|2))
= (((yl2)|(ylz))|(z]2))
yl(z](2]2))|(z](2]2)))
(9) It is obtained from (2) and (8).
(10) It is obtained from (3) and (S3). O

Lemma 3.2. Let (A,|,0) be a Sheffer stroke BCK-algebra. A binary relation
< is defined on A as follows:

x<z if and onlyif (x|(z]2))|(z|(z]z)) = 0.

Then the binary relation < is a partial order on A such that 0 < x for each
x € A. Moreover, we have

y < (@|(yly)) and = < z implies (x|(yly))|(=|(yly)) < (z[(yly))I(z](yly))
for all x,y,z € A.

Proof. e Reflexivity follows from Lemma 3.1 (2).

e Assume that x < y and y < z. Then (z|(y|ly))|(z|(y|ly)) = 0 and
(y|(x|z))|(y|(z]x)) = 0. We obtain from (sBCK-2) that z = y.

e Assume that z < z and z < y. Then (z|(z|2))|(z](z|z)) = 0 and
(zl(yly)|(z|(y|y)) = 0. Using (S1), (S2), (sBCK-1) and Lemma 3.1 (4), we get

010 = ((((yly)(@ Yy NIzl (yly)|(](2]2))))]
z|(yly))

(@Il @[ WlyNIOON (] (yly) (=] (yly)))(010))] (=] (y]y))
(z[(yly)I(z[(yly)))|(0]0)

(
(
((z]

(z](yly))-
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Then 2 < y and so < is a partial order on A. From Lemma 3.1 (7), we get
0 <z for each x € A.
Moreover, assume that < z and y € A. Then

@[l @) @D Yl @] Yly)(@](2]2)))]

(yly))

(|l (] (yly)) 10N [(((z[(yly)](=|(y]y))

0[0)[((z[(yly)I (| (yly))I((00)|((=|(yly))|(=]|
|(yly) (] (yly))] (2] (yly)

2| (yly)I ([ (y|¥)(=|(y]y))

which means z|(y|y) < z|(y|y). From Lemma 2.2 (i), we have (z|(y|y))|(z|(y|y))

< (2l(yly)I(zI(yly)). Putting here [z := 0[0], we obtain y = (0[0)|(yly) <
| (yly)- O

Let A be a Sheffer stroke BCK-algebra. Then 1 = 0|0 is the greatest
element and 0 = 1|1 is the least element of A.

00 =
)1010)))[(=I(yly))

(wly)))I(=[(yly))

((
z|
((
((
(z

(
(
= (
(
(
(

|
|
)
);

Proposition 3.1. Let (A,|,0) be a Sheffer stroke BCK-algebra. Then the
following features are hold for all x,y,z € A:

(1) = < z implies (y|(2]2))|(y[(2]2)) < (y](z[x))|(y|(x]2)),

(@) ()| (Yly))I(zlz) = ((@|(2]2)](](2][2))[(y]y),

(@) ((z|(yly)(z](yly))) < z & ((z](2]2))[(z](2]2))) < v,

(i) (2|(y[y)l(z|(yly)) < =

(v) z < yl(l“lx),

(vi) = < (z((y|y)|(yly),

(vit) If x <y, then z|(z|z) < 2[(y|y).

Proof. (i): Let z < z. Then by (sBCK-1), we have (((y|(z]2))|(y[(2]2)))(y|(z|

))(((yl(z]2)|(y](z[2))[(yl(z]|2))) < (z[(z]= ))I( (= IZ))~ Hence, (((y/(z|2))[(y

|l Yl(]2))[(((y(2]2))(y](2]2)))|(y](z]z))) < 0. By using Lemma 3.1 (6)

and (52), we have (((y[(z[2))|(y|(2|2)))(y |1’\$)))|((( |(z12))[(y](2]2)[ (vl (z|

z))) = 0. Therefore, (y|(2]2))|(y[(z]2)) < (y|(z|2))|(y|(z]z)).

(#i): By Lemma 3.1 (3) and (S3), we have (z|(z|(z]2)))|(z|(z|(2|2))) <

ing use of (sBCK-1) and (i), we get ([l (WD) (2 \(yl ) I(DEI

Yl))I(=l2)) < (= Yly)I ()@@ (=)@ ly) (] (y]y )))\($|($|

(212)))) < (((=](z]2) (x| (=)D (Yly)((2|(=]2)[(2](2]2))|(y]y))- using

Lemma 2.2 (i) and (S2), we have ((z[(z]2))[(z|(2]2)))|(yly) < ((xl(yly))\( |(yl

|¥))|(z|z). Interchanging y and z in the above inequality, we obtain ((z|(y|y))|
I(yly))|

(@[ (yly))I(z|2) < ((x[(2]2))|(2[(2]2)))|(yly). By (sBCK-2), we have ((z
(z[(yly)))[(z]2) = ((z[(2]2))|(2(2]2)))] (yly)-

(#i¢): This is a straightforward consequence of (ii).
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v): By (ii), Lemma 3.1 (2), (7) and (S2), we have ((z|(y|y))|(= (y|y))|)|(w\x) =

(i | (|
(<(fv|(x\m))l(x\(xlfc)))\(yly) = (0[(yly)) = 00. Consequently, (z|(yly))|(=[(yly))

(v): By using (S1), (S2), (S3), Lemma 3.1 (2) and (5), we have

z[((y|(z|2)|(yl(z]2)) = =|(((z|x)|y)|((z|z)]y))
= ((z|(z]2))|(z](z|2)))]
= 0Oy
= y[0
= 0|0,

that is, x < y(z|x).
(vi): By using (S1), (S2), (S3) and Lemma 3.1 (2), we have

2| ([l wly) (@Il ly) = =[(((yly)|(=(y]y)))

[((Wl)I(=l(yly))))
= ([l ly)))I(l(yly))
= (@(ly) ([ (yly)l(](yly)))
= olo,
that is, 2 < (2[(y|y))|(y]y)-
(vid): By using (S1), Lemma 2.2 (i) and (iii), we have
r<y < yy<azz
& (zl2)[z < (yly)l2
& 2|(zlr) < z[(yly).
O

Theorem 3.1. Let (4,],0) be a Sheffer stroke BCK-algebra. If we define
zxy = (z|(yly))|(zlyly),
then (A, *,0) is a BCK-algebra.

Proof. By using (S1), (S2), (sBCK-1), (sBCK-2), Lemma 3.1 (2), (7) and (10),
we have:
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(BCK —1):

((@ry)*(wx2))x(zxy) = ((((lly)l](yly))(@](z]2))I (]
WDl yly)I(](z12)] (=l (yl9))]
(@Il @l ] 1)) (]
Wl Yl ([(212)))](z](yl)))

= (0[0)](0]0)
= 0.
(BCK —2):
(@x(zxy))xy = ((@[(yly)))I(](|yy))I(yly)
= (0[0)[(0[0)
= 0.
(BOK = 3): xx 2 = (x|(x]x))|(x|(x]x) =
_(BCIK—4): zxy = (2|(yly)(|(yly)) = 0 and y x2 = (y](zlz)) (] (z}) = 0
imply = = y.
(BCK —5): 0%z = (0|(z|z))|(0|(z]x)) = 0. O

Example 3.2. Consider the Sheffer stroke BCK-algebra (A, |,0) in Example
3.1. Then a BCK-algebra (A, x,0) defined by this Sheffer stroke BCK-algebra
has the following Cayley table:

Table 4:
* ‘ 0 =z y 1
0[O0 0 0 O
z|lx 0 x O
yly y 0 0
111 vy 2 0

Theorem 3.2. Let (A, *,0,1) be a bounded BCK-algebra. If we define x|y :=
(xxy°)° and 2° = 1 xx, where xx (1x2) = x and 1 x (1 xx) = x, then (4,],0)
s a Sheffer stroke BCK-algebra.

Proof. From (BCK-3), we have 1 =11 =0and 0° = (19)° = 1% (1x1) = 1.
(sBCK —1): By using (BCK-1), we have
(Il Yl DI Gl yl) ] (2]2)))]1 ] yly)
= (((z = y)l(z * 2))|((z *y)l(z * 2)°))|(z * y)°
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= (((z*y) * (x*2))°((x *y) * (2% 2))°)|(2 *y)°

= (((zxy) = (z* 2)) * (2 xy))°

=00

=1

= 0l0.

(sBCK —2): By using (BCK-2), we get (z|(y|y))|(z[(y|ly)) = x*y = 0 and
(yl(z|2))[(yl(z]z)) = y * = = 0 imply = = y. O

Example 3.3. Consider a bounded BCK-algebra (A, *,0,1) with A = {0, z,y, z,
t,u,v,1} and the binary operation x on A defined as follows:

Table 5:
z

— e 2 e 8 Ol %
e 2 e 8 oo
S e N nNne ©OoR
2R e 8NN oOo8 OoOw
e 8 O 8 O

NN N ON OO O+
SR o ow O ol
8 08 8 ooy o
[N oNoNoNRoNoNo Nl R

Then a Sheffer stroke BCK-algebra (A, |,0) defined by this bounded BCK-
algebra (A,*,0,1) has the following Cayley table:

Table 6:

|10 =2 y 2z t u v 1
o(f1 1 1 1 1 1 1 1
z|1l » 1 1 o v 1 w
yl1l 1 v 1 wu 1 u wu
z|1 1 1 ¢t 1 t t t
t|11 v w 1 z v u =z
vl v 1 t v y t vy
v|{1 1 w t w t =z =z
111 v w t z y x 0

Definition 3.2. [17] A Sheffer stroke BE-algebra is a structure (S, |,1) of type
(2,0) such that 1 is the constant in S, | is a Sheffer operation on S and the
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following axioms are satisfied for oll x,y,z € S':
(SBE —1) z|(z|x) =1,
(SBE —2) =|((y[(2]2))|(yl(z]2)) = yl((z[(z]2))|(z|(z]2)))-

Example 3.4. [17] Consider a structure (S,|,1) where S = {0,u,v,w,t,1}
and a binary operation | with the following Cayley table:

Table 7:

|10 w v w ¢ 1
of(1 1 1 1 1 1
|1l » 1 1 1 w
v|1 1 «w 1 1 wu
w|l 1 1 ¢ 1 ¢
t |1 1 1 1 w w
111 v w t w 0

Then this structure is a Sheffer stroke BE-algebra.

Theorem 3.3. FEvery Sheffer stroke BCK-algebra is a Sheffer stroke BE-
algebra.

Proof. 1t is obtained from Lemma 3.1 (2), (8) and (S2). O

Remark 3.2. The converse of Theorem 3.3 is not true as in the following
example.

Example 3.5. Consider the Sheffer stroke BE-algebra (A,|,1) in Example
8.4. Then S is not a Sheffer stroke BCK-algebra when x = u,y =v and z = t,
since (((l(U\(Ulv))|(U\(Ulv)))\(U|(t\f)))\(((Ul(U\U))|(U|(Ulv)))l(U|(tlf))))\(t|(vlv))
= v # 0|0.

Definition 3.3. Let A be a Sheffer stroke BCK-algebra. Then

(i) A is called a positive implicative Sheffer stroke BCK-algebra if ((z|(y|y))|
(2l () I(=]2) = ((@l(=12) (2l (1) (](2]2)),

(i1) A is called an implicative Sheffer stroke BCK-algebra if x|(y|(x|z)) = x|z,
(i1i) A is called a commutative Sheffer stroke BCK-algebra if z|(z|(yly)) =
yl(yl(x]x)),

(iv) A is called a bounded Sheffer stroke BCK-algebra, if there exists the great-
est element 1 of A and (1|(z|z))|(1](x|z)) is denoted by Nz for any x € A,
(v) A is called an involutory Sheffer stroke BCK-algebra, if NNz = x for all
x €A
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Example 3.6. Consider the Sheffer stroke BCK-algebra (A, |,0) in Example
8.1. Then A is a positive implicative, an implicative, a commutative, a bounded
and a involutory Sheffer stroke BCK-algebra.

Proposition 3.2. Let A be a bounded Sheffer stroke BCK-algebra. Then the
following features hold for all x,y € A:

(i) N1=0 and NO =1,

(i) (Nz|(Ny[Ny)|(Nz|(Ny[Ny)) < (yl(z|))|(yl(z]z)),

(iii) y < x implies Nz < Ny,

(i) Nz|(yly) = Ny|(z|x).

Proof. (i) By using (S1), (S2) and Lemma 3.1 (2), we obtain
1

N1 = (1

|(L](1[1))
0[0)[(0[0)
1((00)]0)
1(01(0]0))

2)
)
) )I((0[0)((0]0)[(0[0)))
)[0

|

—_ — T —

(1)
((0j0
= ((0jo
( (0

0)

NO (1/(0[0))(11(0]0))
((0]0)[(0]0))[((0]0)[(0]0))
= 0/0

= 1.

(ii) By using (S1), (S2), Lemma 3.1 (2) and (4), we have

(Nz|(Ny|Ny))|(Nz|(Ny|Ny)[(yl(z[z)) = (((((0]0)|(z|z))

Il
o~ o~ —~

which means, (Nz|(Ny|Ny))|(Nz|(Ny|Ny)) < (y|(2|2))|(y](z]x)).

(iii) Assume that y < z. We get (y|(z|z))|(y|(z]x)) = 0. By using Lemma 3.1
(4) and (S1), we obtain (Nz|(Ny|Ny))|(Nz|(Ny|Ny)) = ((zz)[y)|((z]x)]y) =
(y|(x]z))|(y|(z|x)) = 0. Therefore, Nz < Ny.

(iv )(i\;x|(y|y) (@2)|(yly) = (Wly)l(zlz) = Ny|(z[z) from (S1) and Lemm;
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Theorem 3.4. Let A be a bounded Sheffer stroke BCK-algebra. Then the
following are equivalent for any z,y € A:

(i) A is involutory,

(i4) 2l(yly) = Ny|(Nz|Nz),

(iti) z|(Ny|Ny) = y|(Nz|Nz),

(iv) x < Ny implies y < Nzx.

Proof. (i)= (ii): Since A is involutory, we have NNx = «x for all x € A. Then
Proposition 3.2 (iv) implies that z|(y|y) = NNz|(y|y) = Ny|(Nz|Nz).

(il)= (#i1): By (ii), z|(Ny|Ny) = NNy|(Nz|Nz) and y|(Nz|Nz) = NNz|(Ny
|Ny). Also, by Proposition 3.2 (iv), NNy|(Nz|Nz) = NNz|(Ny|Ny). There-
fore, z|(Ny|Ny) = y|(Nz|Nz).

()= (iv): Tf & < Ny then (z|(Ny|Ny))|(z|(Ng|N)) = 0. So, (4l(Na|N))|
(y|(Nz|Nz)) = 0 by (iii). Therefore, y < Nz.

(iv)= (i): It is clear that NNz < x. Also it is obvious that Nz < Nz then
(iv) gives * < NNz. Comparison gives NNx = x for all x € A. Therefore, A
is involutory. O

Theorem 3.5. Let A be an implicative Sheffer stroke BCK-algebra. Then
(a) A is a commutative Sheffer stroke BCK-algebra.
(b) A is a positive implicative Sheffer stroke BCK-algebra.

Proof. (a): By using Proposition 3.1 (ii), Lemma 3.1 (10), Definition 3.3 (ii),
we get

z|(z|(yly)) = (([(yl(zl2)](](y](z]2)](](yly))

Therefore, A is a commutative Sheffer stroke BCK-algebra.
(b): Substituting [z := (z|(y|y))|(z|(y|y))] in the identity x|z = z|(y|(x|z))
and by using (S1), (S2), Lemma 3.1 (2) and (4), we have,

(
DIy (Yly)))
)

zlyly) = (l(yly)I(=|(y
= (Il (yly)I(yly)
Therefore, A is a positive implicative Sheffer stroke BCK-algebra. O

Theorem 3.6. Let A be a both commutative and positive implicative Sheffer
stroke BCK-algebra. Then A is an implicative Sheffer stroke BCK-algebra.

Proof. From Proposition 3.1 (v), we have z < y|(z|x).
By using Proposition 3.1 (vii), Lemma 2.2 (i) and (S2), we get
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= (yl(z[2))[(y|(z[z)) < z|z.

= 2|(((y[(e|2)) (| () [yl (z]2))|(y](2]2))) < z[((2|)](z]2))

= x|(y|(z]z)) < zlz.

Therefore, (z|(y|(z]2)))|x = z|(z|(y|(x|2))) = 0[0.

By using Lemma 3.1 (2), (4), (5), (6), (S2), Definition 3.3 (i), (ii), (iii), we
obtain

(@[ (yl(z[2))](=[(yl(z[x))) = (z[(y[(z]x)))[(0]0)
= ((@l(yl(z2)I((2|(y[(x]2)))|2)
= (([(yl ()| (] (yl(2]2)((2|2)] (z]2)))
= (@lo)|((@|2)[((|(y[(x|2)))] (@ ](y](z]2)))))
= (2|2)[(((=](y|(2|2)))| (=] (y|(z|2)))|(z]x))
= (2|2)[(((=](z]x)) (x| (z|2))|((y](x]2))|(z]2)))
= (2|2)|0l((y[(z]))|(x|2)))
= (2|2)(0]0)

From (S2), z|(y|(z|x)) = x|z. Then A is an implicative Sheffer stroke BCK-
algebra.
O

Definition 3.4. Let A be a Sheffer stroke BCK-algebra. Then

(1) A is said to have condition (S) if the set A(x,y) = {t € A: (t|(z|z))|(t|(z|
x)) < y} has the greatest element which is denoted by x oy for any x,y € A.
Moreover,

([l (] (yly)))I(z]2) = (2|((y © 2)|(y © 2))),

forall x,y,z € A,
(ii) (A, |, <) is called a Sheffer stroke BCK-lattice, if (A, <) is a lattice, where
< is the partial order on A defined as in Definition 3.1.

Example 3.7. Consider the Sheffer stroke BCK-algebra (A, |,0) in Example
3.1. Then (A,|,0) is a Sheffer stroke BCK-algebra with condition (S) where
xoy=u1xVy. Moreover, (A,|,<) is a Sheffer stroke BCK-lattice.

Proposition 3.3. If A is a bounded Sheffer stroke BCK-algebra. Then A
satisfies condition (S). In this case x oy = (1|(((1](z|2))]|(1](z|x))](y|v)))|(1]

(|2 [T (2[2))](yly)))-

Proof. Define z oy = (1[(((1|(2|2))|(1](x]x)))](yly))I(LI(((1](z|2))|(1](z]x)))]
(yly))), for all z,y € A. Then by using Proposition 3.1 (ii) and Lemma 3.1
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(3), we have
((@ o y)|(zfx)[((z o y)|(z[x)) = (((A[((A|(z|2))|((x]x))](yly))I(1
(L Cl)) [ Cel2) )l ()
|(CCLICCCH Cel))) [ () () (L]
(L Cl)) [ () (wly))) | (2]2))
= (((f(]2)) | (1](x]2) (L] (z]2))]
() ly) DI 2|2))[ (1|2
l2)DIC(A] ([2)[ (1] (2]2)))|(y])))
< Y
For z € A, by using (S2), (S3) and Lemma 3.1 (4), we have
zl((woy)l(zoy)) = z[(A[(((2[2)(1(z]x))](ylv))
= 2[((0[0)[((((0]0)[(x]))|((0[0)] (x])))I(yly)))
= 2[(((|2)|(yly)|(z|2)|(yly))
= ((l(|2)|(z[(x]2))](yly)-
Hence, A satisfies condition (S). O

Theorem 3.7. Fvery involutory Sheffer stroke BCK-algebra A is with the
condition (S).

Proof. Suppose that 1 is the greatest element of A and z,y,z € A. Because
A is involutory, we have
Nz|(Ny|Ny) = yl(z|z) (1)
by Theorem 3.4. We define ” o” as follows:
zoy=N((Nz|(yly)|(Nz|(yly)))-

Using the involutory property of 2 and Equation (1) as well as Proposition 3.1
(ii), we obtain

(z[((yo2)l(yoz)) = NNz[(N(Nyl(z]2)|(Ny
[(NV (N[ (2]2))[(Nyl(2]2)))))

(Ny|(z[2) (Nl (z]2))[(Nz[ N )

(Ny[(Nz[Nz))[(Ny|(Nz|Nx)))|(2]2)

(

)

(212)))

—_

z
|

= ((=l(yly)|(=[(yly)))](z]2)-

Therefore, A is with condition (S). O
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Remark 3.3. Let A be a bounded Sheffer stroke BCK-algebra. Then every
commutative Sheffer stroke BCK-algebra is an involutory Sheffer stroke BCK-
algebra.

Corollary 3.1. Every bounded commutative Sheffer stroke BCK-algebra sat-
isfies condition (S).

Proof. 1t is obtained from Theorem 3.7 and Remark 3.3. O

Corollary 3.2. Any bounded implicative Sheffer stroke BCK-algebra satisfies
condition (S) and

roy=xVuy.

Indeed, it is possible to show that a least upper bound of x and y, xVy, ezists in

A and x vy = (1{(((1|(2]2)[ (1] (z[2)[(yly) DA ]2)[ (1 ][2))] ]y)-

Theorem 3.8. Let A be a positive implicative Sheffer stroke BCK-algebra
with condition (S). If (A, <) is a lattice, it must be distributive.

Proof. From the theory of lattices, a lattice is distributive if and only if it
contains neither a rhombus sublattice nor a pentagon sublattice. Assume that
the lattice (A, <) contains either a rhombus sublattice or a pentagon sublattice
whose Hasse diagrams are respectively assumed as follows:

I a

b

Figure 2:

For the first diagram, we have bV ¢ = a and bV d = a, which means from
Corollary 3.2 that boc = a and bod = a. Then we have from Definition 3.4
and Lemma 3.1 (2) that

((al(b1))[(al(6]0)))[(clc) al((boc)|(boc))
al(ala)
= 0]0.
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Namely, ((a|(b|b))[(al(b[b))) < ¢. Likewise, ((al(b|b))|(al(b]b))) < d. So, ((al(b]
b))|(a](b]d))) < ¢ A d. Noticing, ¢ A d = e, it follows ((a|(b|d))|(a|(b]b))) <
Also, since e < b by Corollary 3.2, boe = bV e = b. Now, Definition 3.4 gives

((al(0[0))[(al(b]0))) = (al((boe)l(boe)))l(al((boe)l(boe)))
= (((al(b]6))(al(b]b)))|(ele))|(((al(b]b))|(al(b])))I(ele))
< ef(efe))[(el(efe))
= 0.

Therefore, a < b which is a contradiction with a > b.
For the second diagram, we have ¢V d = a. Then Corollary 3.2 implies
that cod = a. Applying Definition 3.4 and the fact that b < a, we derive

(@l(clenl@llcle)(dld) = bl((cod)l(cod))

= (bl(ala))

= oo
That is ((b](c]e))|(b](c|c))) < d. Also, by Proposition 3.1 (iv), ((b|(c|e))|(b|(c]
¢))) < b. Then ((b|(c[c))[(b|(cl¢))) < bAd = e and so ((b](c|c))|(b](c|c)))|(ele) =
0|0. Using Corollary 3.2 again, it follows b|((coe)|(coe)) = 0]|0. Next, because

e<c,coe=ceVc=c. Hence

((l(cle))l(cle))) =

IIA
—~
o)
—
o)
3]
~—
~—
—
o
—
o
9]
~—
~

Therefore, b < ¢, which is impossible since b > ¢. The proof is complete. [

Lemma 3.3. Let A be a Sheffer stroke BCK-lattice. Then (z|((y A z)|(y A
DIy A 2)l(y A 2))) = () |(I(yly) v ((2|(z]2)1(x](2]2))), for any

x,y,z € A.

Proof. Suppose that A is a Sheffer stroke BCK-lattice and x,y,z € A. Since
yNz <yand yAz < z, by Proposition 3.1 (i), we obtain ((z|(z|2))|(z|(2]%))) <
(2l((9A2) A=) (A=)l (A=) and (2l (gly) (2l (sl) < (@1 (A=) (A
DIy A 2)|(y A 2))). Hence, ((z](yly)|(=[(yly))) v ((z[(2]2)(z](2]2))) <
(21((y A 2)Iw A 2Dl A )0 A 2))).
Now, since («|(y|y))[(z[(yly)) < ((x[(yly)|(z[(yly))) v (
Proposition 3.1 (i) and Lemma 3.1 (3), we get that (x|
)

V(2| (z[2) [ D]yl (2| (y]y)) v ((z](2]2)

(] (2|
(
I(
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[(ly))) v (([(z]2)) (2] (2| )N ((([(yly) (2| (y]y)
| nd z. Hence ()a):||(((

9))) V ((2l(z]2))[(x

§x\(y|y))|(w| yly)

we conclude tha

: t
) < ((«(yly))I (x|(y] ))z\/((xI(ZIZ) |(](2]

B~

Lemma 3.4. Let A be a bounded Sheffer stroke BCK-algebra and x,y € A.
(1) If the greatest lower bound x Ay of x and y exists, then least upper bound
Nz V Ny of Nx and Ny exists and NxV Ny = N(z Avy).

(2) If A is involutory and if the least upper bound xVy exists, then the greatest
lower bound Nx A Ny exists and Nx A Ny = N(z V y).

Proof. Tt is known from Lemma 3.3 that if the greatest lower bound x Ay of
and y exists, then for any z € A, the least upper bound ((z|(x|z))|(z|(z|x))) V
(Gl (ly)I(zl(yly))) exists and (z|(x]x))[(z|(x]x))) vV ((=|(yly)](z](yly))) = ((z]
(@ A g) (@ A g A Dl A D))

(1) Assume that z is the greatest element of A. If x Ay exists, then ((z|(z|z))]
(l(l2) v (1l (1 (yly) exists and (zl(zl2))|(=l(zl2) v (1) (2]
wly))) = ((z((xAy)[(xAY))) | (2| ((zAY)|(zAy)))). Because ((z|(z|2))|(z[(x]x)))
= Nz, it yields that Nz V Ny exists and Nz V Ny = N(z A y).

(2) If 2 V y exists, since x <z Vy and y < z V y, it follows from Proposition
3.2 (iii) that N(z Vy) < Nz and N(zVy) < Ny. Hence, N(z V y) is a lower
bound of Nz and Ny. Also let z be any lower bound of Nz and Ny. Since
z < Nz and z < Ny by A being involutory, Theorem 3.4 (iv) gives < Nz
and y < Nz. So, x Vy < Nz. Using Theorem 3.4 (iv) once more, we get
z < N(z Vy). Hence, N(z V y) is the greatest lower bound of Nz and Ny.
Therefore, Nx A Ny exists and No A Ny = N(z V y). O

Theorem 3.9. Let A be an involutory Sheffer stroke BCK-algebra. Then the
following are equivalent:
(1) (A, <) is a lower semilattice,
(2) (A, <) is an upper semilattice,
(8) (A, <) is a lattice.
Moreover, Sheffer stroke BCK-lattice (A, <) is a distributive lattice, where

xANy=N(NzV Ny) andxVy=N({NzANy).

Proof. (1) = (2): Since (4, <) is a lower semilattice, Nx A Ny exists for any
xz,y € A. Then Lemma 3.4 (1) gives that NNz V NNy exists. Also, since A
is involutory, we have NNz V NNy =z V y. Hence z V y exists and (A4, <) is
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an upper semilattice.

(2) = (3): Because (A, <) is an upper semilattice by using Lemma 3.4 (2) and
following the preceding proof, we obtain that (A, <) is a lower semilattice.
Therefore, (A, <) is a lattice.

(3) = (1): Obvious.

Moreover, if (A, <) is a lattice, then we have from Lemma 3.4 that

NNz ANNy=N(NzV Ny) and NNzV NNy = N(Nx A Ny).
for all x,y € A. So, we derive
xAy=N(NzV Ny)and 2 Vy = N(Nz A Ny)
by the involution. O

Corollary 3.3. Let A be a bounded Sheffer stroke BCK-algebra. Then any
implicative Sheffer stroke BCK-algebra is a Boolean lattice.

Proof. The proof is obtained from Theorem 3.5, Remark 3.3, Theorem 3.8 and
Theorem 3.9. U

4 Conclusion

In this study, a Sheffer stroke BCK-algebra, a partial order, a commutative, an
implicative, an involutory Sheffer stroke BCK-algebra and their some prop-
erties are investigated. By presenting definitions of a Sheffer stroke and a
BCK-algebra, a Sheffer stroke BCK-algebra is introduced and related notions
are given. It is proved that the axiom system of a Sheffer stroke BCK-algebra
is independent. It is stated the relationships between a Sheffer stroke BCK-
algebra and a (bounded) BCK-algebra. It is proved that every Sheffer stroke
BCK-algebra is a Sheffer stroke BE-algebra. A commutative, an implicative
and an involutory Sheffer stroke BCK-algebras are defined and the relation-
ship of this structures is given. It is indicated that every implicative Sheffer
stroke BCK-algebra is a commutative and a positive implicative Sheffer stroke
BCK-algebra. A Sheffer stroke BCK-algebra with condition (S) is identified.
It is presented that if a positive implicative Sheffer stroke BCK-algebra with
condition (S) is a lattice, then it must be distributive. Finally, it is shown that
any implicative Sheffer stroke BCK-algebra is a Boolean lattice.
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involutory Sheffer
stroke BCK -algebra

bounded,
commutative

bounded Sheffer stroke Sheffer stroke

_— — BCK-dgbra————

BCK-algebra BCK-algebra BE-algebra

comnmtatrve,
positive implicative

implicative Sheffer commutative Sheffer
stroke BCK -algebra stroke BCK -algebra

positive implicative
Sheffer stroke
BCK-algebra
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