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Complete parts and subhypergroups in
reversible regular hypergroups

V. Leoreanu-Fotea, P. Corsini, A. Sonea and D. Heidari

Abstract

In this paper we analyse the center and centralizer of an element in
the context of reversible regular hypergroups, in order to obtain the class
equation in regular reversible hypergroups, by using complete parts. Af-
ter an introduction in which basic notions and results of hypergroup
theory are presented, particularly complete parts, then we give several
properties, characterisations and also examples for the center and cen-
tralizer of an element for two classes of hypergroups. The next para-
graph is dedicated to hypergroups associated with binary relations. We
establish a connection between several types of equivalence relations, in-
troduced by J.Jantosciak, such as the operational relation, the insepara-
bility and the essential indistin-guishability and the conjugacy relation
for complete hypergroups. Finally, we analyse Rosenberg hypergroup
associated with a conjugacy relation.

1 Introduction

We present some basic notins and results in Hypergroup theory, which was
introduced in 1934 by F. Mary and is developing nowadays especially for its
applications, see [8] by P. Corsini and V. Leoreanu. Also the theoretical point
of view is analysed in hundreds of papers of hyperstructures and several books,
such as [4] by P. Corsini or [12] by B. Davvaz.
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In this paper we analyse some important subhypergroups, such as the
centralizer of an element, the center of a hypergroup in the context of reversible
re-gular hypergroups, by using complete parts. The center of a reversible
regular hypergroup was already introduced in [15], but we propose here an
easier equivalent definition and obtain some new results using it. The heart of
re-gular reversible hypergroups was studied in [16]. The center and centralizer
of an element were studied in poligroups by B. Davvaz, see [12] and analysed
in other papers by A. Hokmabadi et al, see[13]. The last part of the paper
presents new results on hypergroups associated with binary relations.

Complete hypergroups, introduced in [9] are reversible regular hypergroups.
An important class of complete hypergroups are hypergroups of associativity,
introduced in [2]. They are the fist kind of complete hypergroups ever intro-
duced.

Complete parts were introduced by M. Koskas and subsequently analysed
by P. Corsini, I. Sureau, M. de Salvo, R. Migliorato. The following results can
be found in [4] or [8].

A subset A of a hypergroup H is called complete if the following implication
holds:

∀n ∈ N∗,∀x1, x2, ..., xn ∈ H,
n∏
i=1

xi ∩A 6= ∅ ⇒
n∏
i=1

xi ⊆ A.

If A is a nonempty subset of H, then the intersection of all complete parts
of H, which contain A is called the complete closure of A in H and it is denoted
by C(A).

The heart ωH of a hypergroup (H, ·) is the kernel of the canonical projection
p : H → H/β, p(x) = β(x), where β is an equivalence relation defined in H
as follows:

xβy ⇐⇒ ∃n ∈ N∗,∃z1, z2, ..., zn ∈ H : {x, y} ⊆
∏n
i=1 zi.

Notice that the quotient H/β is a group and ωH is the smallest subhyper-
group, complete part of H, with respect to inclusion.

If A is a nonempty subset of H, one has C(A) = ∪a∈AC(a) and moreover,
C(A) = ωH · A = A · ωH . Hence if a, b ∈ H then C(ab) = C(a)C(b), that is
abωH = aωHbωH .

A regular hypergroup (H, ·) is a hypergroup with identities and such that
all elements have inverses. Denote by i(a) the set of inverses of an element a of
H. Since ωH is a closed subhypergroup, it follows that i(u) ⊆ ωH for u ∈ ωH .

A regular hypergroup (H, ·) is called reversible if for all x, y, z ∈ H such
that x ∈ y ·z it follows that y ∈ x ·z′ and z ∈ y′ ·x for some y′ ∈ i(y), z′ ∈ i(z).

A nonempty set A of H is normal if for all a ∈ H, we have a ·A = A · a.
This paper is organized as follows: the first section containes results about

complete parts in reversible regular hypergroups, in the second section we
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introduce the center of a reversible regular hypergroup and the centralizer of
an element and we give some examples. The last section presents some new
results about hypergroups associated with binary relations, more exactly we
analyse Rosenberg hypergroup for the conjugacy relation.

2 Complete parts in reversible regular hypergroups

In what follows, we consider (H, ·) a reversible regular hypergroup.
First of all, in [11] (Theorem 4.2.7 and 4.2.11) it is proved that C(a) = β(a).

This fact can be proved independently as follows.

Lemma 1. Let H be a hypergroup. Then C(a) = β(a), for all a ∈ H.

Proof. Let (H/β,⊗) be the fundamental group of H and x ∈ C(a). So there
exists w1 ∈ ωH such that x ∈ w1a. Thus β(x) = β(w1) ⊗ β(a) = β(a) and
hence x ∈ β(a).

Conversely, let x ∈ β(a). Then there exist z1, z2, . . . , zn such that the
next relation holds on {a, x} ⊆

∏n
i=1 zi. Thus a ∈

∏n
i=1 zi ∩ C(a) implies

x ∈ C(a).

According to the previous lemma we have C(ab) = β(x) for every x ∈ ab.

From the above Lemma we obtain the next result as a corollary:

Lemma 2. Let a, b, c, d be elements of H.

i) If C(a) ∩ C(b) 6= ∅ then C(a) = C(b);

ii) If C(a) ∩ C(bcd) 6= ∅ then a ∈ C(bcd);

iii) If C(ab) ∩ C(cd) 6= ∅ then C(ab) = C(cd);

iv) If C(
∏n
i=1 ai) ∩ C(

∏m
i=j bj) 6= ∅ then C(

∏n
i=1(ai) = C(

∏m
i=j bj).

Remark 3. {C(a) | a ∈ H} = {C(ai)}ri=1 is a partition of H.

Let us define now the following relation in H :

a ∼ b ⇐⇒ ∃c ∈ H : C(ca) = C(bc).

Theorem 4. The relation ” ∼ ” is an equivalence relation.
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Proof. For c = a we obtain the reflexivity. For symmetry, let c ∈ H be such
that C(ca) = C(bc). We check that there is d ∈ H such that C(db) = C(ad). We
have cac′ωH = bωH , where c′ ∈ i(c). Hence, c′cac′ωH = c′bωH , which means
that ac′ωH = c′bωH . Hence take d = c′ and we get the conclusion.

Let us check now the transitivity. Let d, e ∈ H be such that daωH = bdωH
and ebωH = ceωH . We find an element f ∈ H such that faωH = cfωH .
Set d′ ∈ i(d) and e′ ∈ i(e). We have dad′ωH = bωH and e′ebωH = e′ceωH .
Hence dad′ωH = e′ceωH , whence daωH = e′cedωH , so edaωH = cedωH . There
are f, f1 ∈ ed such that f1aωH ∩ cfωH 6= ∅. But fβf1, so fωH = f1ωH .
Hence faωH ∩ cfωH 6= ∅ and according to previous Lemma, iii) we have
faωH = cfωH .

Thus ” ∼ ” is an equivalence relation in H.

Denote by [a] the conjugacy class of an element a of H. We have

[a] = {b ∈ H | ∃c ∈ H : C(ca) = C(bc)},

or equivalently, by Lemma 2, ii)

[a] = {b ∈ H | ∃c ∈ H : b ∈ C(cac′),where c′ ∈ i(c)},

whence
[a] =

⋃
c∈H,c′∈i(c)

C(cac′).

Theorem 5. Let u ∈ cac′, where c′ ∈ i(c). Then C(cac′) = C(u).

Proof. It follows from Lemma 1.

3 The center of a reversible regular hypergroup and the
centralizer of an element

Definition 6. Let (H, ·) be a reversible regular hypergroup. The following set

Z(H) = {a ∈ H | ∀b ∈ H, C(ab) = C(ba)}

is called the center of H.

Theorem 7. Z(H) is a complete part and a normal subhypergroup in a re-
versible regular hypergroup H.
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Proof. Let a1, a2 ∈ Z(H) and a ∈ a1a2. So, C(a1b) = C(ba1), C(a2b) = C(ba2).
We have C(ab) ⊆ C(a1a2b) = C(ba1a2) whence there exists t ∈ a1a2, such that
C(ab)∩C(bt) 6= ∅ and according to Lemma 2, iii) we have the following equality
C(ab) = C(bt) = C(ba) since a, t ∈ a1a2 so aβt, that is C(a) = C(t). Hence Z(H)
is a subsemihypergroup of H.

Let us check now that Z(H) ⊆ a1Z(H).Moreover, we show that if a2 ∈ a1c,
then c ∈ Z(H), which means that Z(H) is a closed subhypergroup. From
a2 ∈ a1c it follows that c ∈ a′1a2 for some a′1 ∈ i(a1). Clearly, a′1 ∈ Z(H),
whence c ∈ Z(H).

Notice that ωH ⊆ Z(H), hence Z(H) is a complete part subhypergroup of
H.

Finally, check that xZ(H) = Z(H)x, for all x ∈ H. Let t ∈ xa, where a is
an whichever element of Z(H). Then t ∈ C(xa) = C(ax), whence there exists
u ∈ ωH such that t ∈ uax. But ua ⊆ Z(H), which means that t ∈ Z(H)x.
Similarly, we obtain the inverse inclusion, hence Z(H) is normal.

Corollary 8. The quotient H/Z(H) is a group.

Remark 9. If Z(H) = H, then the quotient group H/β is commutative. This
does not mean that H is commutative, as we can see in the first example of
Section 4.

The following example satisfies the above Remark.

Example 10. Consider H = ({1, 2}, ◦) where ◦ defines as

◦ 1 2
1 1 2
2 {1, 2} {1, 2}

Then H is the smallest non-commutative hypergroup such that Z(H) = H.

Remark 11. For all a ∈ Z(H), [a] = C(a).

Indeed, we have Z(H) = {a ∈ H | ∀b ∈ H,∀b′ ∈ i(b), C(a) = C(bab′)}.

Definition 12. Let a be an element of a reversible regular hypergroup. The
following set

CH(a) = {b ∈ H | C(ab) = C(ba)}

is called the centralizer of a in H.

In a similar way as for Theorem 4, it can be checked the next result:
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Theorem 13. For all a ∈ H, CH(a) is a subhypergroup of H.

The centralizer of an element was introduced in [15]. We propose here an
easier definition, which is equivalent to that one given in [15].

Definition 14. (see [15]) Let (H, ·) be a reversible regular hypergroup and
x ∈ H. The set

CH(x) = {t ∈ H | ∃n ∈ N,∀i ∈ In = {1, 2, ..., n},∃gi ∈ H,

t ∈
n∏
i=1

gi : ∀i ∈ In,C(gix) ∩ C(xgi) 6= ∅}

is called the centralizer of x in H.

Theorem 15. Definitions 12 and 14 are equivalent.

Proof. First of all, we notice that the condition C(gix) ∩ C(xgi) 6= ∅ is equiv-
alent to C(gix) = C(xgi), according to Lemma 2, iii). So C(

∏n
i=1 gix) =

C(x
∏n
i=1 gi), hence C(tx) ⊆ C(

∏n
i=1 gix) = ∪v∈∏n

i=1 gi
C(xv), which means

there exist v ∈
∏n
i=1 gi for which C(tx) ∩ C(xv) 6= ∅. By Lemma 2, iii) we get

C(tx) = C(xv) = C(xt), since vβt. Thus, Definition 12 implies Definition 14.
Conversely, let t ∈ H be such that C(tx) = C(xt). Consider g1 = t and

so t ∈ CH(x), defined by Definition 14. Therefore, Definitions 12 and 14 are
equivalent.

Let us see now what the class equation becomes for reversible reugular hy-
pergroups. For all a ∈ H, the conjugacy class of a is [a] =

⋃
c∈H,c′∈i(c) C(cac′).

Theorem 16. Let c, d ∈ H, c′ ∈ i(c), d′ ∈ i(d). Then C(cac′) = C(dad′) if
and only if cCH(a) = dCH(a).

Proof. Indeed, we have C(cac′) = C(dad′) if and only if C(d′ca) = C(ad′c),
which is equivalent to C(va) = C(av), for all v ∈ d′c, according to Lemma
2,iii), which means that d′c ⊆ CH(a). So, c ∈ dd′c ⊆ dCH(a). Similarly,
d ∈ cCH(a), hence cCH(a) = dCH(a).

Notice that, if C(cac′) ∩ C(dad′) 6= ∅, then C(cac′) = C(dad′), according to
Lemma 2, iv).

If H be a finite reversible regular hypergroup, then we have

|H| = |{[a] | a ∈ H}|.



COMPLETE PARTS AND SUBHYPERGROUPS IN REVERSIBLE REGULAR
HYPERGROUPS 225

If a ∈ Z(H), then [a] = C(a) = aωH .
If a ∈ H − Z(H), then [a] =

⋃
c∈H,c′∈i(c),u∈cac′ C(u).

Hence we obtain again the partition {C(ai)}ri=1 of H.

Therefore, the class equation in reversible regular hypergroups becomes at
the end

|H| =
r∑
i=1

|C(ai)| =
r∑
i=1

|aiωH |.

Now, we analyse two noncommutative reversible regular hypergroups, given
in [4] and we find the center and the centralizer of an element for each of them.

Example 17. Let (H, ·) be a hypergroup. Let G be a group and {Ai}i∈G be a
family of nonempty sets such that A1 = H, where 1 is the identity of G and
Ai ∩Aj = ∅ for different indexes i, j ∈ G.

Set K = ∪i∈GAi and consider the following hyperoperation in K :

∀(x, y) ∈ H2, x ◦ y = xy, the hyperproduct in H

∀(x, y) ∈ Ai ×Aj , if (i, j) 6= (1, 1)and ij = k, x ◦ y = Ak.

Then (K, ◦) is a hypergroup, called (H,G)-hypergroup.

We have ωK = H. If H is a reversible regular hypergroup, then K is regular
and reversible, too. The identities of K are exactly the identities of H and if
a ∈ Ai, i 6= 1, then i(a) = Ai−1 .

Clearly, ωK = H ⊆ Z(K). If a ∈ Z(K) then for all b ∈ K we have
abH = baH. Suppose a ∈ Ai, i 6= 1 and take b ∈ Aj . This means that ij = ji,
for all j ∈ G if and only if i ∈ Z(G).

We obtain the following result:

Proposition 18. If (K, ◦) is a (H,G)-hypergroup, then

i) Z(K) = ∪{Ai | i ∈ Z(G)}.

ii) If a ∈ H, then CK(a) = K. If a ∈ Ai, i 6= 1 then CK(a) = ∪j∈CG(i)Aj .

Notice that if G is commutative, then Z(K) = K, which means that K/βK
is a commutative group, but K is not necessary a commutative hypergroup.
Indeed, K is commutative if and only if G and H are both commutative.

Also, notice that CK(a) = K means that βK(a) commutes with all elements
of K/βK . It is possible that a does not commute with all elements of H.
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Example 19. Let (H, ·) be a hypergroup and {A(x)}x∈H be a family of nonempty
sets, such that ∀(x, y) ∈ H2, x 6= y we have A(x) ∩A(y) = ∅.

Set KH = ∪x∈HA(x) and define ∀a ∈ KH , g(a) = x ⇐⇒ a ∈ A(x).
Consider the following hyperoperation in KH :

∀(a, b) ∈ K2
H , a ◦ b = ∪z∈g(a)g(b)A(z).

Then (KH , ◦) is a hypergroup.

If H is a reversible regular hypergroup, then KH is also regular and re-
versible.

If P is a nonempty subset of H, denote K(P ) = ∪x∈PA(x).
Then the set of identities E(KH) of KH is K(E(H)), while the heart

ωKH = K(ωH).
For all a ∈ KH , we have i(a) = K(i(g(a))) = g−1(i(g(a)).

By a direct check, we obtain:

Proposition 20. If (KH , ◦) is the hypergroup defined above, then

i) Z(KH) = K(Z(H)).

ii) If a ∈ KH , then CKH (a) = K(CH(g(a))).

4 Hypergroups associated with binary relations

First, we recall a representation theorem for complete hypergroups. In a com-
plete hypergroup all hyperproducts are complete parts.

Theorem 21. A hypergroup H is complete if and only if H = ∪
g∈G

Ag, where

G and Ag satisfy the conditions:
1) (G, ·) is a group;
2) for all (g1, g2) ∈ G2, g1 6= g2, we have Ag1 ∩Ag2 = ∅;
3) if (a, b) ∈ Ag1 ×Ag2 , then a ◦ b = Ag1g2 .

If G is a commutative group, then H is a complete commutative hyper-
group, that is a join space.

J. Jantosciak [14] associated three equivalence relations with an arbitrary
hypergroup (H, ◦). These equivalence relations were analysed in [10]. Let us
recall them.

The operational relation, denoted by ” ∼o ” , is defined as follows:

x ∼o y ⇔ a ◦ x = a ◦ y; x ◦ a = y ◦ a; ∀ a ∈ H.
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The inseparability, denoted by ” ∼i ”, as follows:

x ∼i y ⇔ for a, b ∈ H, x ∈ a ◦ b⇔ y ∈ a ◦ b.

The essential indistinguishability, denoted by ” ∼e ”

x ∼e y ⇔ x ∼o y and x ∼i y.

Denote by x̂o, x̂i, x̂e the equivalence class of x with respect to ” ∼o ”, ” ∼i ”,
” ∼e ”, respectively.

We intend to establish a connection between these equivalence relations
and the conjugacy relation, defined in section 2, in the context of complete
hypergroups.

We give first some results.

Proposition 22. If (H, ◦) is a complete hypergroup and G is the associated
group of H, according Theorem 21, then :

x̂o = x̂i = x̂e = Axg , where g ∈ G and x ∈ Ag.

Proof. Let H be a complete hypergroup and G be the associated group, such
that |G| = n, n ∈ N∗ and Agi , i = 1, n are the associated nonempty subsets,
by Theorem 21. Let (x, y) ∈ H2 be such that x ◦ a = y ◦ a and a ◦ x = a ◦ y,
for all a ∈ H. Since H is a complete hypergroup, it follows that for x ∈ H
there is a unique g1 ∈ G such that x ∈ Ag1 and for y ∈ H there is a unique
g2 ∈ G such that y ∈ Ag2 . Finally, for a ∈ H there is a unique ga ∈ G such
that a ∈ Aga Hence

Ag1ga = Ag2ga ⇒ g1 = g2 ⇒ {x, y} ⊆ Ag1 .

Therefore, x ∼o y if x and y belong to the same set.
Clearly, for x, y ∈ Ag it follows that x ∼o y. Hence, x̂o = Axg , where g ∈ G

and x ∈ Ag. In a similar way, we reason for relation ” ∼i ”

In what follows, we associate the Rosenberg hypergroup to the complete
hypergroup H, with respect to conjugacy relation” ∼H ”, redenoted by ρ .

Let (Hρ, ◦ρ) be the Rosenberg hypergroup, for which the hyperoperation
” ◦ρ ” is defined as follows:

x ◦ρ y = {z ∈ H| (x, z) ∈ ρ or (y, z) ∈ ρ}. (1)

We intend to analyse what relations ” ∼o ”, ” ∼i ”, ” ∼e ” become in the
context of Rosenberg hypergoup and to establish a connection with ρ, defined
in a complete hypergroup H. Rosenberg found conditions on R, such that HR

is a hypergroup or a join space.
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Theorem 23. HR is a hypergroup if and only if:
1) D(R) = H;
2) R(R) = H;
3) R ⊆ R2;
4) (a, x) ∈ R2 ⇒ (a, x) ∈ R, for any x an outer element of R.

Let

P = {x ∈ H| x /∈ x ◦ x}; (2)

K = {e ∈ H| P ⊂ e ◦ e}.

Theorem 24. HR is regular if and only if K 6= ∅ .

Theorem 25. If K 6= ∅ and R is symmetric, then HR is a regular reversible
hypergroup.

Remark 26. The hypergroup (Hρ, ◦ρ) is regular and reversible according to
Theorems 24 and 25.

Therefore,

x ∼oρ y ⇔ a ◦ρ x = a ◦ρ y; x ◦ρ a = y ◦ρ a; ∀ a ∈ Hρ.

Proposition 27. Let (Hρ, ◦ρ) be the hypergroup associated with the complete
hypergroup H. We have

x ∼oρ y if and only if (x, y) ∈ ρ.

Proof. Denoting the he ρ-equivalence class of x by x̂ρ , we have x◦ρy = x̂ρ∪ŷρ.
So, we have x ∼oρ y iff âρ∪ x̂ρ = âρ ∪ ŷρ, for every a ∈ H. This is clearly
equivalent to x̂ρ = ŷρ. In conclusion (x, y) ∈ ρ.

Proposition 28. Let (Hρ, ◦ρ) be the hypergroup associated with a complete
hypergroup H. Then

x ∼i y, if and only if (x, y) ∈ ρ.

Proof. x ∼i y if and only if for a, b ∈ H, x ∈ a ◦ρ b ⇔ y ∈ a ◦ρ b. So,

x ∈ âρ ∪ b̂ρ ⇔ y ∈ âρ ∪ b̂ρ for all a, b ∈ H. This implies it is equivalent to the
condition x ∈ âρ ⇔ y ∈ âρ for all a ∈ H, which holds if and only if xρy.

Remark 29. Propositions 27 and 28 hold for all equivalence relations.
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