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Non-autonomous weighted elliptic equations
with double exponential growth

Sami Baraket and Rached Jaidane

Abstract

We consider the existence of solutions of the following weighted prob-
lem:

L := −div(ρ(x)|∇u|N−2∇u) + ξ(x)|u|N−2u = f(x, u) in B
u > 0 in B
u = 0 on ∂B,

where B is the unit ball of RN , N > 2, ρ(x) =
(

log e
|x|

)N−1
the singular

logarithm weight with the limiting exponent N − 1 in the Trudinger-
Moser embedding, and ξ(x) is a positif continuous potential. The non-
linearities are critical or subcritical growth in view of Trudinger-Moser
inequalities of double exponential type. We prove the existence of posi-
tive solution by using Mountain Pass theorem. In the critical case, the
function of Euler Lagrange does not fulfil the requirements of Palais-
Smale conditions at all levels. We dodge this problem by using adapted
test functions to identify this level of compactness.

1 Introduction

In this paper we study the following weighted problem L := −div(ρ(x)|∇u|N−2∇u) + ξ(x)|u|N−2u = f(x, u) in B
u > 0 in B
u = 0 on ∂B,

(1)

Key Words: Moser-Trudinger inequality, double exponential growth, mountain pass,
compactness level.
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where B is the unit ball of RN , N > 2, f(x, t) is continuous in B × R and

behaves like exp{eαt
N
N−1 } as t→ +∞, for some α > 0. ξ : B → R is a positive

continuous function satisfying some conditions. The weight ρ(x) is given by

ρ(x) =
(

log
e

|x|
)N−1· (2)

Since 1970, when Moser gave the famous result on the Trudinger-Moser in-
equality, many applications have taken place such as in the theory of conformal
deformation on collectors, the study of the prescribed Gauss curvature and the
mean field equations. After that, a logarithmic Trudinger-Moser inequality
was used in crucial way in [31] to study the Liouville equation of the form{

−∆u = λ eu∫
Ω
eu

in Ω

u = 0 on ∂Ω,
(3)

where Ω is an open domain of RN , N ≥ 2 and λ a positive parameter.
The equation (3) has a long history and has been derived in the study of
multiple condensate solution in the Chern-Simons-Higgs theory [36, 37] and
also, it appeared in the study of Euler Flow [10, 11, 17, 27].
Later, the Trudinger-Moser inequality was improved to weighted inequalities
[2, 12, 13, 16, 21, 30]. The influence of the weight in the Sobolev norm was
studied as the compact embedding in [29].
When the weight is of logarithmic type, Calanchi and Ruf [14] extend the
Trudinger-Moser inequality and give some applications when N = 2 and for
prescribed nonlinearities. After that, Calanchi et al. [15] consider more general
nonlinearities and prove the existence of radial solutions.
In this paper, we focus on the case N > 2 and use the Trudinger-Moser
inequality to study and prove the existence of solutions to the problem (1).
We note that the semi-linear problem of Schrödinger{

−4u+ V (x)u = g(x, u) in RN
u ∈ W 1,N (RN ),

(4)

where N ≥ 3 and |g(x, u)| ≤ c(|u| + |u|q−1), 1 < q ≤ 2∗ = 2N
N−2 was studied

by many authors, we refer the readers to Kryszewski and Szulkin [28], Alama
and Li [3], Ding and Ni [19] and Jeanjean [26].
For N = 2, with the same operator as in the problem (4) and where the non-
linearity is acting like exp(αt2) as t → +∞, for some α > 0, many works
have been processed, see [5, 22, 25].
In the case N ≥ 2, a lot of works (see [24] and their references) are treated with
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the N-laplacian operator associated to a potential i.e. the following problem{
−div(|∇u|N−2∇u) + a(x)|u|N−2u = h(x, u) in RN

u ∈ W 1,N (RN ),

where the nonlinearity h has subcritical or critical growth in view of Trudinger-
Moser inequalities and the potential a verifies some conditions which guarantee
some compact embedding.
Problems when ξ(x) = 0 and in the non weighted case i.e. ρ(x) = 1, have
been extensive studies by many auhtors, we refer the reader to [1, 4, 23, 33]
and their references. We also mention that the following problem{

−div(|∇u|N−2∇u) = f(x, u) in Ω
u = 0 on ∂Ω,

where Ω is a smooth domain of RN , N ≥ 2 and the nonlinearity f behaves like

exp{t
N
N−1 } as t→ +∞ was studied by Adimurthi [1] and Ruf et al. [22, 23].

We point out that the following problem Lw := −div(w(x)∇u) = f(x, u) in B1

u > 0 in B1

u = 0 on ∂B1,

where B1 is the unit disk of R2, w(x) = log e
|x| and the nonlinearities f are of

double exponential growth, was studied in [15]. Recently, Deng, Hu and Tang
[18] studied the following problem{

−div(ρ(x)|∇u|N−2∇u) = f(x, u) in B
u = 0 on ∂B,

where N ≥ 2, the function f(x, t) is continuous in B × R and behaves like

exp{eαt
N
N−1 } as t → +∞, for some α > 0. The authors proved that there

is a non-trivial solution to this problem using Mountain Pass theorem. They
circumvented the loss of compactness of the associated energy function by
an asymptotic condition on the nonlinearity and using appropriate Moser se-
quences. Also, they followed the method of Buccardo and Murat to show the
convergence almost everywhere of the gradient. A similar result is proved in
[40].

In literature, more attention has been accorded to the subspace of radial func-
tions

W 1
0,rad(B, ρ) = cl{u ∈ C∞0,rad(B);

∫
B

ρ(x)|∇u|N dx <∞},
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endowed with the norm

‖∇u‖N,ρ =
(∫

B

ρ(x)|∇u|N dx
) 1
N

and we are motivated by the following double exponential inequality proved in
[13], which is an improvement of the Trudinger-Moser inequality in a weighted
Sobolev space.

Theorem 1.1 [13] Let ρ given by (3), then∫
B

exp{e|u|
N
N−1 }dx < +∞, ∀ u ∈W 1

0,rad(B, ρ) (5)

and

sup
u∈W 1

0,rad(B,ρ)

‖∇u‖N,ρ≤1

∫
B

exp{βeω
1

N−1
N−1 |u|

N
N−1 }dx < +∞ ⇔ β ≤ N, (6)

where ωN−1 is the area of the unit sphere SN−1 in RN .

It seems that the Trudinger-Moser inequality (6), can be considered as a
borderline case of the famous Sobolev inequality.
The solution to the problem of the form (1) is important in several appli-
cations such as the study of classical and quantum mechanics, the evolution
equations appearing in non-Newtonian fluids, reaction diffusion problem, tur-
bulent flows in porous media and image treatment [7, 8, 34, 38]. We report
that in recent years, PDE of divergence form have many applications in digital
image restoration.

Let us now state our results. For this paper, we hypothesize that the
nonlinearity f(x, t) verifies the following assumptions

(A1) f : B × R→ R is continuous, radial in x, and f(x, t) = 0 for t ≤ 0.

(A2) There exists t0 > 0,M > 0 such that

0 < F (x, t) =

∫ t

0

f(x, s)ds ≤M |f(x, t)|,∀t > t0,∀x ∈ B.

(A3) 0 < F (x, t) ≤ 1

N
f(x, t)t, ∀t > 0,∀x ∈ B

and the potential ξ is continuous on B and verifies
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(ξ1) ξ(x) ≥ ξ0 > 0 in B for some ξ0 > 0.

(ξ2) The function
1

ξ
belongs to L

1
N−1 (B).

In view of (4) and (5) we say that f has subcritical growth at +∞ if

lim
s→+∞

|f(x, s)|
exp{NeαsN′}

= 0, for all α > 0 (7)

and f has critical growth at +∞ if there exists some α0 > 0 such that

lim
s→+∞

|f(x, s)|
exp{NeαsN′}

= 0, ∀α > α0 and lim
s→+∞

|f(x, s)|
exp{NeαsN′}

= +∞, ∀α < α0.

(8)
To study the solvability of the problem (1), consider the space

W = {u ∈W 1
0,rad(B, ρ)/

∫
B

ξ(x)|u|Ndx < +∞},

endowed with the norm

‖u‖ =

(∫
B

ρ(x)|∇u|Ndx+

∫
B

ξ(x)|u|Ndx
) 1
N

. (9)

We say that u is a solution to the problem (1), if u is a weak solution in the
following sense.

Definition 1.1 A function u is called a solution to (1) if u ∈W and

∫
B

(
ρ(x)|∇u|N−2 ∇u∇ϕ+ξ|u|N−2uϕ

)
dx =

∫
B

f(x, u) ϕ dx, for all ϕ ∈W.

(10)
It is clear that finding weak solutions of the problem (1) is equivalent to

finding nonzero critical points of the following functional on W:

E(u) =
1

N

∫
B

ρ(x)|∇u|Ndx+
1

N

∫
B

ξ(x)|u|Ndx−
∫
B

F (x, u)dx, (11)

where F (x, u) =

∫ u

0

f(x, t)dt.

In order to find critical points of the functional E associated with (1), one gen-
erally applies the mountain pass given by Ambrosotti and Robinowitz, see [6].
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Before announcing our first result, we denote

λ1 = inf
u 6=0,u∈W

‖u‖N∫
B
|u|Ndx

, (12)

the first eigenvalue of the operator with Dirichlet boundary condition. This
eigenvalue λ1 exists and the corresponding normalized eigen function φ1 is
positive and belongs to L∞(B) [20].

We start by the first result, in the subcritical double exponential growth,
we have the following result.

Theorem 1.2 Assume that ξ is continuous and verifies (ξ1), (ξ2). Let f a
function that has a subcritical growth at +∞ and satisfy (A1), (A2) and (A3).
If in addition f verifies the condition

(A4) lim sup
t→0

NF (x, t)

tN
< λ1,uniformly in x ∈ B,

where λ1 is defined by (12), then problem (1) has a non trivial radial solution.

In the case of the critical double exponential growth , the study of problem
(1) becomes more difficult than in the case of subcritical exponential growth.
Our EulerLagrange functional does not satisfy the PalaisSmale condition at
all level anymore. To overcome the verification of compactness of Euler La-
grange functional at some suitable level, we choose testing functions, which
are extremal to the Trudinger-Moser inequality (6). Our result is as follows.

Theorem 1.3 Assume that ξ is continuous and verifies (ξ1), (ξ2). Assume
that the function f has critical growth at +∞ and satisfies the conditions
(A1), (A2), (A3) and (A4) . If in addition f verifies the asymptotic condition

(A5) lim
s→∞

s|f(x, s)|

exp(Neα0s
N
N−1 )

≥ β0 uniformly in x, with

β0 >
N

αN−1
0 eN (N − 1 + e

−C(m,N)

N − 1 )

,

where m = max
x∈B

ξ(x),

C(m,N) = m
(
S(N) +

(N + 1)(N − 1)!

NN
+ 1
)
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and

S(N) =
2

N
+
N − 1

N2
+

(N − 1)(N − 2)

N3
+ ....+

(N − 1)(N − 2)...3

NN−2
,

then problem (1) has a non trivial radial solution.

The main reason for this study is that, to our knowledge, there are few
research taking into account both this type of non-linearity and the potential
ξ 6= 0 for a non-linear elliptic equation in the framework of Sobolev weighted
spaces.
This paper is organized as follows. In Section 2, we present some necessary
preliminary knowledge about working space, and we give some useful lemmas
for the compactness analysis. In section 3, we prove that the energy E satisfied
the two geometric properties, and the compactness condition but under a given
level for the critical nonlinearity case. Finally, we fulfil the proof of the main
results in section 4. In this work, the constant C may change from line to
another and sometimes we index the constants in order to show how they
change.

2 Sobolev Spaces setting and compactness analysis

2.1 Weighted Lebesgue and Sobolev Spaces setting

Let Ω ⊂ RN , N ≥ 2, be a bounded domain in RN and let ρ ∈ L1(Ω) be a
nonnegative function. Following Drabek et al. and Kufner in [20, 29], the
weighted Lebesgue space Lp(Ω, ρ) is defined as follows:

Lp(Ω, ρ) = {u : Ω→ R measurable;

∫
Ω

ρ(x)|u|p dx <∞},

for any real number 1 ≤ p <∞.
This is a normed vector space equipped with the norm

‖u‖p,ρ =
(∫

Ω

ρ(x)|u|p dx
) 1
p

and for ρ(x) = 1, we find the standard Lebesgue space Lp(Ω) and its norm

‖u‖p =
(∫

Ω

|u|p dx
) 1
p

.

In [20], the corresponding weighted Sobolev space was defined as

W 1,p(Ω, ρ) = {u ∈ Lp(Ω); ∇u ∈ Lp(Ω, ρ)}
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and equipped with the norm defined on W 1,p(Ω) by

‖u‖W 1,p(Ω,ρ) =
(
‖u‖pp + ‖∇u‖pp,ρ

) 1
p . (13)

Lp(Ω, ρ) and W 1,p(Ω, ρ) are separable, reflexive Banach spaces provided that

ρ(x)
−1
p−1 ∈ L1

loc(Ω).

Furthermore, if ρ(x) ∈ L1
loc(Ω), then C∞0 (Ω) is a subset of W 1,p(Ω, ρ) and we

can introduce the space W 1,p
0 (Ω, ρ) as the closure of C∞0 (Ω) in W 1,p(Ω, ρ).

The space W 1,p
0 (Ω, ρ) is equipped with the following norm,

‖u‖W 1,p
0 (Ω,ρ) =

(∫
Ω

ρ(x)|∇u|p dx
) 1
p

, (14)

which is equivalent to the one given by (13).

Also, we will use the space W 1,N
0 (Ω, ρ), which is the closure of C∞0 (Ω) in

W 1,N (Ω, ρ), equipped with the norm

‖u‖W 1
0 (Ω,ρ) =

(∫
Ω

ρ(x)|∇u|N dx
) 1
N

.

Let s the real such that

s ∈ (1,+∞) and ρ−s ∈ L1(Ω). (15)

The last condition gives important embedding of the space W 1,N (Ω, ρ) into
usual Lebesgues spaces without weight. More precisely, following [20] we have

W 1,N (Ω, ρ) ↪→ LN (Ω) with compact injection (16)

and

W 1,N (Ω, ρ) ↪→ LN+η(Ω) with compact injection for 0 ≤ η < N(s− 1),

provided
ρ−s ∈ L1(Ω) with s ∈ (1,+∞).

Let the subspace

W 1
0,rad(B, ρ) = cl{u ∈ C∞0,rad(B);

∫
B

ρ(x)|∇u|N dx <∞},

with ρ(x) =
(

log e
|x|
)N−1

.
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Then the space W = {u ∈ W 1
0,rad(B, ρ)/

∫
B

ξ(x)|u|Ndx < +∞} is a Banach

and reflexive space provided (ξ1) is satisfied. W is endowed with the norm

‖u‖ =

(∫
B

ρ(x)|∇u|Ndx+

∫
B

ξ(x)|u|Ndx
) 1
N

,

which is equivalent to the following norm

‖u‖W 1
0,rad(B,ρ) =

(∫
B

ρ(x)|∇u|N dx
) 1
N

.

2.2 Compactness analysis step one

In this section, we will present a number of technical Lemmas for our future
use. We begin by the following Lemma.

Lemma 1 The following embedding is continuous

W ↪→ Lq(B) for all q ≥ 1.

Moreover, this embedding is also compact for all q ≥ 1.

Proof. Since ρ(x) ≥ 1 for all x ∈ B, the following embedding

W ↪→W 1
0,rad(B) ↪→ Lq(B),

are continuous for all q ≥ 1. To show that it is also compact, take a sequence of
function uk ⊂W such that ‖uk‖ ≤ C for all k. Then ‖uk‖W 1

0,rad
≤ C for all k.

On the other hand, we have the following compact embedding[20]W 1
0,rad ↪→ Lq

for all q such that 1 ≤ q < Ns, with s > 1, then up to a subsequence, there
exists some u ∈W 1

0,rad, such that uk convergent to u strongly in Lq(B) for all
q such that 1 ≤ q < Ns. Without loss of generality, we may assume that uk ⇀ u weakly in W

uk → u strongly in L1(B)
uk(x) → u(x) almost everywhere in B.

(17)

For q > 1, it follows from (17) and the continuous embedding W ↪→
Lp(B) (p ≥ 1) that∫

B

|uk − u|qdx =

∫
B

|uk − u|
1
2 |uk − u|q−

1
2 dx

≤
( ∫

B

|uk − u|dx
) 1

2
( ∫

B

|uk − u|2q−1dx
) 1

2

≤ C
( ∫

B

|uk − u|dx
) 1

2 → 0.
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This concludes the Lemma.
�

A second important Lemma.
Lemma 2 [23] Let Ω ⊂ RN be a bounded domain and f : Ω×R a continuous

function. Let {un}n be a sequence in L1(Ω) converging to u in L1(Ω). Assume
that f(x, un) and f(x, u) are also in L1(Ω). If∫

Ω

|f(x, un)un|dx ≤ C,

where C is a positive constant, then

f(x, un)→ f(x, u) in L1(Ω).

In an attempt to prove a compactness condition for the energy E, we need
a lions type result [32] about an improved TM-inequality when we deal with
weakly convergent sequences and double exponential case.

Lemma 3 Let {uk}k be a sequence in W. Suppose that ‖uk‖ = 1, un ⇀ u
weakly in W, un(x) → u(x) and ∇un(x) → ∇u(x) almost everywhere in B.
Then

sup
k

∫
B

exp
(
Nepω

1
N−1
N−1 |uk|

N′ )
dx < +∞,

for all 1 < p < P, where

P :=

{
(1− ‖u‖N )

−1
N−1 if ‖u‖ < 1

+∞ if ‖u‖ = 1.

Proof. By young inequality we have

exp(Nea+b) ≤ 1

q
exp(Neqa) +

1

q′
exp(Neq

′b), ∀a, b ∈ R, q > 1,

with
1

q
+

1

q′
= 1. And also we can estimate |uk|N

′
using the following inequality

(1 + a)q ≤ (1 + ε)aq + (1− 1

(1 + ε)
1
q−1

)1−q, ∀a ≥ 0, ∀ε > 0 ∀q > 1.

So, we get

|uk|N
′
≤ (1 + ε)|uk − u|N

′
+
(
1− 1

(1 + ε)N−1

) −1
N−1 |u|N

′
.
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Therefore for any p > 1, using the above inequalities we obtain∫
B

exp
(
Nepω

1
N−1
N−1 |uk|

N′ )
dx ≤ 1

q

∫
B

exp(Nepqω
1

N−1
N−1 (1+ε)|uk−u|N

′

)dx

+
1

q′

∫
B

exp(Ne
pq′ω

1
N−1
N−1 (1− 1

(1+ε)N−1 )
−1
N−1 )|u|N

′

)dx.

From (4) the last integral is finite and to complete the proof we should prove
that for every p such that 1 < p < P, we have

sup
k

∫
B

exp(Nepqω
1

N−1
N−1 (1+ε)|uk−u|N

′

)dx < +∞,

for some ε > 0 and q > 1.
By Brezis-Lieb’s lemma we have

‖un − u‖N = ‖un‖N − ‖u‖N + on(1) where on(1)→ 0 as n→ +∞.

Then

‖un − u‖N = 1− ‖u‖N + on(1) where on(1)→ 0 as n→ +∞.

We may assume that ‖u‖ < 1. The proof in the case ‖u‖ = 1 is similar. If
‖u‖ < 1 then for

p <
1

(1− ‖u‖N )
1

N−1

,

there exists ν > 0 such that

p(1− ‖u‖N )
1

N−1 (1 + ν) < 1.

On the other hand,

lim
k→+∞

‖uk − u‖N = 1− ‖u‖N

and so
lim

k→+∞
‖uk − u‖N

′
= (1− ‖u‖N )

1
N−1 .

Therefore, for every ε > 0, there exists kε ≥ 1 such that

‖uk − u‖N
′
≤ (1 + ε)(1− ‖u‖N )

1
N−1 , ∀ k ≥ kε.

Then, for q = 1 + ε with ε such that ε = 3
√

1 + ν − 1 and for every k ≥ kε, we
get

pq(1 + ε)‖uk − u‖N
′
≤ 1.
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From (5), this leads to∫
B

exp(Nepqω
1

N−1
N−1 (1+ε)|uk−u|N

′

)dx

≤
∫
B

exp(Ne
(1+ε)pqω

1
N−1
N−1 (

|uk−u|
‖uk−u‖

)N
′
‖uk−u‖N

′

)dx

≤
∫
B

exp(Ne
ω

1
N−1
N−1 (

|uk−u|
‖uk−u‖

)N
′

)dx

≤ sup
‖u‖≤1

∫
B

exp(Neω
1

N−1
N−1 |u|

N′

)dx < +∞

and the proof is complete. �

3 The variational formulation

As the reaction term f is critical or sub-critical growth, there are positive
constants b and c such as

|f(x, t)| ≤ b exp{ect
N′

}, ∀x ∈ B, ∀t ∈ R. (18)

3.1 The geometrical properties of the energy E

As we mentioned in the introduction, problems (1) have variational structure.
In the sequel, we prove that the functional E has a mountain pass geometry.
We begin by the first.

Lemma 4 Assume that the hypothesis (A1), (A2), (A3), (A4),(A5),(ξ1) and
(ξ2) hold. Then there exist a > 0 and σ > 0 such that

E(u) ≥ a ∀u : ‖u‖ = σ.

Proof. By (A4), there exist ε0 ∈ (0, 1) and δ0 > 0 such that for all (x, t) ∈ B×R

F (x, t) ≤ 1

N
λ1(1− ε0)tN , for |t| ≤ δ0.

Indeed, from (A4) we have

lim sup
t→0

NF (x, t)

tN
< λ1,

or

inf
β>0

sup{NF (x, t)

tN
, 0 < t < β} < λ1.
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This inequality is strict, then there exists ε0 > 0 such that

inf
β>0

sup{NF (x, t)

tN
, 0 < t < β} < λ1 − ε0,

hence, there exists δ0 > 0 such that

sup{NF (x, t)

tN
, 0 < t < δ0} < λ1 − ε0

and consequently

∀|t| < δ0F (x, t) ≤ 1

N
λ1(1− ε0)tN .

From (18), we deduce that for q > N there exist constant c0 > 0 and c1 > 0
such that

F (x, t) ≤ c1|t|qexp(ec0t
N
N−1

), ∀|t| ≥ δ0
and hence we get

F (x, t) ≤ c1|t|qexp(ec0t
N
N−1

) +
1

N
λ1(1− ε0)tN , ∀t ∈ R.

Then, using the fact that λ1

∫
B

|u|Ndx ≤ ‖u‖N and the Hölder inequality we

get

E(u) ≥ 1

N
ε0‖u‖N − c1

( ∫
B

exp(Nec0|u|
N
N−1

)dx
) 1
N
( ∫

B

|u|
N
N−1 qdx

)N−1
N .

We choose % > 0 such that c0%
N ′ ≤ ω

1
N−1

N−1, then we get∫
B

exp(Nec0|u|
N′

)dx =

∫
B

exp(Nec0‖u‖
N′ (

|u|
‖u‖ )N

′

)dx ≤ c2, ∀u ∈W with ‖u‖ = %

and this follows from (5). On the other hand, by lemma 1, there exist a
constant c4 > 0, such that ‖u‖N ′q ≤ c4‖u‖, so we deduce that there exists c5
such that

E(u) ≥ 1

N
ε0‖u‖N − c5‖u‖q ∀u ∈W ‖u‖ = %,

provided % > 0 and c0%
N ′ ≤ ω

1
N−1

N−1. Finally, we choose σ > 0 as the maxi-

mum point of the function g(%) = ε0
N %

N − c5%q on the interval [0,
ω

1
N
N−1

c
1
N′
0

] and
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let a = E(σ) then the Lemma follows. �

Lemma 5 Suppose that (A1), (A2), (ξ1) and (ξ2) hold. Let φ1 be a normal-
ized eigenfunction associated to λ1 in W. Then, E(tφ1)→ −∞, as t→ +∞.

Proof. Let φ1 ∈ E ∩ L∞(B) be the normalized eigen function associated to
the eigen-value defined by (12) ie such that ‖φ1‖ = 1. We have

E(tφ1) =
tN

N
‖φ1‖N −

∫
B

F (x, tφ1)dx.

Then using (A1) and (A2) and integrating, we get the existence of a constant
C > 0 such that

F (x, t) ≥ Ce 1
M t, ∀ |t| ≥ t0.

Consequently, there exist γ > λ1 and C > 0 such that F (x, t) ≥ γ

N
tN +C for

all t > 0.

E(tφ1) ≤ tN

N
‖φ1‖N −

γ

N
tN‖φ1‖NN − C|B|,

where |B| = mes(B) = V ol(B). Then, from the definition of λ1, we get

E(tφ1) ≤ tN λ1 − γ
N
‖φ1‖NN < 0 ∀t > 0.

This achieves the proof.

3.2 Compactness analysis step two : the compactness level of the
energy E

The main difficulty in the approach to the critical problem of growth is the
lack of compactness. Precisely the overall condition of Palais-Smale does not
hold except for a certain level of energy. In the following proposition, we iden-
tify the first level of compactness.

Proposition 3.1 Let E be the energy associated to the problem (1) defined
by (11), then

(i) In the subcritical case the functional E satisfies the Palais-Smale condi-
tion (PS)d at all level d ∈ R.

(ii) In the critical case the functional E satisfies the Palais-Smale condition
(PS)d only for level d such that

d <
ωN−1

NαN−1
0

.
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Proof. (ii) We begin by the critical case. Let d ∈ R and {un}n in W be a
(PS)d sequence, that is

E(un) =
1

N
‖un‖N −

∫
B

F (x, un)dx→ d, n→ +∞ (19)

and

|E′(un)v| =
∣∣∣ ∫B ρ(x)|∇un|N−2∇un.∇vdx

+

∫
B

ξ|un|N−2unvdx−
∫
B

f(x, un)vdx
∣∣∣

≤ εn‖v‖, ∀v ∈W,

(20)

where εn → 0 as n→ +∞.
By (A2), we get for any ε > 0, a real tε > 0 such that

F (x, t) ≤ εtf(x, t), ∀|t| > tε, uniformly in x ∈ B. (21)

Hence, for any ε > 0, we have

1

N
‖un‖N ≤ C +

∫
B

F (x, un)dx

≤ C +

∫
|un|≤tε

F (x, un)dx+ ε

∫
B

f(x, un)undx

≤ Cε + εεn‖un‖+ ε‖un‖N .

Therefore

(
1

N
− ε)‖un‖N ≤ C + εεn‖un‖

and so (un) is bounded in W, then there exists u ∈ W such that, up to a
subsequence

un ⇀ u in W

un → u in Lq(B) ∀q ≥ 1

un → u a.e in B.

We follow the schema of [1] to show the convergence almost everywhere of
the gradient ∇un(x) → ∇u(x) a.e x ∈ B and |∇un|N−2∇un ⇀ |∇u|N−2∇u
weakly in (L

N
N−1 (B,w))N . Now, from (18) and (19), we have∣∣ ∫

B

f(x, un)undx
∣∣ ≤ εn‖un‖+ ‖un‖N ≤ C.

By Lemma 2, we obtain

f(x, un)→ f(x, u) in L1(B) as n→ +∞. (22)
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From (21), we have∣∣ ∫
B

F (x, un)dx
∣∣ ≤ C + ε

∣∣ ∫
B

f(x, un)undx
∣∣ ≤ C.

Using the condition (A2) and the generalized Lebesgue dominated convergence
theorem, we get

F (x, un)→ F (x, u) in L1(B) as n→ +∞. (23)

It follows from (19) that

lim
n→+∞

1

N
‖un‖N = d+

∫
B

F (x, u)dx. (24)

Then by (A3) and (20), we have

lim
n→+∞

N

∫
B

F (x, un)dx ≤ lim
n→+∞

∫
B

f(x, un)undx = N(d+

∫
B

F (x, u)dx).

(25)
So, d ≥ 0. Moreover, from (19), (20) and passing to the limit we get∫

B

ρ(x)|∇u|N−2∇u.∇vdx+

∫
B

ξ|u|N−2uvdx =

∫
B

f(x, u)vdx, ∀v ∈W.

(26)
Therefore u is solution of the problem (1).

Taking u = v, we get∫
B

ρ(x)|∇u|Ndx+

∫
B

ξ|u|Ndx =

∫
B

f(x, u)udx ≥ N
∫
B

F (x, u)dx,

which implies that E(u) ≥ 0.
Next, we will distinguish three cases:
(1) d = 0
(2) d > 0, u = 0
(3) d > 0, u > 0.

Case (1) : d = 0. We have

0 ≤ E(u) ≤ lim inf
n→+∞

E(un) = 0

and then
1

N
‖u‖N =

∫
B

F (x, u)dx.
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From (23), we deduce

‖un‖ → ‖u‖ as n→ +∞.

Therefore, up to subsequence,

un → u strongly in W.

Case (2) : d > 0, u = 0. Then, from (18) and (19), we get

lim
n→+∞

‖un‖N = Nd and lim
n→+∞

∫
B

f(x, un)undx = Nd.

We will prove this is impossible and the Case (2) can not occur.
Claim: There exists q > 1 such that∫

B

|f(x, un)|q dx ≤ C, (27)

for some constant C.
Let α0 be the real that appear in the definition of critical or subcritical non-
linearity f . For every ε > 0 and q > 1 there exists tε > 0 and C = C(q, ε) > 0
such that

|f(x, t)|q ≤ Cε,q
(

exp{Neα0(ε+1)t
N
N−1 }

)
, ∀|t| ≥ tε and uniformly in x ∈ B.

(28)

Therefore∫
B

|f(x, un)|qdx =

∫
{|un|≤tε}

|f(x, un)|qdx+

∫
{|un|>tε}

|f(x, un)|qdx

≤ ωN−1 max
B×[−tε,tε]

|f(x, t)|q + Cε,q

∫
B

exp
(
Neα0(ε+1)|un|

N
N−1 )

dx.

The last integral is finite. Indeed, since Nd < ωN−1

αN−1
0

, there exists η ∈ (0, 1
N )

such that Nd = (1−Nη)
ωN−1

αN−1
0

. On the other hand, ‖un‖N
′ → (Nd)

1
N−1 , so

there exists nη > 0 such that for all n ≥ nη, we get ‖un‖N
′ ≤ (1 − η)

ω
1

N−1
N−1

α0
.

Therefore,

α0(1 + ε)(
|un|
‖un‖

)N
′
‖un‖N

′
≤ (1 + ε)(1− η)ω

1
N−1

N−1·

We choose ε > 0 small enough to get

α0(1 + ε)‖un‖N
′
≤ ω

1
N−1

N−1,



Non-autonomous weighted elliptic equations with double exponential
growth 50

therefore the second integral is uniformly bounded in view of (5) and the claim
follows.
Now using (20) when v = un and for q > 1, we get∣∣‖un‖N − ∫

B

f(x, un)undx
∣∣ ≤ Cεn

and so

‖un‖N ≤ Cεn +
( ∫

B

|f(x, un)|q dx
) 1
q (

∫
B

|un(x)|q
′
dx
) 1
q′ , (29)

where q and q′ are conjugate.
Since un → 0 in Lq

′
(B), the inequality (29) gives

‖un‖ → 0,

then d = 0 which is impossible since we supposed that d > 0 and so this case
can not occur.

Case (3) : d > 0 and u > 0.
We prove that E(u) = d.

We have

E(u) ≤ lim inf
n→+∞

E(un)

≤ 1
N lim inf
n→+∞

‖un‖N −
∫
B

F (x, u)dx

≤ d.

Now suppose that E(u) < d. Then

‖u‖N
′
< (N

(
d+

∫
B

F (x, u)dx
)) 1

N−1 . (30)

Let
vn =

un
‖un‖

and
v =

u

(N
(
d+

∫
B

F (x, u)dx
)
)

1
N

·

It’s clear that vn ⇀ v weakly in W, v a non zero function ‖vn‖ = 1 and
‖v‖ < 1.
Applying the Lions-type Lemma 3, we get

sup
n

∫
B

exp
(
Nepω

1
N−1
N−1 |vn|

N′ )
dx <∞,
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for some 1 < p < (1− ‖v‖N )
−1
N−1 .

As in the case(2), we are going to estimate

∫
B

|f(x, un)|qdx.

For any ε > 0, we have∫
B

|f(x, un)|qdx =

∫
{|un|≤tε}

|f(x, un)|qdx+

∫
{|un|>tε}

|f(x, un)|qdx

≤ ωN−1 max
B×[−tε,tε]

|f(x, t)|q + Cε,q

∫
B

exp
(
Neα0(1+ε)|un|N

′ )
dx

≤ Cε + Cε,q

∫
B

exp
(
Neα0(1+ε)‖un‖N

′
|vn|N

′ )
dx ≤ C,

provided α0(1 + ε)‖un‖N
′ ≤ p ω

1
N−1

N−1, for some 1 < p < (1− ‖v‖N )
−1
N−1 .

Indeed, we have

(1−‖v‖N )
−1
N−1 =

( N(d+
∫
B
F (x, u)dx)

N(d+
∫
B
F (x, u)dx)− ‖u‖N )

) 1
N−1 =

(d+
∫
B
F (x, u)dx

d− E(u)

) 1
N−1 ·

Since

lim
n→+∞

‖un‖N
′

= (N
(
d+

∫
B

F (x, u)dx)
) 1
N−1 ,

then,

α0(1 + ε)‖un‖N
′
≤ α0(1 + 2ε)(N

(
d+

∫
B

F (x, u)dx
)) 1

N−1

and to get the desired estimate it’s enough to show that we can choose ε > 0
small enough such that

α0

ω
1

N−1

N−1

(1 + 2ε) <
( 1

N(d− E(u))

) 1
N−1 ,

that is

(1 + 2ε)
(
d− E(u)

) 1
N−1 <

ω
1

N−1

N−1

N
1

N−1α0

(31)

and the last inequality holds since E(u) ≥ 0 and d <
ωN−1

NαN−1
0

·

From (20) with v = un − u, we get∫
B

ρ(x)|∇un|N−2∇un.(∇un −∇u)dx+

∫
B

ξ(x)|un|N−2un(un − u)dx

−
∫
B

f(x, un)(un − u)dx = on(1).

(32)
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On the other hand, since un ⇀ u weakly in W then∫
B

ρ(x)|∇u|N−2∇u.(∇un −∇u)dx+

∫
B

ξ(x)(x)|u|N−2u(un − u)dx = on(1).

(33)
Combining (32) and (33), we obtain∫

B

ρ(x)
(
|∇un|N−2∇un − |∇u|N−2∇u

)
.(∇un −∇u)dx+

∫
B

ξ(x)
(
|un|N−2un − |u|N−2u

)
(un − u)dx−

∫
B

f(x, un)(un − u)dx = on(1).

Using the well known inequality

(|x|N−2x−|y|N−2y).(x−y) ≥ 22−N |x−y|N , ∀ x, y ∈ RN and N ≥ 2, (34)

we obtain

0 ≤ 22−N( ∫
B

ρ(x)|∇un −∇u|Ndx+

∫
B

ξ(x)|un − u|Ndx
)

≤
∫
B

f(x, un)(un − u)dx+ on(1).
(35)

By the Hölder inequality, we obtain

22−N‖un − u‖N ≤
∫
B

f(x, un)(un − u)dx+ on(1)

≤
( ∫

B

|f(x, un)|q
) 1
q (

∫
B

|un − u|q
′
)

1
q′ dx+ on(1).

(36)

So,
‖un − u‖ → 0 as n→∞.

By Brezis-Lieb’s lemma, up to subsequence, we get

lim
n→+∞

‖un‖N = N(d+

∫
B

F (x, u)dx) = ‖u‖N ,

which contradicts (49).
(i) In the subcritical case, the Palais-Smale condition is satisfied for all level
d ∈ R. Indeed, up to subsequences, we can assume that

‖un‖ ≤M in W
un ⇀ u weakly in W
un → u strongly in Lq(B) ∀q ≥ 1

un(x) → u(x) almost everywhere in B.
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Since f is subcritical at +∞, there exists a constant CM > 0 such that

f(x, s) ≤ CM exp{e
w

1
N−1
N−1

M
N
N−1

s
N
N−1

},∀(x, s) ∈ B × (0,+∞).

Using the Hölder inequality

|
∫
B

f(x, un)(un − u)dx| ≤
∫
B

|f(x, un)(un − u)|dx

≤
( ∫

B

|f(x, un)|2dx
) 1

2
( ∫

B

|un − u|2dx
) 1

2

≤ C
( ∫

B

exp{2e
w

1
N−1
N−1

M
N
N−1

u
N
N−1
n

}dx
) 1

2 ‖un − u‖2

≤ C
( ∫

B

exp{2e
w

1
N−1
N−1

M
N
N−1

‖un‖
N
N−1 |un|

N
N−1

‖un‖
N
N−1 }dx

) 1
2 ‖un − u‖2

≤ C‖un − u‖2 → 0 as n→ +∞.

Proceeding as in the case (3), with v = un − u in (20), we get

22−N‖un − u‖N ≤ |
∫
B

f(x, un)(un − u)dx|+ on(1)→ 0 as n→ +∞.

This completes the proof of the Proposition 3.2.
�

4 Proof of the main results

Proof of Theorem 1.2
Since f(x, t) satisfies the condition (7) for all α0 > 0, then by Proposition 3.2,
the functional E satisfies the (PS) condition (at each possible level d). So,
by Lemma 4 and Lemma 5, we deduce that the functional E has a nonzero
critical point u in W. From maximum principle, the solution u of the problem
(1) is positive.

�
Proof of Theorem 1.3 We are going to estimate the minmax value of the
functional E.The idea is to set up a sequence of functions vn ∈W, and estimate
max{E(tvn) : t ≥ 0}. For this purpose, let consider the following Moser
function

wn(x) =
1

ω
1
N

N−1


log(log( e

|x| ))

log
1
N (1 + n)

if e−n ≤ |x| ≤ 1

log
N−1
N (1 + n) if 0 ≤ |x| ≤ e−n.
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Let vn(x) =
wn(x)

‖wn‖
. Then vn ∈W and ‖vn‖ = 1.

4.1 Helpful Lemmas

We need two technical Lemmas who will help us to reach our aims and objec-
tives.

Lemma 6 Assume ξ(x) is continuous and (ξ1) is satisfied. Then there holds

(i)

‖wn‖N ≤ 1 +
m
(
S(N) +

(N + 1)(N − 1)!

NN
+ 1 + on(1)

)
log(1 + n)

+ on(1),

where m = max
x∈B

ξ(x), on(1)→ 0 as n→ +∞, and

S(N) =
2

N
+
N − 1

N2
+

(N − 1)(N − 2)

N3
+ ....+

(N − 1)(N − 2)...3

NN−2
·

(ii)

E(m,N, n) ≤ 1

‖wn‖N ′
≤ D(ξ0, N, n),

where

E(m,N, n) = 1−
m
(
S(N) +

(N + 1)(N − 1)!

NN
+ 1 + on(1)

)
(N − 1) log(1 + n)

+ on(1)

and

D(ξ0, N, n) = 1−
ξ0
(
S(N) +

(N + 1)(N − 1)!

NN
+ 1 + on(1)

)
(N − 1) log(1 + n)

+ on(1).

Proof. (i) We have

1

ωN−1

∫
B

logN−1(
e

|x|
)|∇wn|Ndx

=
1

log(1 + n)

∫ 1

e−n
rN−1| 1

r log e
r

|N logN−1 e

r
dr = 1



Non-autonomous weighted elliptic equations with double exponential
growth 55

and,

I =

∫
e−n≤|x|≤1

logN (log(
e

|x|
))dx ≤

∫
e−n≤|x|≤1

logN (
e

|x|
)dx.

Making the change of variable, |x| = e−t and integrating by part, we get

I =
∫
e−n≤|x|≤1

logN (log( e
|x| ))dx ≤ ωN−1

∫ n

0

e−Nt(1 + t)Ndt

= ωN−1

(
− (1 + n)N e−Nn

N + 1
N

)
+

∫ n

0

e−Nt(1 + t)N−1dt

= ωN−1

(
1
N −

1
N e
−nN (1 + n)N +

N − 1

N

∫ n

0

e−Nt(1 + t)N−2dt
)

= ωN−1

(
S(N)− e−nN

N B(n,N) + (N−1)!
NN−2

∫ n

0

e−Nt(1 + t)dt
)
,

where

B(n,N) = (1 + n)N + (1 + n)N−1

+

j=N−2∑
j=2

(N − 1)(N − 2)(N − 3)...(N − (j − 1)))

N j
(1 + n)N−j

and

S(N) =
2

N
+
N − 1

N2
+

(N − 1)(N − 2)

N3
+ ....+

(N − 1)(N − 2)...3

NN−2
·

Then

I = ωN−1

(
S(N) +

(N + 1)(N − 1)!

NN
− e−nN

N
(B(n,N)

+
(N − 1)!

NN
+

(1 +N2)(N − 1)!

NN

)
and

I = ωN−1

(
S(N) +

(N + 1)(N − 1)!

NN
+ on(1)

)
.
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Hence ∫
B

|wn(x)|Ndx

≤ 1

ωN−1 log(1 + n)

∫
e−n≤|x|≤1

logN (
e

|x|
)dx

+ 1
ωN−1

∫
0≤|x|≤e−n

logN−1(1 + n)dx

=
1

log(1 + k)

∫ n

0

e−Nt(1 + t)Ndt+
1

N
e−Nn logN−1(1 + n)

≤ 1

log(1 + n)

(
S(N) +

(N + 1)(N − 1)!

NN
+ on(1)

)
+

1

log(1 + n)

≤ 1

log(1 + n)

(
S(N) +

(N + 1)(N − 1)!

NN
+ 1 + on(1)

)
and thus

‖wn(x)‖N =

∫
B

logN−1(
e

|x|
)|∇wn|Ndx+

∫
B

ξ(x)|wn(x)|Ndx

≤ 1 +
m
(
S(N) +

(N + 1)(N − 1)!

NN
+ 1 + on(1)

)
log(1 + n)

·

Then,

‖wn(x)‖N
′
≤ 1 +

m
(
S(N) +

(N + 1)(N − 1)!

NN
+ 1 + on(1)

)
(N − 1) log(1 + n)

·

(ii) We make a development of order one, we obtain ,

1

‖wn(x)‖N ′
≥ 1−

m
(
S(N) +

(N + 1)(N − 1)!

NN
+ 1 + on(1)

)
(N − 1) log(1 + n)

·

Using (ξ1) and by proceeding in the same way, we get the inequality of the
left.

�

Now, we present the second elementary Lemma.

Lemma 7

lim
n→+∞

∫
e−n≤|x|≤1

exp{Neω
1

N−1
N−1 v

N′
n }dx

= lim
n→+∞

ωN−1

∫ n

0

exp{Ne
logN

′
(1+t)

log
1

N−1 (1+n)‖wn‖N
′ −Nt}dt ≥ ωN−1e

N .
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Proof. We make the changes of variable s = 1+ t, j = n+1, and using lemma
6 (ii), we get,

∫
e−n≤|x|≤1

exp{Neω
1

N−1
N−1 v

N′
n }dx =

∫ n

0

exp{Ne
logN

′
(1+t)

log
1

N−1 (1+n)‖wn‖N
′ −Nt}dt

and∫
e−n≤|x|≤1

exp{Neω
1

N−1
N−1 v

N′
n }dx ≥

∫ n

0

exp
(
Ne

logN
′
(1+t)(1−E(m,N,n))

log
1

N−1 (1+k) −Nt
)
dt.

Let b := b(m;N ; j) = 1− E(m;N ;n), then

∫
e−n≤|x|≤1

exp{Neω
1

N−1
N−1 v

N′
n }dx ≥

∫ n

0

exp
(
Ne

logN
′
(1+t)(1−E(m,N,n))

log
1

N−1 (1+k) −Nt
)
dt

=

∫ j

1

exp
(
Ns( b

N−1 log s
log j )

1
N−1 −N(s− 1)

)
ds

= eN
∫ j

1

exp
(
Ns( b

N−1 log s
log j )

1
N−1 −Ns

)
ds.

We claim that

lim
j→+∞

∫ j

1

exp
(
Ns( b

N−1 log s
log j )

1
N−1 −Ns

)
ds = 1. (37)

Indeed, using the fact that b ≤ 1, and for any j > 4, we have

ψj(s) := Ns( b
N−1 log s

log j )
1

N−1 −Ns ≤ Ns( log s
log j )

1
N−1 −Ns, with s ≥ 1.

The interval [1; j] is then divided as follows

[1, j] = [1, j
1

2(N−1) ] ∪ [j
1

2(N−1) , j − j
1

2(N−1) ] ∪ [j − j
1

2(N−1) , j].

First we consider the interval [1, j
1

2(N−1) ], and since

χ
[1,j

1

2(N−1) ]
(s)eψj(s) ≤ eNs

1
2(N−1)−Ns ≤ eNs

1
2−Ns ∈ L1([1,+∞))

χ
[1,j

1

2(N−1) ]
(s)eψj(s) → eN−Ns for a.e s ∈ [1,+∞), as j → +∞,
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using the Lebesgue dominated convergence theorem, we get

lim
j→+∞

∫ j
1

2(N−1)

1

exp
(
Ns( b

N−1 log s
log j )

1
N−1 −Ns

)
ds

= lim
j→+∞

∫ j

1

χ
[1,j

1

2(N−1) ]
(s)eψj(s)ds =

1

N
·

Now we are going to study the limit of this integral on [j
1

2(N−1) , j − j
1

2(N−1) ]

and [j − j
1

2(N−1) , j], so we compute

ψj(j
1

2(N−1) ) = −Nj
1

2(N−1)
(
1− j

b−2

2N
)

and

ψj(j
1

2(N−1) ) ≤ −j
1

2(N−1) for all j ≥ (
N

N − 1)
)2N , (38)

we have also

ψj(j − j
1

2(N−1) )

= N exp
( b

log
1

N−1 j

[
log j + log(1− j

1

2(N−1)
−1

)
]N ′)−N(j − j

1

2(N−1) )

= N exp
(
b log j

{
1 +

log(1− j
1

2(N−1)
−1

log j
)
}N ′)−N(j − j

1

2(N−1) )

≤ N
[

exp
(

log j
{

1−N ′ j
1

2(N−1)
−1

log j
+ o(

1

log j
) + o(

1

j
)
}
− 1
)]

+Nj
1

2(N−1)

= Nj
[

exp(−N ′j
1

2(N−1)
−1

+ o( 1
j )
)
− 1
)
] +Nj

1

2(N−1) .

Therefore, for every ε ∈ (0, 1) there exists jε ≥ 1 such that

ψj(j − j
1

2(N−1) ) ≤ Nj
1

2(N−1) (1− (1− ε)N ′) for every j ≥ jε. (39)

Let j fixed and large enough. A qualitative study conducted on ψj in [1,+∞),
shows that there exists a unique sj ∈ (1, j) such that ψ′j(sj) = 0 and conse-
quently

∫ j−j
1

2(N−1)

j
1

2(N−1)

eψj(s)ds ≤ (j − 2j
1

2(N−1) )emax(ψj(j
1

2(N−1) ,ψj(j−j
1

2(N−1) ).

In addition, from (38) and (39) with ε = 1
N2 , we obtain

max[ψj(j
1

2(N−1) , ψj(j − j
1

2(N−1) )] ≤ −j
1

2(N−1) ,
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as condition that j is large enough. Hence, there exists j ≥ 1 such that

∫ j−j
1

2(N−1)

j
1

2(N−1)

eψj(s)ds ≤ (j − 2j
1

2(N−1) )e−j
1

2(N−1)

for all j ≥ j.

Therefore

lim
j→+∞

∫ j−j
1

2(N−1)

j
1

2(N−1)

exp
(
Nes

(
bN−1 log s

log j
)

1
N−1

−Ns
)
ds = 0. (40)

Finaly, we will study the limit on the interval [j− j
1

2N−1 , j]. We mention that

for a fixed j ≥ 1 large enough, ψj is a convex function on [j − j
1

2(N−1) ,+∞),
and ψj(j) = Njb −Nj ≤ 0, so we can get this estimate

ψj(s) ≤ j − s
j

1

2(N−1)

ψj(j − j
1

2(N−1) ) + ψj(j)

≤ j − s
j

1

2(N−1)

ψj(j − j
1

2(N−1) ), s ∈ [j − j
1

2(N−1) , j].

On the another hand, in view of (37) and (38), if ε ∈ (0, 1
N2 ) and j ≥ jε we

have
ψj(s) ≤ N(1− (1− ε)N ′)(j − s), s ∈ [j − j

1

2(N−1) , j], (41)

furtheremore, using the fact that ψj is convex on [j−j
1

2(N−1) ,+∞) and ψ′j(j) =

NN ′jb−1 −N , we get

ψj(s) ≥ ψj(j) + ψ′j(j)(s− j)
= Njb −Nj + (NN ′jb−1 −N)(s− j), s ∈ [j − j

1

2(N−1)) , j].
(42)

So, ∫ j

j−j
1

2(N−1)

eψj(s)ds ≥ eNj
b−Nj

NN ′jb−1 −N
(
1− e−j

1

2(N−1) )
. (43)

Then by bringing together (41), (42) and (43), we deduce

lim
j→+∞

eNj
b−Nj

NN ′jb−1 −N
(
1− e−j

1

2(N−1) ) ≤ lim
j→+∞

∫ j

j−j
1

2(N−1)

eϕj(s)ds

≤ −1

N(1− (1− ε)N ′)
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and since lim
j→+∞

b = 1, then

1

N ′
≤ lim
j→+∞

∫ j

j−j
1

2(N−1)

eϕj(s)ds ≤ −1

N(1− (1− ε)N ′)
.

By tending ε to zero, we get

lim
j→+∞

∫ j−j
1

2(N−1)

j
1

2(N−1)

exp
(
Nes

(
log s
log j

)
1

N−1

−Ns
)
ds =

1

N ′
.

So our claim (37) is proved, and the Lemma follows.
�

4.2 The minmax value of the energy E

In this sub-section we will give an estimation of the min-max of the energy.

Lemma 8 Assume (ξ1), (A2), (A3), (A4) and (A5) holds. There exists some
n ∈ N such that

max{E(tvn) : t ≥ 0} < ωN−1

NαN−1
0

for some n ≥ 1. (44)

Proof. Let us assume by contradiction that for all n ∈ N,

max{E(tvn) : t ≥ 0} ≥ ωN−1

NαN−1
0

. (45)

So, for every n ∈ N, there are tn > 0 such as

E(tnvn) = max
t≥0

E(tvn).

Then
ωN−1

NαN−1
0

≤ max
t≥0

E(tnvn) =
1

N
tNn −

∫
B

F (x, tnvn)dx

and

0 =
d

dt
E(tvkn)

∣∣
t=tn

= tN−1
n −

∫
B

f(x, tnvn)vndx. (46)

By (A5), for any ε > 0, there exists tε > 0 such that

f(x, t)t ≥ (β0 − ε) exp
(
Neα0t

N′ )
∀|t| ≥ tε, uniformly in x. (47)
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By Lemma 6, if |x| ≤ e−k we have

vN
′

n ≥ 1

ω
1

N−1

N−1

log(1 + n)

1 +
m
(
S(N) +

(N + 1)(N − 1)!

NN
+ 1 + on(1)

)
log(1+n) + on(1)

=
1

ω
1

N−1

N−1

log(1 + n)−
m
(
S(N) +

(N + 1)(N − 1)!

NN
+ 1
)

(N − 1)ω
1

N−1

N−1

+ on(1)

=
1

ω
1

N−1

N−1

log(1 + n)− C(N,M)

(N − 1)ω
1

N−1

N−1

+ on(1),

(48)
where

C(M,N) = m
(
S(N) +

(N + 1)(N − 1)!

NN
+ 1
)
.

Using (46) and (47), we get

tNn ≥ (β0 − ε)
∫

0≤|x|≤e−n
exp{Neα0t

N′
n vN

′
n }dx

≥ (β0 − ε)
∫

0≤|x|≤e−n
exp{Ne

α0t
N′
n ( 1

ω

1
N−1
N−1

log(1+n)− C(M,N)

(N−1)ω

1
N−1
N−1

+on(1))

}dx

= ωN−1(β0 − ε) exp{Ne
α0t

N′
n ( 1

ω

1
N−1
N−1

log(1+n)− C(M,N)

(N−1)ω

1
N−1
N−1

+o(1))

−Nn}.
(49)

As a result, (tn) is a bounded sequence. It should be noted that if

lim
n→+∞

tNn >
ωN−1

αN−1
0

, (50)

one then obtains a contradiction with the boundedness of (tn). Indeed, oth-
erwise there exists some δ > 0 such that for n large enough,

tNn ≥ (δ +
ω

1
N−1

N−1

α0
)N−1.

Thus
α0

ω
1

N−1

N−1

tN
′

n ≥
α0

ω
1

N−1

N−1

δ + 1

and hence, the right hand of (49) tends to infinity which contradicts the
bounded-ness of (tn). Therefore (50) cannot hold and we get

lim
k→+∞

tNn =
ωN−1

αN−1
0

· (51)
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We claim that (51) leads to a contradiction with (A5). For this purpose, the
following sets should be used

An = {x ∈ B|tnvn ≥ tε} and Cn = B \An,

where tε is given in (45). We have

tNn =

∫
B

f(x, tnvn)tnvndx =

∫
An

f(x, tnvn)tnvndx+

∫
Cn

f(x, tnvn)tnvn

≥ (β0 − ε)
∫
An

exp{Neα0t
N′
n vN

′
n }dx+

∫
Cn

f(x, tnvn)tnvndx

= (β0 − ε)
∫
B

exp{Neα0t
N′
n vN

′
n }dx− (β0 − ε)

∫
Cn

exp{Neα0t
N′
n vN

′
n }dx

+

∫
Cn

f(x, tnvn)tnvndx.

Since vk → 0 a.e in B, χCn → 1 a.e in B, therefore using the dominated
convergence theorem, we get

lim
n→+∞

tNn =
ωN−1

αN−1
0

≥ (β0−ε) lim
n→+∞

∫
B

exp{Neα0t
N′
n vN

′
n }dx−(β0−ε)

ωN−1

N
eN .

By using the fact that

tNn ≥
ωN−1

αN−1
0

,

we get ∫
B

exp{Neα0t
N′
n vN

′
n }dx ≥

∫
0≤|x|≤e−n

exp{NeNω
1

N−1
N−1 v

N′
n }dx

+

∫
e−k≤|x|≤1

exp{Neω
1

N−1
N−1 v

N′
n }dx·

On one hand, we have by (48)∫
0≤|x|≤e−n

exp{Neω
1

N−1
N−1 v

N′
n }dx

≥
∫

0≤|x|≤e−n
exp{Ne

log(1 + n)− C(M,N)

N − 1
+ on(1))

}dx

=
ωN−1

N
exp{N +Nn− C(M,N)

N − 1
+ on(1)}e−Nn

=
ωN−1

N
exp{N − C(M,N)

N − 1
+ on(1)} → ωN−1

N
eN−

C(M,N)
N−1 .
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On other side, we have by (48), the definition of vn and the result of Lemma
4.1,

∫
e−n≤|x|≤1

exp{Neω
1

N−1
N−1 v

N′
n }dx =

∫
e−n≤|x|≤1

exp{Ne
logN

′
(log( e

|x| ))

‖wn‖N
′

log
1

N−1 (1+n) }dx

≥ ωN−1e
N .

Hence,

lim
n→+∞

tNn =
ωN−1

αN−1
0

≥ (β0 − ε)ωN−1
eN

N

(
N − 1 + e−

C(M,N)
N−1

)
.

Since ε > 0 is arbitrary, we have

N

αN−1
0 eN

(
N − 1 + e

−
C(M,N)

N − 1
) ≥ β0.

This contradicts (A5) and establishes the proof.
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