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Nearest neighbor estimates of Kaniadakis
entropy

Ioana Dănilă-Cernat

Abstract

The aim of this paper is to develop new nonparametric estimators of
entropy based on the kth nearest neighbor distances that are considered
between n sample points, k ≤ (n− 1) being a positive integer, fixed.
The Method consists in using the new estimators which were useful in
order to evaluate the entropies for random vectors. As results, using the
Kaniadakis entropy measure, the asymptotic unbiasedness and consis-
tency of the estimators are proven.

Keywords:Kaniadakis entropy, estimator, kth- nearest neighbor, variance, dis-
tribution.

1 INTRODUCTION

k-nearest neighbor (k-NN) has become a popular and powerful idea that can be used
as a technique for nonparametric density information, which takes as a function of
the training data, the region volume.
This method has been firstly developed by Evelyn Fix and Joseph Hodges back in
1951. It is used both for classification and regression. The input embodies the k-
closest training samples in the data set. In the k-NN classification, the function is
approximated locally.
When k=1, we see the nearest neighbor due to the fact that the considered class is
the closest training sample.
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Information measures and their variants can be applied in numerous data science
domains such as causal inference, computational biology, sociology even. Mutual in-
formation is a well-established concept in information theory, one can quantify the
mutual dependence between two variables by using it.
Regarding more pratical reasons, Beirlant et al. (2001) gave in [4] and overview of
several methods used for the nonparametric estimation for the differential entropy of
a random variable which is continuous. The properties of these methods were com-
pared and application were given, among which we can mention the goodness-of fit
test, the parameter estimation, spectral estimation and also the quantization theory.
In [23], Singh et al. (2003), investigated for standard distributions the performance of
the proposed estimators in the case of finite samples using simulations of type Monte-
Carlo. The estimators were applied in order to estimate the entropy of the internal
rotation in a methanol molecule, which was characterized by a one-dimensional ran-
dom vector and also, for diethyl ether, which was described by a four-dimensional
random vector. In [11] Lefvre et al. used the Monte-Carlo control technique to reduce
training over-fitting and to improve robustness to semnatic noise in the user input.
This uses a database of belief vector prototypes in order to choose the optimal system
action.
A locally weighted k-nearest neighbor scheme is instituted to smooth the decision
process by interpolating the value function, which resulted in higher user simulation
performance.
The recent papers concerning the Markov models and different classes of distributions
could be of use for our research, such as: Barbu [2] that defined in a discrete-time
semi-Markov model and proposed a computation procedure for solving the correspond-
ing Markov renewal equation, which is necessary for all the reliability measurements.
Then, the reliability and its related measures were computed, and the results were
applied to a three-state system. In 2014 Preda et al. constructed in [18] the mini-
mal entropy martingale for semi-Markov regime switching interest rate models using
some general entropy measures.
They proved that, for the one-period model, the minimal entropy martingale for semi-
Markov processes in the case of the Tsallis and Kaniadakis entropies are the same
as in the case of Shannon entropy.
Panait [13] introduced a weighted entropic copula from preliminary knowledge of de-
pendence. It has been considered a copula with common distribution, based on which
was then formulated the weighted entropy dependence model (WMEC). An approx-
imator for the copula function for the studied problem and asymptotical properties
regarding the unknown parameters of the model were determined.
In [3] Barbu, Karagrigoriu and Makrides were interested in a general class of distri-
butions for independent (yet not necessarily identically distributed) random variables,
closed under minima, in which the main parameter involved has been assumed to be
time varying with several possible modeling options. It concerns the reliability and
survival analysis for describing the time to event or failure. The maximum likelihood
estimation of the parameters was addressed and the asymptotic properties of the es-
timators were discussed.
In 2009, Sricharan, Raich and Hero [26] analyzed a kth nearest neighbor class of plug
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in estimators for estimating the Shannon and Rnyi entropy and derived explicit rates
for the bias and variance of these plug-in estimators based on sample size and the
underlying probability distribution. They also established a central limit theorem for
these plug-in estimators that allow the specification of the confidence intervals on the
entropy functionals. They used the created theory in an application regarding anoma-
lies detection problems to specify thresholds in order to achieve desired false alarm
rates. In the same year, Debreuve [7] solved various image and video processing tasks
by handling the features is the same way, for both low and high-dimensions with the
help of kth nearest neighbor estimators.
In 2011, Li et al. proposed in [12] a consistent entropy estimator for hyperspherical
data, based on the kth nearest neighbor approach. Simulation studies were conducted
to evaluate the performance of the estimators for models such as uniform distribution
of von Mises-Fisher distributions.
In simulations, the k-NN entropy estimator was compared with the moment based
counterpart and the results showed that the two methods were indeed, comparable.
Zamanzade et al. [29] introduced two new estimators that were used for the entropy
estimation in the case of absolutely continuous random variables. They compared
them with the first existing entropy estimators, such as the ones proposed by Dim-
itriev and Tarasenko [On the estimation functions of the probability density and its
derivatives, Theory Probab. Appl. 18 (1973), pp. 628-633] and after, proposed
goodness-of-fit tests on the newly introduced entropy estimators for normality and
also compared their powers with the ones of the other for normality entropy based
tests. Their simulation results performed well in the estimations of entropy and nor-
mality testing.
The entropy field is unlimited. And so are the types of estimators that could be given
in the future. To mention just a couple of papers of interest and domains of feasibility
in 2015, Sheraz, Dedu and Preda [18] applied the concept of entropy for underlying
financial markets to make a comparison between volatile markets.
They considered as a first step Shannon entropy with different estimators, Tsallis
entropy for different values of its parameter, Rnyi entropy and finally the approxi-
mate entropy and provided computational results for these entropies for weekly and
monthly data in the case of four different stock indices.
In [14] Popescu et al. established new inequalities for JeffreysTsallis and Jensen-
Shannon
Tsallis divergences. Their results refined and generalized recent results in Tsallis
theory. In [17] Preda and Dedu derived new distribution families for modeling the
income distribution by using the entropy maximization principle with Tsallis entropy.
New classes of Lorenz curves were obtained by applying the entropy maximization
principle with Tsallis entropy, under mean and Gini index equality and inequality
constraints.In [14] Popescu et al. established new inequalities for JeffreysTsallis
and JensenShannonTsallis divergences. Their results refined and generalized recent
results in Tsallis theory. In [17] Preda and Dedu derived new distribution families for
modeling the income distribution by using the entropy maximization principle with
Tsallis entropy. New classes of Lorenz curves were obtained by applying the entropy
maximization principle with Tsallis entropy, under mean and Gini index equality and
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inequality constraints.
In 2016, Sfetcu [19] considered a sequence of generalized Jacobi polynomials. It has
been defined a discrete probability distribution and considered the Tsallis (resp. Rnyi)
divergence for it. It has been observed the asymptotic behavior of Tsallis (resp. Rnyi)
divergence defined above and for the quadratic Tsallis (resp. Rnyi) divergence, an
explicit formula has been given. In 2021, a new generalization of AwadShannon en-
tropy, more precisely AwadVarma entropy has been studied in [20], a stochastic order
on AwadVarma residual entropy was introduced and its properties of this order were
studied, amongst which we can mention: closure, reversed closure and preservation
in some stochastic models. Later, in [21] a stochastic order for Varma residual en-
tropy was given, together with several of its properties, such as: closure, reversed
closure and preservation.
In the past, Keller et al. [9] used mutual information to estimate raw data streams
in an immediate period of time; also, Sorjamaa et al. [25] were using mutual infor-
mation and kth nearest neighbor approximator for time series prediction.
Considering to analyze, just like the Kozachenko-Leonenko fixed kth nearest neigh-
bor estimator for differential entropy, in 2016 Singh et al. [24] offered an analysis
of k-nearest neighbour distances with applications to entropy estimation.
More recently, in 2018 Zhao and Lai [30] used the KSG mutual information estima-
tor, which is based on the distances of each sample to its kth nearest neighbor, to
estimate mutual information between two continuous random variables.
In 2018 Jiao, Gao and Han [8] obtained the first uniform upper bound on its perfor-
mance for a fixed k over Hlder balls, on a torus, without assuming any conditions on
how close the density could be from zero.
Shannon entropy estimators can be calculated using the logarithm of the determinant
that estimates the variance-covariance matrix S containing independent observations.
For continuous distributions we can distinguish three types of methods that are pro-
posed for estimation. The first one seeks to convert the continuous distribution to a
discrete one, by using bin method. The second, tries to learn the underlying distri-
bution first and after to calculate the entropy and the mutual information.
The last type of method directly estimates the entropy and mutual information based
on kth nearest neighbor, or the so-called k-NN distances. This is the one that we will
approach throughout this paper.
Let X1, X2, . . . , Xn be n copies of a p-dimensional random variable X, all indepen-
dent, having an absolutely continuous distribution function, F(x) and the probability
density function f(x) where f (x) = f (x1, . . . , xn) , dx = dx1, . . . , dxpi, p the torsional
angles of molecules for evaluating the entropy.
We assume that the differential entropy HKa (f) as an integral estimate of entropy,
under the following form, which is well-defined and finite:

HKa (f) = E
[
−lnKa f (X)

]
= −

∫ ∞
−∞

IS(x)f(x)lnKa f (X) dx1, . . . , dxn

E being the expectation taken relative to X . Here, S is the region where the pdf
f (.) is positive and IS (.) in the indicator function for S.
In the following, well make the notations starting with the ones of Dudewicz and
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van der Meulen, 1981, Vasicek, 1976 in a one-dimensional space, so for p = 1, an
estimator based on spacing has the form:

V̂ (n)
m =

1

n−m

n−m∑
i=1

ln
( n
m

(Xi+m:n −Xi:n)
)
−Ψ (m) + ln (m)

where m ≤ (n− 1) is a positive integer, fixed; X1:n ≤ X2:n ≤ · · · ≤ Xn:n are the

order statistic of X1, X2, . . . , Xn and Ψ (m) = Γ(m)
Γ(m)

the digamma function. This
estimator will be called the m-spacing estimator.
For p considered in a general case, Kozachenko and Leonenko [10] proposed a non-
parametric estimate of entropy, to be based on the nearest neighbor distances be-
tween the sample points.
Thus, let Sr;x be the sphere of radius r > 0, centered at z ∈ Rp , the p-dimensional
Euclidean space.
Then, the volume of Sr;x is:

Vr =
πp/2rp

Γ
(
p
2

+ 1
) where Γa =

∫ ∞
0

xa−1e−xdx, a > 0

Let ρi be min {‖Xi −Xj‖, j ∈ {1, 2, . . . , n} − {i}}
Based on the first nearest neighbor distances, for the πi values, Kozachenko and
Leonenko proposed in 1987 [10] the estimator Hn of H(f) the Shannon entropy of f
:

Hn =
p

n

n∑
i=1

lnρi + ln

[
π
p
2

Γ
(
p
2

+ 1
)]+ γ + ln (n− 1)

The differential entropy has important extremal properties, such as:
- for a concentrated density f on the unit interval [0,1], the differential entropy is
maximal if f is uniform on [0, 1] and H (f) = 0.
- for a concentrated density on the positive half line and for a fixed expectation, the
differential entropy takes the maximum for the exponential distribution.
- for a density with fixed variance, the differential entropy will be maximized by the
Gaussian density.
Where γ = 0.5772 . . . is the Eulers constant and by which formula they proved the
asymptotic unbiasedness and consistency of Hn. For p = 1, Tsybakov and van der
Meulen [27] have established the mean square root n consistenct for a truncated
version of Hn. They proved the mean square

√
n-consistency of the estimator for a

class of densities with unbounded support, including the Gaussian density.
Since the random variable S is absolutely continuous, its nearest neighbour distances
(the values ρi) are expected to be small positive numbers. Due to the presence of
n ln factors in the expression of Hn, small fluctuations in the small ρi values will
result in higher fluctuations in the values of Hn.
In Section 2 of the present paper, is defined an entropy estimator based on the j-th
nearest neighbour distances. We use the Kaniadakis entropy measure, that repre-
sents the basis of our theoretical developments. We will therefore be working with
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the Kaniadakis logarithm, which is represented under the following form:

f(x) =

 f (x)α − f (x)−α

2α
, α 6= 0

lnf (x) , α = 0

where f (x) > 0, depending if the random variable X is continuous, f being the
probability density function (pdf) of X. We suppose that the differential entropy
HKα (X) to exist and be finite.
In function approximation, system classification and prediction task, the goal is to
find the best possible model and parameters to have a good performance.
This is the reason why diverse characterizations, models and properties are con-
stantly and intensively studied for the entropy establishment. In order to give some
examples, in [1], Bancescu proposed a new method for the construction of those
statistical models that may be interpreted as the lifetime distributions of series-
parallel/parallel-series systems and which are used in characterizing coherent sys-
tems. In [16], Preda and Bancescu used the Speed-gradient (SG) principle for the
non-stationary process that obeys the group entropy maximization principle or the
relative entropy group minimization principle and obtains its dynamic equations. In
[5] for the entropy estimation, Botha et. al used the Dirichlet prior, which is con-
sidered a valuable choice in the Bayesian framework. Wang and Gui [28] used the
maximum likelihood and Bayesian methods to obtain the estimators of the entropy
for a two-parameter Burr type XII distribution under progressive type-II censored
data. Popkov [15] approached the problem of randomized maximum entropy esti-
mation for the probability density function of random model parameters with real
data and measurement noises.This estimation procedure maximizes an information
entropy functional, taken from a set of integral equalities. The technique of the
Gteaux derivatives was developed to solve the problem under an analytical form.
Information theory quantities, otherwise called information measures, such as en-
tropy, mutual information and Kullback-Leibler divergence quantify the amount of
information among random variables and have a large set of applications in statistics.
Bulinski et al. established in [6] the asymptotic unbiasedness and L2-consistency
under mild conditions, for the estimates of the Kullback-Leibler divergence between
two probability measures in <d absolutely continuous with respect to (w.r.t.) the
Lebesgue measure. The estimates were based on certain k-nearest neighbor statis-
tics for pair of independent identically distributed (i.i.d.) due vector samples. The
novelty of results is also in treating mixture models. In particular, they cover mix-
tures of nondegenerate Gaussian measures. The mentioned asymptotic properties
of related estimators for the Shannon entropy and cross-entropy are strengthened.
Some applications are indicated.
In the framework of this paper the random variables shall be restricted to non-
negative ones. The asymptotic unbiasedness and consistency of the estimator will
be proven.
This paper is organized as follows: Firstly, in section 2 well construct the kth- NN
Nearest Neighbor Estimator of Kaniadakis Entropy. Afterwards, in the third section

well arrive at the asymptotic mean of the estimator ĜK
(n)

α (f) and we shall see the
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estimator ĤKα (f) in the 4th section. Section 5 present the conditioned asymp-

totic variance of TK
(n)
1 and in Section 6 - the asymptotic variance of the estimator

ĤK
(n)

α (f) is studied. Straight conclusions will be drawn at the end of the paper.

2 Construction of the kth - NN Nearest Neighbor Esti-
mator of Kaniadakis Entropy

Given a random sample X1, X2, . . . , Xn, from the distribution with pdf f (x), the
purpose is to estimate the entropyHKα (f).
For f̂ (.) a suitable estimator of the pdf f (.), a reasonable estimator of entropy
HKα (f) could be one of the following form:

ĤKα (f) = − 1

n

n∑
i=1

lnKα

[
f̂ (Xi)

]
Let 1 ≤ k ≤ n be a positive integer, and for i = 1, 2, . . . , n , let R1,k,n be the Eu-
clidean distance from Xi to its kth closest neighbor.
Therefore, a reasonable estimate defined as f̂ (Xi) of f (Xi) is given by:

f̂ (Xi)
π
p
2Rpi,k,n

Γ
(
p
2

+ 1
) =

k

n

where
π
p
2 R

p
i,k,n

Γ( p2 +1)
is the volume of the sphere, having radius Ri,k,n. The previous equa-

tion gives

f̂ (Xi) =
kΓ
(
p
2

+ 1
)

nπ
p
2Rpi,k,n

, i = 1, 2, . . . .n,

Therefore, a reasonable estimate of HKα (f) is:

ĜK
(n)

α (f) = − 1

n

n∑
i=1

lnKα

[
f̂ (Xi)

]
=

1

n

n∑
i=1

TK
(n)
i

where TK
(n)
i = lnKα

[
nπ

p
2 R

p
i,k,n

kΓ( p2 +1)

]
, i = 1, 2, . . . .n

TK
(n)
i = lnKα

[
nπ

p
2 R

p
i,k,n

kΓ( p2 +1)

]
> r,

nπ
p
2 R

p
i,k,n

kΓ( p2 +1)
> eKα (r), where eKα is the inverse

function of the lnKα function.
Therefore,

ĜK
(n)

α (f) = − 1

n

n∑
i=1

lnKα

[
kΓ
(
p
2

+ 1
)

nπ
p
2Rpi,k,n

]
, i = 1, 2, . . . .n
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The theorem that follows gives the asymptotic mean of the estimator TK
(n)
1 condi-

tioned of X1 = x.

3 The asymptotic mean of the estimator ĜK
(n)

α (f)

To arrive at the asymptotic mean of the estimator ĜK
(n)

α (f) we must at first give a

result for the asymptotic mean of the estimator TK
(n)
1 conditioned by X1 = x.

Proposition 3.1
Let Ex

(
f (X)−2α) <∞, 0 6= |α| < 1, k > 2|α|

The asymptotic mean of the estimator TK
(n)
1 conditioned of X1 = x is given by:

lim
n→∞

E
[
TK

(n)
1 |X1 = x

]
=

1

4α · k! · f (x)

[
1

(kf (x))2α−1 Γ (2α+ k) +
1

(kf (x))−2α−1 Γ (k − 2α)

]
k > 2|α|

Proof
For r real number, we have:

P
[
TK

(n)
1 > r|X1 = x

]
= P

[
R1,k,n > ρkr,n|X1 = x

]
where

ρKr,n =

[
kΓ
(
p
2

+ 1
)
eKα (r)

nπ
p
2

] 1
p

Thus,

P
[
TK

(n)
1 > r|X1 = x

]
=

k−1∑
i=0

(
n− 1
i

)[
P
(
SρKr,n:x

)]i [
1− P

(
SρKr,n:x

)]n−1−i

where

P
(
SρKr,n:x

)
=

∫
S
ρKr,n:x

f (t) dt

and SρKr,n:x is a general sphere of radius r > 0, on the p-dimensional Euclidean space.

It was initially proposed for a general p, used for the non-parametric estimate of en-
tropy, based on the nearest neighbor distances between the sample points
Since ρKr,n → 0 as n→∞ we have

limn→∞

[
nP
(
SρKr,n:x

)]
= keKα (r) limn→∞

P
(
SρKr,n:x

)
VρKr,n

= keKα (r) f (x)

Using the Poisson approximation for the binomial distribution, we have:

lim
n→∞

P
[
TK

(n)
1 > r|X1 = x

]
=

k−1∑
i=0

[
kf (x) eKα (r)

]i
i!

e−kf(x)eKα (r) =
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P [TKx > r] ,−∞ < TKx <∞
where the random variable TKx for a given x has the pdf

hTKx (y) = C (k, α, f (x))

[
kf (x) eKα (y)

]k
(k − 1)!

e−kf(x)eKα (y), −∞ < y <∞

C being the normalization constant.
Therefore,

limn→∞E
[
TK

(n)
1 |X1 = x

]
= E [TKx] =

∫ ∞
−∞

y

[
kf (x) eKα (y)

]k
(k − 1)!

e−kf(x)eKα (y)dy

By making the variable change z = kf (x) eKα (y) , z > 0.

The consistent calculus for E
[
TK

(n)
1 |X1 = x

]
is the following:

We denote

A0 =
1

4α · k! · f (x)

lim
n→∞

E
[
TK

(n)
1 |X1 = x

]
=

1

2kf (x)
Ez

{
Zk

(k − 1)!

[(
Z

kf (x)

)α−1

+

(
Z

kf (x)

)−α−1
]
lnKα

(
Z

kf (x)

)}

=
1

4α · k! · f (x)
Ez

{
Zk
[(

Z

kf (x)

)α−1

−
(

Z

kf (x)

)−α−1
][

zα

(kf (x))α
− z−α

(kf (x))−α

]}

= A0EZ

{
Zk
[(

Z

kf (x)

)α−1
]}
−A0EZ

{
Zk
[(

Z

kf (x)

)α−1
][

zα

(kf (x))α
− z−α

(kf (x))−α

]}

= A0
1

(kf (x))2α−1EZ
[
Z2α−1+k

]
−A0

1

(kf (x))−2α−1EZ
[
Z−2α−1+k

]
= A0

1

(kf (x))2α−1 Γ (2α+ k)−A0
1

(kf (x))−2α−1 Γ (k − 2α)

where Z ∼ exp (1).
Further we are about to use the Gamma function, described earlier in the introduc-
tion.
By letting k ≥ 2|α|, we have that and by denoting:

B0 =
1

(kf (x))2α−1 Γ (2α+ k)− 1

(kf (x))−2α−1 Γ (k − 2α)

We arrive at the conclusion that

limn→∞E
[
TK

(n)
1 |X1 = x

]
= A0 ·B0
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Proposition 3.2
Let EX

(
f (X)−2α) <∞, 0 6= |α| < 1, k > 2|α|

lim
n→∞

E
[
TK

(n)
1

]
=

1

4α · (k − 1)! · f (x)

[
k−2α · Γ (2α+ k)− k2α · Γ (k − 2α)

]
· EX

[
f (X)−2α]

+
Γ (2α+ k) · kα

(k − 1)!
·HK2α (f)

Proof

By using Proposition 1,

limn→∞E
[
TK

(n)
1

]
=
∫∞

0
E
[
TK

(n)
1 |X1 = x

]
· f (x) dx

= 1
4α·k!

[
k1−2α · Γ (2α+ k) · E

[
f (X)−2α]− k1+2α · Γ (k − 2α) · E

[
f (X)2α]]

= 1
4α·k!

{
k1−2α · Γ (2α+ k) · E

[
f (X)−2α]− k1+2α − Γ (k − 2α) · 4α

·E
[
f (X)2α − f (X)−2α + f (X)−2α

4α

]}
= 1

4α·k!

{
k1−2α · Γ (2α+ k) · E

[
f (X)−2α]− k1+2α − Γ (k − 2α) · 4α ·

(
E
[
f(X)2α−f(X)−2α

4α

]
+E

[
f (X)−2α

4α

])}
= 1

4α·k!

{[
k1−2α · Γ (2α+ k)− k1+2α · Γ (k − 2α)

]
· EX

[
f (X)−2α]− 4α · k1+2α · Γ (k − 2α)

·HK2α (f)}

= 1
4α·(k−1)!

[
k−2α · Γ (2α+ k)− k2α · Γ (k − 2α)

]
·EX

[
f (X)−2α]−Γ(2α+k)·kα

(k−1)!
·HK2α (f)

Theorem 3.3

Let EX
(
f (X)−2α) <∞, 0 6= |α| < 1, k > |2|α|

limn→∞E
[
ĜK

(n)

α (f)
]

= 1
(k−1)!·4α ·

[
k−2α · Γ (2α+ k) + k2α · Γ (k − 2α)

]
·EX

[
f (X)−2α]− Γ (2α+ k) · kα

(k − 1)!
·HK2α (f)

Proof
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TK
(n)
1 , TK

(n)
2 , . . . , TK

(n)
n The random variables TK

(n)
1 , TK

(n)
2 , . . . , TK

(n)
n are

identically distributed, therefore

E
[
ĜK

(n)

α (f)
]

= E
[
TK

(n)
1

]
By using Proposition 2,

limn→∞E
[
ĜK

(n)

α (f)
]

= limn→∞E
[
TK

(n)
1 |X1 = x

]
=

1

4α · k! · f (x)
·
[
k1−2αf (x)−2α · Γ (2α+ k) + k1+2αf (x)2α · Γ (k − 2α)

]
This concludes our proof.
We have that

−2

∫ ∞
−∞

. . .

∫ ∞
−∞

IS (x)
f (x)1+2α − f (x)1−2α

4α
= HK2α (f)

Then,

limn→∞E
[
TK

(n)
1

]
= 1

(k−1)!·4α

[
k−2α · Γ (2α+ k)− k2α · Γ (k − 2α)

]
·E
[
f (X)−2α]

−Γ (2α+ k) · kα

(k − 1)!
· ĤK2α (f)

From here on we can begin to calculate ĤK2α (f) in order to get to ĤKα (f).

4 The estimator ĤKα (f).

Theorem 4.1

Let EX
(
f (X)−2α) <∞, 0 6= |α| < 1

2
, k > |2|α|

ĤKα (f) = (k−1)!

k
α
2 Γ(k−α)

{
− 1
n
lnKα

2

[
kΓ( p2 +1)

nπ
p
2

]
·
∑n
i=1 R

−αp
2

i,n,k + n
α
2

−1
π
pα
4 p

k
α
2 [Γ( p2 +1)]

α
2

∑n
i=1 ln

K
αp
2
Ri,n,k

}
−

(
k

3α
2

2α
· Γ (α+ k)

Γ (k − α)
+
k
α
2

2α

)
EX

[
f (X)−α

]
Proof

ĤKα (f) = −(k−1)!
kαΓ(k−2α)

ĜK
(n)

α (f)

+
(k − 1)!

(k − 1)! · 4α · kα · Γ (k − 2α)

(
k−2α · Γ (2α+ k)− k2α · Γ (k − 2α)

)
·EX

[
f (X)−2α]
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=
− (k − 1)!

kαΓ (k − 2α)
ĜK

(n)

α (f) +

(
k−3α

4α
· Γ (2α+ k)

Γ (k − 2α)
+
kα

4α

)
EX

[
f (X)−2α]

We can convert α in α
2

and see that an asymptotically unbiased estimator for
HKα (f) is

ĤKα (f) =
(k − 1)!

k
α
2 Γ (k − α)

ĜK
(n)
α
2

(f)−

(
k

3α
2

2α
· Γ (α+ k)

Γ (k − α)
+
k
α
2

2α

)
EX

[
f (X)−α

]

ĜK
(n)
α
2

(f) = − 1

n

1∑
R
p,α
i,n,k

lnkα

(
kΓ
(
p
2

+ 1
)

nπ
p
2

)
− 1

n

k−α
(
Γ
(
p
2

+ 1
))−α

n−απ
−αp

4

lnKα

(
1

RpI,n,k

)−α

But ĜK
(n)

α can be also written as: ĜK
(n)

α = − 1
n

∑n
i=1 ln

K
α

[
kΓ( p2 +1)

nπ
p
2 R

p
i,n,k

]
, i =

1, 2. . . . , n
and so

ĜK
(n)

α (f) = − 1

n

n∑
i=1

1

Rαpi,n,k
lnKα

[
kΓ
(
p
2

+ 1
)

nπ
p
2

]
− nαπ

pα
2

kα
[
Γ
(
p
2

+ 1
)]α · lnKα Rpi,n,k

= − 1

n

n∑
i=1

1

Rαpi,n,k
lnKα

[
kΓ
(
p
2

+ 1
)

nπ
p
2

]
+

1

n

n∑
i=1

nαπ
pα
2

kα
[
Γ
(
p
2

+ 1
)]α · p · lnKαpRi,n,k

= − 1

n
lnKα

[
kΓ
(
p
2

+ 1
)

nπ
p
2

]
·
n∑
i=1

R−αpi,n,k +
nα−1π

pα
2 p

kα
[
Γ
(
p
2

+ 1
)]α n∑

i=1

lnKαpRi,n,k

5 The conditioned asymptotic variance of TK
(n)
1

Proposition 5.1

Let EX
(
f (X)−2α) <∞, 0 6= |α| < 1, k > |3|α|.

Let k be a positive integer and for a fixed x let A1 = 1
8α2·k!·f(x)

.

Then,

lim
n→∞

E

[(
TK

(n)
1

)2

|X1 = x

]
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= A1

[
1

(kf (x))3α−1 · Γ (3α+ k) +
1

(kf (x))α−1 · Γ (α+ k) +
1

(kf (x))−α−1 ·Γ (k − α)

+
1

(kf (x))−3α−1 · Γ (k − 3α)− 2

(kf (x))α−1 · Γ (α+ k)− 2

(kf (x))−α−1 · Γ (k − α)

]
Proof

limn→∞E

[(
TK

(n)
1

)2

|X1 = x

]
= E

[
TK2

x|X1 = x
]

= EZ

{
Zk

(k − 1)!
· 1

2kf (x)

[(
Z

kf (x)

)α−1

+

(
Z

kf (x)

)−α−1
] [
lnKα

(
Z

kf (x)

)]2
}

limn→∞E

[(
TK

(n)
1

)2

|X1 = x

]
= A1

{
1

(kf(x))3α−1EZ
[
Z3α+k

]
+ 1

(kf(x))α−1EZ
[
Zα+k

]
+ 1

(kf(x))−α−1EZ
[
Z−α+k

]
+

1

(kf (x))−3α−1EZ
[
Z−3α+k

]
− 2

(kf (x))α−1EZ
[
Zα+k

]
− 2

(kf (x))−α−1EZ
[
Z−α+k

]}
= A1

[
1

(kf(x))3α−1 Γ (3α+ k) + 1
(kf(x))α−1 Γ (α+ k) + 1

(kf(x))−α−1 Γ (k − α)

+
1

(kf (x))−3α−1 Γ (k − 3α)− 2

(kf (x))α−1 Γ (α+ k)− 2

(kf (x))−α−1 Γ (k − α)

]
Proposition 5.2

Let EX
(
f (X)−2α) <∞, 0 6= |α| < 1, k > |2|α|{

limn→∞E

[(
TK

(n)
1

)2

|X1 = x

]}2

= 1
16α2·((k−1))2

[
k−4αf (x)−4α Γ2 (2α+ k)− k4αf (x)4α Γ2 (k − 2α)− 2Γ (2α+ k) Γ (k − 2α)

]
Proof

Using Proposition 3.1, we can easily make the calculations and come to the above
result.

Thus, by calculating the square of

limn→∞E
[(
TK

(n)
1

)
|X1 = x

]
= 1

4α·k!·f(x)
·
[

1
(kf(x))2α−1 Γ (2α+ k)− 1

(kf(x))−2α−1 Γ (k − 2α)
]

we get:

limn→∞E
[(
TK

(n)
1

)
|X1 = x

]2
= 1

16α2·(k!)2·f2(x)

[
1

(kf(x))4α−2 Γ2 (2α+ k) + 1
(kf(x))−4α−2 Γ2 (k − 2α)

−2
1

(kf (x))2 Γ (2α+ k) Γ (k − 2α)

]
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= 1
16α2·(k!)2·f2(x)

[
1

k4α−2·f(x)4α
Γ2 (2α+ k) + 1

k−4α−2f(x)−4αΓ2 (k − 2α)

− 2

k−2
Γ (2α+ k) Γ (k − 2α)

]

= k2

16α2·((k−1)!)2·k2
[
k−4αf (x)−4α Γ2 (2α+ k) + k4αf (x)4α Γ2 (k − 2α)

−2Γ (2α+ k) Γ (k − 2α)]

= 1
16α2·((k−1)!)2

[
k−4αf (x)−4α Γ2 (2α+ k) + k−4αf (x)−4α Γ2 (k − 2α)

−2Γ (2α+ k) Γ (k − 2α)]

Theorem 5.3

Let EX
(
f (X)−2α) <∞, 0 6= |α| < 1, k > |3|α|

limn→∞ V ar
[(
TK

(n)
1 |X = x

)]
= A1

[
1

(kf(x))3α−1 · Γ (3α+ k) + 1
(kf(x))α−1 · Γ (α+ k) + 1

(kf(x))−α−1 · Γ (k − α)

+ 1
(kf(x))−3α−1 · Γ (k − 3α)− 2

(kf(x))α−1 · Γ (α+ k)− 2
(kf(x))−α−1 · Γ (k − α)

]
− 1

16α2·((k−1)!)2

[
k−4αf (x)−4α Γ2 (2α+ k) + k4αf (x)4α Γ2 (k − 2α)

−2Γ (2α+ k) Γ (k − 2α)]

Proof

lim
n→∞

V ar
[(
TK

(n)
1 |X = x

)]
= lim
n→∞

E

[((
TK

(n)
1

)2

|X = x

)]{
lim
n→∞

E
[
TK

(n)
1 |X1 = x

]}2

Therefore, the proof is direct from Prop. 3 and 4.

6 The asymptotic variance of the estimator ĤK
(n)

α (f)

Proposition 6.1
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lim
n→∞

Cov
(
TK

(n)
1 , TK

(n)
2

)
= 0

Proof

lim
n→∞

P
[
T

(n)
1 > r, T

(n)
2 > s|X1 = x,X2 = y

]

=

k−1∑
i=0

k−1∑
j=0

[kf (x) er]i [kf (y) es]j

i! j!
e[kf(x)er+kf(y)es]

= P [Tx > r]P [Ty > s]

For finding the limit of the covariance between TK
(n)
1 and TK

(n)
2 we shall consider

r and s, both finite.

P
[
TK

(n)
1 > r, TK

(n)
2 > s|X1 = x,X2 = y

]
= P

[
R1,k,n > ρKr,n, R2,k,n > ρKs,n|X1 = x,X2 = y

]
By having x 6= y, since ρKr,n and ρKs,n tend to 0, when n→∞ we assume that, for n
large SρKr,n:x

⋂
SρKs,n:y = φ, an empty set.

P
[
TK

(n)
1 > r, TK

(n)
2 > s|X1 = x,X2 = y

]
= P

[
at most (k − 1) ofX3, . . . , Xn ∈ SρKr,n:xand

at most (k − 1) ofX3, . . . , Xn ∈ SρKs,n:y

]

=
∑

0≤i,m≤j,i+m≤n−2

(n− 2)!

i!m! (n− 2− i−m)
P
[(
SρKr,n:x

)]i
P
[(
SρKs,n:y

)]m
·
[
1− P

(
SρKr,n:x

)
− P

(
SρKs,n:y

)]n−2−i−m

We shall denote

P(
S
ρKr,n:x

)
VS
ρKr,n

i P(
S
ρKs,n:y

)
VS
ρKs,n

m be Aki,m (x, y)

and1− 1
n

keKα (r) ·
P

(
S
ρKr,n:x

)
VS
ρKr,n

+ keKα (x) ·
P

(
S
ρKs,n:y

)
VS
ρKs,n

n−2−i−m be Bki,m (x, y)

=
∑

0≤i,m≤j,i+m≤n−2

(n− 2)!

i!m! (n− 2− i−m)

(
kekα (r)

)i
ni

·
(
kekα (s)

)m
nm

·Aki,m (x, y) ·Bki,m (x, y)
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Theorem 6.2

lim
n→∞

V ar
[
ĤK

(n)

α (f)
]

= 0

Proof

The distribution of a random vector
(
TK

(n)
1 , TK

(n)
2 , . . . , TK

(n)
n

)
remains the

same regarding any permutation that we may consider of it, and then we have

V ar
[
ĜK

(n)
α
2

(f)
]

=
V ar

(
TK

(n)
1

)
n

+
n (n− 1)

n2
Cov

(
K

(n)
1 , TK

(n)
2

)
We have

lim
n→∞

E
[
TK

(n)
1 , TK

(n)
2

]
= lim
n→∞

[
E
[
TK

(n)
1

]
E
[
TK

(n)
2

]]
,

which inferrs that

lim
n→∞

Cov
[
TK

(n)
1 , TK

(n)
2

]
= E

[
TK

(n)
1 , TK

(n)
2

]
− E

[
TK

(n)
1

]
E
[
TK

(n)
2

]

lim
n→∞

Cov
[
TK

(n)
1 , TK

(n)
2

]
= 0

Hence, from the recent calculus for V ar
[
TK

(n)
1

]
and lim

n→∞
Cov

[
TK

(n)
1 , TK

(n)
2

]
we

have that

lim
n→∞

V ar
[
ĜK

(n)
α
2

(f)
]

= 0

resulting that

lim
n→∞

V ar
[
ĤK

(n)

α (f)
]

= 0

Asymptotic efficiency is another property worth consideration in the evaluation of
estimators. Though there are many definitions, we can see the asymptotic variance
as how far the set of numbers is spread out, of the limit distribution of the estimator.
In the above results we evidence the properties for the Kaniadakis-based estimations
in this direction.
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7 Conclusions

We constructed the kth - NN Nearest Neighbor Estimator of the Kaniadakis Entropy

and found the asymptotic mean of the estimator ĜK
(n)

α (f). Also, a theorem for the

asymptotic mean of the estimator TK
(n)
1 conditioned by X1 = x has been given.

Then, we calculated the estimator ĤK
(n)

α (f) from which we derived the con-

ditioned asymptotic variance of TK
(n)
1 and further, the asymptotic variance of the

estimator ĤK
(n)

α (f).
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