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On characterization of finite modules by
hypergraphs

Ali Reza Moniri Hamzekolaee and Morteza Norouzi

Abstract

With a finite R-module M we associate a hypergraph CIHR(M)
having the set V of vertices being the set of all nontrivial submodules
of M . Moreover, a subset Ei of V with at least two elements is a
hyperedge if for K,L in Ei there is K ∩ L 6= 0 and Ei is maximal
with respect to this property. We investigate some general properties
of CIHR(M), providing condition under which CIHR(M) is connected,
and find its diameter. Besides, we study the form of the hypergraph
CIHR(M) when M is semisimple, uniform module and it is a direct
sum of its each two nontrivial submodules. Moreover, we characterize
finite modules with three nontrivial submodules according to their co-
intersection hypergraphs. Finally, we present some illustrative examples
for CIHR(M).

1 Preliminaries

In [4, 5], Berge introduced hypergraphs as a generalization of the graph ap-
proach. A hypergraph H = (V ;E) on a finite set of vertices (or nodes)
V = {v1, . . . , vn} is defined as a family of hyperedges E = {ej | 1 ≤ j ≤ m}
where each hyperedge is a non-empty subset of V and such that ∪mj=1ej = V .
It means that in a hypergraph, a hyperedge links one or more vertices. In [8],
the definition of hypergraphs includes also hyperedges that are empty sets as
hyperedges are defined as a family of subsets of a finite vertex set and it is not
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necessary that the union covers the vertex set. Both the vertex set and the
family of hyperedges can be empty; if they are both empty in the same time,
the hypergraph is then designated as the empty hypergraph. This definition
of hypergraph opens their use in various collaboration networks.

In a hypergraph, an edge can join any number of vertices. In contrast, in an
ordinary graph, an edge connects exactly two vertices. Formally, a hypergraph
H is a pair H = (V,E) where V is a set of elements called nodes or vertices,
and E is a set of non-empty subsets of V called hyperedges or edges. Therefore,
E is a subset of P (V ) \ {∅}. The size of the vertex set is called the order of
the hypergraph, and the size of edges set is the size of the hypergraph. In this
work, we apply the general definition of hypergraphs. A k-uniform hypergraph
is a hypergraph such that all its hyperedges have size k (in other words, one
such hypergraph is a collection of sets such that every hyperedge connects k
nodes). So a 2-uniform hypergraph is a graph, a 3-uniform hypergraph is a
collection of unordered triples, and so on. Some papers in this context can be
seen in [6] and [7].

Let H = (V,E) be a hypergraph. A path P in H from x to y, is a
vertex-hyperedge alternative sequence x = x1e1x2e2, . . . , xsesxs+1 = y such
that x1, x2, . . . , xs, xs+1 are distinct vertices (with the possibility that x1 =
xs+1), e1, e2, . . . , es are distinct hyperedges, and {xi, xi+1} ⊆ ei, for all i ∈
{1, 2, . . . , s}. If x = x1 = xs+1 = y, the path is called a cycle. The inte-
ger s is the length of the path P . Notice that if there is a path from x to
y there is also a path from y to x. In this case we say that P connects x
and y. A hypergraph is connected if for any pair of vertices, there is a path
which connects these vertices. The distance d(x, y) between two vertices x
and y is the minimum length of a path which connects x and y. If there is
a pair of vertices x, y with no path from x to y (or from y to x), we define
d(x, y) = ∞ (H is not connected). The diameter d(H) of H is defined by
d(H) = max{d(x, y) | x, y ∈ V }.

In [1], the authors introduced intersection graph on submodules of a mod-
ule. Let R be a ring with identity and M be a unitary right R-module. The
intersection graph of M , denoted by G(M), is defined to be the undirected
simple graph whose vertices are in one-to-one correspondence with all non-
trivial submodules of M and two distinct vertices are adjacent if and only if
the corresponding submodules of M have nonzero intersection. The comple-
ment of G(M) was also introduced in [2]. This graph is denoted by Γ(M), is
defined to be a graph whose vertices are in one-to-one correspondence with all
nontrivial submodules of M and two distinct vertices are adjacent if and only
if the corresponding submodules of M have zero intersection.

In this paper, motivated by [1] and works done about hypergraphs, we
introduce a new hypergraph assigned to a right R-module M . We define
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CIHR(M) as a hypergraph where the vertices are all nontrivial submodules
of M and a subset Ei with at least two elements of the set all nontrivial
submodules ofM is a hyperedge of CIHR(M) provided for each twoN,K ∈ Ei,
N ∩K 6= 0 and Ei is maximal with respect to this property. Connecting to
G(M), we can say Ei is a hyperedge in CIHR(M) if and only if Ei is a
maximal subset of V with respect to the property that the elements of Ei

form a complete subgraph of G(M).
In Section 2, we investigate some general properties of CIHR(M). We

provides a condition which ensure us CIHR(M) is connected. We also prove
that the diameter of CIHR(M) is at least 2. It is shown that a module M is a
direct sum of its each two nontrivial submodules if and only if CIHR(M) is null.
We also characterize finite modules with exactly three nontrivial submodules
via their co-intersection hypergraphs. According to the lattices of submodules
of a finite module, we provide all co-intersection hypergraphs of order four.

In Section 3, we present some examples of various co-intersection hyper-
graphs for finite modules.

All rings considered in this paper will be associative with an identity el-
ement and all modules will be unitary finite right modules unless otherwise
stated. Let R be a ring and M an R-module. We will use the notation N �M
to indicate that N is small in M (i.e. ∀L � M,L + N 6= M). Dually, a sub-
module K of M is essential in M (denoted by K ≤e M) provided K∩L 6= 0 for
each nonzero submodule L of M . Rad(M) and Soc(M) stand for the radical
of M and the socle of M , respectively.

Any unexplained terminologies related to modules and rings can be found
in [10] and we refer the readers to [9] for more information about graphs and
related concepts.

2 Properties of co-intersection hypergraphs of submod-
ules of modules

In this section we shall investigate some properties of the co-intersection hy-
pergraph of a module CIHR(M). We prove that a module M is a direct sum
of its each two nontrivial submodules if and only if CIHR(M) is null. We
also characterize finite modules with exactly three nontrivial submodules via
their co-intersection hypergraphs. According to the lattices of submodules of
a finite module, we provide all co-intersection hypergraphs of order four.

Definition 2.1. Let M be a finite right R-module. We define a co-intersection
hypergraph CIHR(M) on M where the vertices are all nontrivial submodules
of M namely V and a subset Ei of V with at least two elements, is a hyperedge
of CIHR(M) provided for each two N,K ∈ Ei, N ∩K 6= 0 and Ei is maximal
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with respect to this property.

We may view our definition as follows: Let M be a finite module and
V = {K < M | K 6= 0}. If we consider G(M), then any maximal subset Ei of
V where the elements of Ei form a complete subgraph of G(M), is a hyperedge
in CIHR(M). So we can say, the number of maximal subsets Ei of V , where
the elements of Ei form a complete subgraph of G(M) is equal to hyperedges
of CIHR(M).

The following provides an important characterization of modules such that
their corresponding co-intersection hypergraphs are null.

Theorem 2.2. Let M be a finite R-module and N a nontrivial submodule of
M . Then degCIHR(M)N = 0 if and only if M is a direct sum of its each two
nontrivial submodules.

Proof. Let N be a nontrivial submodule of M such that N belongs to no
hyperedge of CIHR(M). Suppose that K is a nontrivial submodule of M
different from N . Now, consider the submodule N + K of M . If N + K is
nontrivial, then N ∩ (N + K) 6= 0 which is a contradiction. It follows that
N+K = M . Note that N does not belong to a hyperedge of CIHR(M), implies
that N ⊕K = M . Therefore, N ⊕K = M for each nontrivial submodule K
of M . Let the intersection of N with any other nontrivial submodule of M be
zero. Hence, we conclude that N can not be contained in any other nontrivial
submodule. So that, N is maximal submodule of M . Consider a submodule
L of M such that L 6= N and L 6= K. Then N ⊕ L = M = N ⊕ K. As N
is maximal, then K and L are simple submodules of M . Since L 6= K and
both of them are simple, we conclude that L ∩K = 0. If L⊕K is nontrivial,
then N ⊕ (L ⊕K) = M . As M = N ⊕ L, we have L = L ⊕K which causes
a contradiction. Therefore, L⊕K = M . For the converse, suppose that N is
an arbitrary nontrivial submodule of M . As N ⊕K = M for each nontrivial
submodule of M , we have N ∩K = 0. Therefore, degCIHR(M)N = 0.

Corollary 2.3. Let M be a finite R-module. Then CIHR(M) is null if and
only if M is a direct sum of its each two nontrivial submodules.

Proof. Let M be finite such that CIHR(M) is null. Then for any nontrivial
submodule N of M , we have degCIHR(M)(N) = 0. The rest follows from
Theorem 2.2. Conversely, suppose that M is a direct sum of its each two
nontrivial submodules. Consider a nontrivial submodule N of M . Since N ⊕
K = M for each nontrivial submodule K of M different from N , we conclude
that N does not belong to any hyperedge of CIHR(M). Therefore, CIHR(M)
is null.
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Corollary 2.4. Let M be a finite right R-module. Then for every nontrivial
submodule of N of M , we have degCIHR(M)(N) 6= 0 if and only if M is not a
direct sum of its each two nontrivial submodules.

We next discuss about the connectivity of CIHR(M) and its diameter.

Theorem 2.5. Let M be a finite right R-module. If δ(CIHR(M)) ≥ 1, then
CIHR(M) is connected and d(CIHR(M)) ≤ 2.

Proof. Case 1: Suppose that M is not semisimple. Let N and K be two non-
trivial distinct submodules of M . If N and K belong to a same hyperedge,
then they are obviously connected. Otherwise, there are two distinct hyper-
edges Ei and Ej of CIHR(M) such that N ∈ Ei and K ∈ Ej . Since, M is
not semisimple and M is finite, Soc(M) is an essential submodule of M . That
means that Soc(M) is contained in both Ei and Ej . It follows that there is a
path N Ei Soc(M) Ej K from N to K.

Case 2: Let M be a semisimple finite right R-module. Since CIHR(M) is
not null, we conclude that lR(M) > 2. Let N and K be two nontrivial distinct
submodules of M . If N ∩ K 6= 0, then both belong to a same hyperedge.
Otherwise, N ∩K = 0. Consider the submodule N + K of M . If N + K is
proper, then N and N +K are included in a hyperedge Ei and K and N +K
belong to another hyperedge Ej . Then N −Ei− (N +K)−Ej −K is a path.
If M = N +K, then M = N ⊕K. As lR(M) > 2, we conclude that either N
is not a maximal submodule or K is not a maximal submodule. Suppose that
K is not maximal. So that K is contained properly in a nontrivial submodule
L of M . If N ∩ L = 0, we show that L ⊆ K. Suppose that l ∈ L is arbitrary.
Then l = n+ k where n ∈ N and k ∈ K. Then l− k = n which is an element
of N ∩ L = 0. It follows that l = n which implies that L ⊆ N , that will be
a contradiction. Hence, N ∩ L 6= 0. If we suppose N,L ∈ Et and L,K ∈ Es,
then N Et L Es K is a path from N to K. It is clear that in both cases
d(CIHR(M)) ≤ 2.

The following is an easy characterization for a module such that its co-
intersection hypergraph has just one hyperedge containing all nontrivial sub-
modules of that module.

Proposition 2.6. Let M be a finite right R-module with at least two nontriv-
ial submodules. Then CIHR(M) has only a hyperedge containing all nontrivial
submodules of M if and only if M is uniform.

Proof. Suppose that CIHR(M) has only a hyperedge E = {Mi | 0 6= Mi ≤
M}. Let N be a nontrivial submodule of M . Then N ∈ E, implies that
N ∩K 6= 0 for each nontrivial submodule K of M different from N . Therefore,
N is essential in M . For the converse, let M be uniform. It follows that, the
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intersection of each two nontrivial submodules of M is nonzero. Hence the
only hyperedge of CIHR(M) is the set of all nontrivial submodules of M .

We next characterize finite modules with three nontrivial submodules via
their co-intersection hypergraphs.

Theorem 2.7. Let M be a finite right R-module with three nontrivial sub-
modules. Then one of the following holds for M :

(1) M is linearly ordered. It means that submodules of M provide a chain.
In this case, CIHR(M) has a unique hyperedge E = {Soc(M),K,Rad(M)}:

M

Rad(M)

K

Soc(M)

{0}
CIHR(M) in this case is of the form:

Soc(M)
Rad(M)

K

(2) M is a uniform right R-module which is not linearly ordered. The sub-
modules ofM satisfy inH∩K = N = Soc(M) = Rad(M) and CIHR(M)
has a unique hyperedge E = {H,K,Rad(M) = Soc(N)}.

M

H K
N

{0}
CIHR(M) in this case is of the form:

H

N
K

(3) The module M is semisimple and all nontrivial submodules of M are
simple. In this case M can be written as a direct sum of each two
nontrivial submodules. Accordingly CIHR(M) is null.
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M

N K

H

{0}

(4) M is neither semisimple nor uniform. In this case, Soc(M) = N ⊕K =
H = Rad(M)�M , N ∩K = 0, and the lattice of submodules of M is:

M

N K

H

{0}
CIHR(M) in this case is of the form:

K

H

N

Proof. (1) Let M be a linearly ordered module. Then it is clear that sub-
modules of M form a chain, M must be uniform and CIHR(M) has a unique
hyperedge E = {Soc(M),K,Rad(M)}.

(2) Suppose that M is uniform but it is not a linearly ordered module.
Then, there are two nontrivial submodules of M namely H and K such that
H * K and K * H. Being M uniform implies H ∩ K must be the third
nontrivial submodule namely N . Therefore, H and K are both maximal in M
and N is the only simple submodule of M , so that Rad(M) = Soc(M) = N .
As M is uniform, CIHR(M) has a unique hyperedge E = {Soc(M), H,K}.

(3) Let M be semisimple. Consider the nontrivial submodules N , H and K
of M . Suppose that N ⊕H = M . Then K⊕N = M or K⊕H = M . Suppose
that K ⊕ N = M . We show that K ∩H = 0. Otherwise, let H ∩K 6= 0. If
H ∩K = N , then N must be contained in H, a contradiction. If H ∩K = H,
then H is a direct summand of K as M is semisimple. Therefore, H⊕N = K
which causes a contradiction. The case H ∩ K = K is the same. Now,
consider the submodule H + K of M . If H + K = N , then H ∩ N 6= 0, a
contradiction. The cases H + K = H and H + K = K imply contradictions.
Hence H ⊕K = M . Note that, if K ⊕H = M then by a same argument as
above we can conclude that K ⊕N = M . Altogether we come to a conclusion
that CIHR(M) is null.
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(4) Suppose that M is neither uniform nor semisimple. Since M is finite
and is not a semisimple module, then Soc(M) is an essential submodule of M .
It follows that Soc(N) = N ∩Soc(M) 6= 0 and Soc(K) = K∩Soc(M) 6= 0. As
M is not uniform, thenN∩K = 0. HavingM just three nontrivial submodules,
we conclude that N,K ⊆ Soc(M). Therefore, H = Soc(M) = N ⊕K, since
N ⊕K is a proper submodule of M . It is clear that M has just one maximal
submodule that must be Soc(M). Hence, Rad(M) = Soc(M). Note that in
this case, CIHR(M) has just two hyperedges {H,N} and {H,K}.

Corollary 2.8. Let M be a finite R-module with exactly three nontrivial sub-
modules H1, H2 and H3. Then CIHR(M) either has just one hyperedge of the
form {H1, H2, H3} or CIHR(M) has two hyperedges {H1, H3} and {H2, H3}
or CIHR(M) is a null hypergraph.

The following includes examples of modules satisfying conditions in Theo-
rem 2.7.

Example 2.9. (1) Let K be a field. Consider the ring R = {
(
a b
0 c

)
|

a, b, c ∈ K}. Then the bimodule RRR = M has exactly three nontrivial

submodules H = {
(
a b
0 0

)
| a, b ∈ K}, K = {

(
0 b
0 c

)
| b, c ∈ K} and

N = {
(

0 b
0 0

)
| b ∈ K}. Then H and K are maximal submodules of M

and N = H ∩K = Rad(M) = Soc(M). Also, M is uniform and CIHR(M)
has a unique hyperedge {Soc(M), H,K} (case 2 of Theorem 2.7).

(2) Let R = {
(
a b
0 c

)
| a ∈ Z4, b, c ∈ Z2}. Consider the R-module M =

{
(
a b
0 0

)
| a ∈ Z4, b ∈ Z2}. Then M has just three nontrivial submodules

N = {
(
a 0
0 0

)
| a = 0, 2}, K = {

(
0 b
0 0

)
| b = 0, 1} and H = {

(
a b
0 0

)
|

a = 0, 2, b = 0, 1}. Then N ∩K = 0, N,K ⊆ H, N ⊕K = H = Rad(M) =
Soc(M)(case 4 of Theorem 2.7).

Let M be a finite module with exactly four nontrivial submodules. We next
show that CIHR(M) can not have just two hyperedges {N,K} and {H,L}.
Proposition 2.10. Let M be a finite right R-module with four nontrivial
submodules N,K,L,H. Then CIHR(M) can not have two hyperedges {N,K}
and {H,L}.
Proof. Let M be finite right R-module with four nontrivial submodules
N,K,L,H. On the contrary, suppose that CIHR(M) has just two hyperedges
{N,K} and {H,L}.
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Case 1: Let M be semisimple. Since CIHR(M) is not null, we conclude
that lR(M) ≥ 2. As {N,K} is a hyperedge in CIHR(M), N ∩K 6= 0. As M is
semisimple, N ∩K is a direct summand of N . It follows that (N ∩K)⊕L = N
or (N ∩ K) ⊕ H = N . Note that either N ⊕ H = M or N ⊕ L = M . If
(N ∩ K) ⊕ L = N , then N ⊕ H = M that is a contradiction. Otherwise, if
(N ∩K)⊕H = N implies N ⊕ L = M which contradicts L ∩H 6= 0.

Case 2: Suppose that M is not semisimple. It follows that Soc(M) is an
essential submodule of M and hence Soc(M) must be included in each of two
hyperedges of CIHR(M). It will be a contradiction.

Proposition 2.11. Let M be a finite right R-module with exactly four non-
trivial submodules. Then M is semisimple if and only if M can be written as a
direct sum of each two nontrivial distinct submodules. In this case, CIHR(M)
is null.

Proof. LetN,L,H,K be only nontrivial submodules ofM . SinceM is semisim-
ple, then M = N ⊕ T for T ∈ {L,H,K}. Suppose that T = L. If N is not
simple, there exists P � N , and so N = P ⊕Q since N is semisimple. Clearly,
P 6= Q and P,Q 6∈ {L,N}. Hence, it can be assumed that P = H and
Q = K. Since M has just four nontrivial submodules, then L must be sim-
ple. Thus, M = H ⊕ K ⊕ L where K ⊕ L is a submodule of M such that
K ⊕ L 6∈ {N,H,K,L}, which is a contradiction. Hence, N is simple. By a
similar argument, we can show L is simple. Moreover, similarly, it can be
shown that M = H ⊕ T for T ∈ {N,K,L}. To sum up, CIHR(M) is null.
The converse is straightforward.

Remark 2.12. According to lattice of submodules of a finite module M with
four nontrivial submodules, we have the following cases:

(1) M is a linearly ordered module:
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M

Rad(M)

K

N

Soc(M)

{0}
CIHR(M) in this case is of the form:

N

Rad(M)

K

Soc(M)

In this case CIHR(M) has a unique hyperedge containing all nontrivial
submodules. For example consider the Z-module Z32.

(2) M is uniform while it is not linearly ordered. By the lattice of submod-
ules, Rad(M) is the only maximal submodule of M and Soc(M) is the
only simple submodule of M :

M

Rad(M)

KN
Soc(M)

{0}

N

Rad(M)

K

Soc(M)

In this case CIHR(M) has a unique hyperedge containing all nontrivial
submodules.

(3) M is uniform and it is not linearly ordered. According to the lattice, L
and K are two maximal submodules of M :
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M

L K
Rad(M)

Soc(M)

{0}

L

Rad(M)

K

Soc(M)

In this case CIHR(M) has a unique hyperedge containing all nontrivial
submodules.

(4) L and N are two maximal submodules of M and Rad(M) = L∩N = K.
Also, H and K are simple submodules of M and Soc(M) = H⊕K = L.
As an example we can consider the Z-module Z12.

M

L N

K

H
{0}

CIHR(M) in this case is of the form:

N

L
K

H

(5) The module M is neither semisimple nor uniform. According to the lat-
tice, Rad(M) = L is a maximal submodule ofM , Soc(M) = H⊕N⊕K =
L, and H ∩N = H ∩K = N ∩K = 0 such that H, N and K are simple
submodules of M :
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M

L

H K

N

{0}
CIHR(M) in this case is of the form:

L

N

K

H

(6) Applying the lattice of submodules of M , we conclude that Rad(M) = L
is a maximal submodule of M , Soc(M) = H ⊕K = N , and H ∩K = 0
such that H and K are simple submodules of M :

M

L

N

H K
{0}

CIHR(M) in this case is of the form:

N

H

K

L

(7) According to the lattice, M is uniform, Soc(M) = H is a simple sub-
module of M and Rad(M) = N ∩K ∩L = H such that N , K and L are
maximal submodules of M :

M

K
N L

H

{0}

H

L

N

K



ON CHARACTERIZATION OF FINITE MODULES BY HYPERGRAPHS 243

In this case, CIHR(M) has a unique hyperedge containing all nontrivial

submodules. For example consider M = R = Z2[x,y]
<x2,y2> .

(8) M is semisimple. M = H ⊕N = H ⊕K = H ⊕ L = N ⊕K = N ⊕ L =
K ⊕L, for maximal submodules H, N , K and L of M (we can consider
the Z-module Z3 ⊕ Z3):

M

N KL H
{0}

CIHR(M) in this case is null.

3 Examples of co-intersection hypergraphs of submod-
ules of a module

Example 3.1. Consider the Z-module Zp3q where p and q are distinct prime
numbers such that p < q. Then all nontrivial submodules are K1 =< p2q >,
K2 =< p3 >, K3 =< pq >, K4 =< p2 >, K5 =< q > and K6 =< p >.
Then we have E = {{K1,K3,K4,K5,K6}, {K2,K4,K6}} and the hypergraph
CIHZ(Zp3q) has the form:

K4

K1

K6

K2

K3

K5

Example 3.2. All nontrivial submodules of the Z-module Zpqr (where p, q, r
are prime numbers and p < q < r) are H1 =< qr >, H2 =< pr >,
H3 =< pq >, H4 =< r >, H5 =< q > and H6 =< p >. Then we have
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E = {{H1, H4, H5}, {H2, H4, H6}, {H3, H5, H6}, {H4, H5, H6}} and the hyper-
graph CIHZ(Zpqr) has the form:

H1H2

H3

H4

H5

H6

Example 3.3. Consider the semisimple Z-module M = Z3⊕Z3. Then H1 =
{(0, 0), (0, 1), (0, 2)}, H2 = {(0, 0), (1, 0), (2, 0)}, H3 = {(0, 0), (1, 1), (2, 2)}
and H4 = {(0, 0), (1, 2), (2, 1)} are all nontrivial submodules of M . Hence,
the hypergraph CIHZ(M) is null.

Example 3.4. Consider the Z-module M = Z2 ⊕ Z4 where the nontrivial
submodules are:
H1 = {(0, 0), (0, 1), (0, 2), (0, 3)}, H2 = {(0, 0), (1, 1), (0, 2), (1, 3)},
H3 = {(0, 0), (1, 0)}, H4 = {(0, 0), (1, 2)}, H5 = {(0, 0), (0, 2), (1, 0), (1, 2)}
and H6 = {(0, 0), (0, 2)}. Hence, E = {{H1, H2, H5, H6}, {H3, H5}, {H4, H5}},
and the hypergraph CIHZ(M) has the form:

H1

H5 H2

H4

H3

H6
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Example 3.5. Consider the Z-module M = Z2⊕Z6 where all nontrivial sub-
modules are:
H1 = {(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5)}, H2 = {(0, 0), (0, 2), (0, 4)},
H3 = {(0, 0), (0, 3)}, H4 = {(0, 0), (1, 0)}, H5 = {(0, 0), (0, 2), (1, 1), (1, 3), (0, 4), (1, 5)}
and H6 = {(0, 0), (1, 2), (0, 4), (1, 0), (0, 2), (1, 4)}. Hence,
E = {{H1, H3}, {H4, H6}, {H1, H2, H5, H6}}, and the hypergraph CIHZ(M)
has the form:

H5

H6 H1
H3

H4
H2
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