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Dynamics and Ulam Stability for Fractional
g-Difference Inclusions via Picard Operators
Theory

Said Abbas, Mouffak Benchohra and Erdal Karapinar*

Abstract

In this manuscript, by using weakly Picard operators we investigate
the Ulam type stability of fractional g-difference An illustrative example
is given in the last section.

1 Introduction

Not only fractional differential inclusions (FDIs) but also fractional differen-
tial equations (FDEs) have applications in mathematics, and other applied
sciences, see e.g. [18, 6, 7, 35, 38, 40, 21, 22, 37, 9, 17, 4, 5]. Fractional ¢-
difference equations received much attention from many authors; see e.g. [12].
Other interesting results about this subject can be found in [24].

Functional differential inclusions and coupled systems of differential inclu-
sions are a generalization of the concept of ordinary differential equation of
the form 4xz(t) € F(t,z(t)), where F is a multivalued map containing one
element (single-valued map). Differential inclusions arise in many situations
as differential variational inequalities, projected dynamical systems, linear and
nonlinear complementarity dynamical systems, discontinuous ordinary differ-

ential equations, and fuzzy set arithmetic; see e.g.[14, 19, 36].
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Ulam stability for functional differential equations and inclusions has been
widely considered; see e.g.[26, 27]. Picard operators [28, 29] seemed to be a
powerful method in the processing of Ulam stability theory [10, 27, 16], and
ordinary differential inclusions and equations; see e.g.[1, 29, 30, 31].

In this paper we first discuss the stability of the fractional g¢-difference
inclusion below in the sense of Ulam-Rassias

(“Dgh)(t) € F(t,b(1); teJ:=[0,T], (1.1)

along the initial condition
h(0) = ho € R, (1.2)

with 7> 0, € (0,1],¢9 € (0,1), and F : JxR — N(R) is a given multi-valued
map, N(R) is the family of all nonempty subsets of R, and “Dg is the Caputo
fractional g-difference derivative of order .

After getting a solution of (1.1), we shall investigate the coupled fractional
g-difference inclusions

(cgifgl)(f) € Fi(t,g1(t), g2(1)), ted) (1.3)
(“Dg2g2)(t) € Fi(t,g1(t), 92(1))
with the initial conditions
01(0) =iy (1.4)
92(0) =g,

where T' > 0, ¢; € (0,1), a; € (0,1], i €R, F; : J xR = N(R); i =1,2.
This paper initiates the application of Picard operators for the study of
Ulam stability for problems (1.1)-(1.2) and (1.3)-(1.4).

2 Preliminaries
We deal with the following collection
C(J) :={9:3— R| gis continuous }.
Then, C(J) forms a Banach space by regarding the supremum (uniform) norm
lglle == sup ey [a(r)]-
L*(3) := {g : 3 — R|g is measurable and Lebesgue integrable function.}

Then, L'(J) forms a Banach space by regarding ||g||z: = ||g]|1 = f:; lg(7)|dT.
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Over a metric space (9,9), the symbol P(E) denotes the family of all
nonempty subsets of £ C 9. Then, we set

P (FE)={F € P(E): F fulfills the property 7},

where, 7 can be, for instance, bounded, closed, compact, convex (in short,
bd, cl, cp, cv). For clarification, consider, for example
PBoa,ci(E) = {F € P(E) : F is bounded and closed}.

A multivalued function G : J — P (F) is called measurable whenever the

mapping
7 — dist(u, G(t)) = inf{|lu—v| : v € G(7)}

is measurable for each u € E.
A mapping Hy : P(E) x B(E) — [0,00) U {oo} described by

Hy(A, B) = max {sup d(a, B),sup d(A, b)} ,
a€A beB

is called Hausdorff metric, where d(a, B) = l;m]g d(a,b), d(A,b) = in1f4 d(a,b)
S ac

and A, B C E. Then, the coupled (Bpq,ci(E), Hq) is named as Hausdorff metric
space.

Definition 2.1. [14] The set

Se={gc L'Q):9(r) €G(7) , ae. TEF},
is the selection set of G. Moreover, the set selector Spog, for each g € C(J)
from Fog is formulated by Spog := {u € L'(J) : u(r) € F(7,9(7)), a.e. 7€ J}
A selfmapping O on a metric space (9, 9) is called

(P.o.) Picard operator (P.o.) if Fixeg = {3*} for 3* € M and
(0™(30))nen — 3* for any 30 € M.

(w.P.o.) weakly Picard operator (w.P.o) if (0™(3))neny — 3* € M, in a
way that 3* € Fixg, (limit may depend on 3).

(k.w.P.o.) k-weakly Picard operator (c.w.P.o) if it is (w.P.o) and
d(3,0%(3)) <k d(3,0()); 5 € X.

where Fixg = {3 : 3 = 03}. Further, for a (w.P.o) O, we set 0 = 0*°(3) =
lim O"(3). Notice that O (9M) = Fixe.

n— oo

A multivalued mapping Q : 9% — P(M) on (M, ) is called weakly Picard
operator (m.w.P.0.)[23, 32], if for each g € M and y € Q(x), there is (gn)nen
where
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(i) go =g, g1 =;
(11) On+1 € Q(gn)a n e N;
(i) (gn)nen — ¢* so that g* € Fixo.

Set A := {¢ : [0,00) — [0,00)| ¢ increasing, and lim,,_, ¢"(t) — 0 for
every t € [0,00}, where ¢™ is the n-th iterate of ¢. Here ¢ is called comparison
function [34]. If ¢ € A then ¢ is continuous at 0 and ¢(t) < ¢ for all ¢ > 0.
Furthermore, we set

G :={p:[0,00) = [0,00)| ¢ strictly increasing& Z @™ (t) < oo for all ¢ € [0,00)},

n=1
Here, ¢ € G is called strictly comparison function and & C .

Definition 2.2. For ¢ € 2, operator Q : M — Py (M) is called p-multivalued
weakly Picard (briefly o—m.w.P. operator) if it is a m.w.P. and there is a
selection O : Ag — Fixg of Q*° so that

d(0,0%°(0,v)) < p(d(,v)); for all (8,v) € Aqg.

In particular, if ©(3) = k3, for all 3 € Ry, for some k > 0 then Q is named as
k-multivalued weakly Picard operator (k-m.w.P.o.).

Definition 2.3. An operator Q : 9t — P (M) is named

a) multivalued k-Lipschitz if there is k > 0 with

H5((a), Q(v)) < 70(q,v); for each q, v € M, (2.1)

b) a multivalued k—contraction if (2.1) holds for k € [0,1),

¢) a multivalued p— contraction if there is a ¢ € & with

H5(9(a),9(v)) < ¢(8(q,v)); for each q, v M.

Definition 2.4. [1]. The inclusion g € Q(g) is named generalized Ulam type
(g.U.t) stable if there is ¢ € & such that for each € > 0 and solution g € C(J)

of
Hs(g(7), (Q0)(7)) <& 7 €3,

there is a solution u € C(J) of g € Qg) (inclusion) so that

~

la(r) —u(m)| < Oa(e); T €3

In case of p(t) = kt; k> 0, it is called Ulam type stable.
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Definition 2.5. [1, 2, 3]. The fized point inclusion g € Q(g) is named gen-
eralized Ulam-Rassias type stable with respect to ¢ if there is a real number
cn,¢ > 0 such that for each solution g € C of

Ha(g(7), (Q9)(7)) < ¢(7); t € I,
there is a solution u € C(J) of g € Qg) (inclusion) such that
19(7) —u(T)| < enpd(7); t €L
In case of ¢(t) = kt; k > 0, it is called Ulam-Rassias type stable.

Lemma 2.6. [39] Let Q be a multivalued mapping from a complete metric
space (IM,8) to Pe (M), and A € &. If Q is a A-contraction, then Fixg # 0.
Moreover, {Q is (w.P.o).

Theorem 2.7. [20] Let Q be a multivalued mapping from a complete metric
space (M, 6) to P (M), and X € S. If Q forms a multivalued A— contraction,
then

(1) h is a m.w.P. operator;
(2) If additionally \(kT) < KX(T) for every 7 € R (where k > 1), then h is
a p-m.w.P. operator, with o(7) := T + Z An(T), for each T € Rt
n=1
(3) Let S : M — Pu(M) be a A—contraction and n > 0 be such that

Hs(S(7),9(7)) < n for each 7 € E. Suppose that A\(k1) < r\(T) for
every T € RY (where k > 1). Then,

Hs(Fixg, Fixp) < ¢(n).

For ¢ € R, we set

1—q°
Definition 2.8. [15] The g-derivative of ordern € N of g : J — R is described
as (Dgg)(1) = a(7),

D))= (Dha) () = TD=II 20, (D,)0) = liy(Dyo)(0),

and
(Dyg)() = (Dqu_lg)(T); Ted, ne{l,2,...}.
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Set I, := {sq" : n € N} U {0}.
Definition 2.9. [15] The g-integral of g : Iy — R is described as

o0

(o)) = [ Co(r)dgr = 3 t(1 - g)a"a(sq").

n=0
(Dy1,9)(s) = g(s), while if g is continuous at 0, then
(I4Dq9)(s) = a(s) — 9(0).

Definition 2.10. /8] The Riemann-Liouville fractional g-integral of order o €
Ry :=1[0,00) of a function g : J — R is defined by (Igg)(s) = g(s), and

(a=1)

o) = [ e e

Definition 2.11. [25] The Caputo fractional q-derivative of order o € Ry of
a function g : J — R is defined by (“DJg)(s) = g(s), and

(“Dag)(s) = (Il=*Dllg)(s); s € 3.

Lemma 2.12. [25] Let « € R;. Then

[a]-1 k
17 “D50)) =0(s) = Y- gy (s
k—o -4

In particular, if a € (0,1), then
(Ig “Dgo)(s) = a(s) — g(0).

Lemma 2.13. Assume that Spog C C(J) for each g € C(J). Then (1.1)-(1.2)
is equivalent to g € Q(g), where Q : C(J) — P(C(J)) is the multi-function
described as

(Q0)(7) = {g0 + (I9)(7) : g € Srog}-

In this manuscript, we launch the study of the Ulam stability for Caputo
fractional ¢-difference inclusions and related coupled systems via Picard op-
erators theory, and it is structured as follows: Section 2 the first main result,
existence and stability of (1.1) and (1.2), is expressed. Additionally, in Sec-
tion 3; we obtain similar results for the coupled system (1.3)-(1.4). Lastly, in
Section 4 an example is expressed to indicate the applicability of the derived
theorem of the paper.
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3 Caputo Fractional ¢g-Difference Inclusions

Definition 3.1. g is a solution of (1.1)-(1.2) if it achieves the condition (1.2),
and the equation g(T) = go + (I3'9)(7) on J, where g € Srog.

(H1) The multifunction 7 — F(7, g) is jointly measurable for each g € R
(H2) The multifunction g — F'(7, g) is L.s.c. for a.a. 7 € J;

(Hs) There exists a function g € L*(J,R4) and A € & so that

Hy(F(r,9), F(r.8)) < o(r)A(g — ). (3.1)
and ||
O|| L
IE &

for almost all 7 € J, and each g,g € R;
(Hy) There exists ¢ € L' (J,Ry) such that
F(r,9) C q(7)Bo,
where By = {g € C(J) : ||g|]lc < 1}, for almost all 7 € J and each g € R.

A self-mapping A on [0, 00) is called quasi-homogenous function if If A(37) <
O\(7) for every 7 € RT, where 0 > 1.

Theorem 3.2. Assume (Hy) — (Hy) hold. Then:
(a) Pb. (1.1)-(1.2) admits least one solution and Q is a m.w.P.o.;

(b) Furthermore, if X is quasi-homogenous, then Pb. (1.1)-(1.2) is ¢.U.t
stable, and N is a p-m.w.P.o., with

T)i=t+ Z \'(7), T € RT.

Proof. First, we assert Q(g) € B, (C(J)) for each g € C(3J).
For each g € C(J) there exists f € Spog, (see [33]). Thus v(7) = go+ (I f)(7)
verify v € Q(g). From (H;) and (Hy), via Theorem 8.6.3. in [11], the set Q(g)
is compact, for each g € C(J).

Next, we assert Hs(9(g), 2(8)) < A|lg — 9llc) for each g,g € C(J).
Let g, g € C(J) and h € Q(g). Then, there exists f € Sroq, with

h(7) = go + (I f)(7).
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We get, from (Hs)
Hs(F(,9(7)), F(7,8(7))) < o(T)A(llg — 8llc)-
Consequently, there is w € Spog, with
|f(7) —w(m)| < o(m)A(lg —8llc); 7€ L.
Construct a map & : J — P(R) by
&(r) ={beR:|[f(r) —b(7)| < o(r)A(llg — Bllc)}-

Due to the measurability of g(7) = &(7)NF(7,g(7)) (Proposition II1.4 in [13]),
then there is f which is a measurable selection function for g. Thus, f € Srog,
and for each 7 € J,

[f(T) = F(D)] < o(T)A(lg — Ble)-

Let the function

h(1) = go + (I3 f)(7).

Then
\h(T) = h(r)| < IJf(r) = f(7)]
< IF(e(m)A(lls —8lc))
T | — gs|teD
< lel=Adla - alo) ([ T —dys)
7ol > _
< ﬁk(\\g—wc)-

Thus, from (4.2) yields

I = hlle < A(llg —3llo)-

By verbatim with changing the roles of g and g, it yields

H5(9(g), 2(@)) < Alllg —8llo)-

Hence, Q is a A—contraction.

(a) Lemma 2.6 infer that Q possesses a fixed point on J, and from [Theorem
2.7, (i)] we conclude that Q is a m.w.P.o.

(b) The problem (1.1)-(1.2) is g.U-H stable. For clarification, for £ > 0 and
v € C(J) there is g € C(J) so that

o(1) —go € (IJF)(7,v(7)); T €3,
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lg —vllc <e,
where

(g B)(r,v(7)) = {(Igw)(7); w € Spov}; T €J.

Then Hs(y, Q(y)) < e. Moreover, the multivalued map Q is A—contraction, and
from [Theorem 2.7, (i)-(ii)], Q is a p-m.w.P.o. Tus, g € Q(g) is g.U-H stable.
Hence, our problem (1.1)-(1.2) is g.U-H stable. Theorem 2.7,(iii) concludes
the result.

4 Caputo Fractional ¢-Difference Inclusions

Ulam stability of the problem (1.1)-(1.2) shall be discussed in this section.

Definition 4.1. If a continuous g along the initial condition (1.2) achieve
a(t) = go + (Igg)(t) on J, where g € Spog, then we say that it is a solution of
the problem (1.1)-(1.2)

Now, we present requirements for both Ulam stability of problem (1.1)-
(1.2).
The following are the basic requirements for our aim:

(H1) The multifunction t — F(t, g) is jointly measurable for each g € R

(H2) The multifunction g — F(t, g) is lower semi-continuous for almost all
tedy;

(H3) There exists p € L*(J,R1) and ¢ € & so that for for almost all t € J,
and each g,g € R, we have

Ha(F(t 9), F(48)) < o(0)(lg — 3), (4.1)
and |l
Q|| Lo° .
T Sl (4.2)

(Hy) we have F'(t,g) C ¢(t)B(0,1), for almost all t € J and each g € R, where
¢ : J — R is integrable and B(0,1) = {g € C(J) : |lgllc < 1}

Theorem 4.2. Suppose that (Hy) — (Ha) are achieved by the multifunction
F:3JxR—P,(R) Then,

(a) Problem (1.1)-(1.2) possesses a solution and Q is a m.w.P.o;
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n addition, if A is quasi-homogenous, then the problem defined by (1.1)-
b) In additi if A i-h hen th blem defined by (1.1
(1.2) is g.U.t. stable, and Q is a \-m.w.P.o, where X\ is described as

At) =t + Z ©"(t), for each t € [0, 00).
n=1

Remark 4.3. Note that Spog is nonempty for all g € C(J) on account of
(Hy) F has a measurable selection (see [13], Theorem II1.6)

Proof. Let Q a mapping as described in Lemma 2.13. We assert that it

achieves the hypothesis of Theorem 2.7. We assert first that Q(z) € B, (C(J))
for each g € C(3J).
On account of Theorem 2 in [33], for each g € C(J) there is f € Spoq, for
all t € J. Then, v(t) = go + (I3 f)(t) has the property v € Q(g). In addition,
taking (H;) and (Hy), together with Theorem 8.6.3. in [11], we find that for
each g € C(J), the set Q(g) is compact.

Next, we assert that Ha(2(g),9(g)) < ¢(llg —@llc) for each g,5 € C(J).
Let g, g € C(J) and h € Q(g). So, there is f € Spog, so that

h(t) = go + (I5F)(1),
for each t € J. Due to (Hs), we have
Ha(F(t9(t), F(t3(1)) < o(He(lls — allo)-
Consequently, there is w € Spag, with
[£() —w(®)] < e(De(llg —llc); L.
We set & : J — P(R) as follows
&(t) = {w e R:[f(t) —w(t)] < o()p(llg —gllc)}-

Note that g(t) = &(t) N F(t,g(t)) is a measurable multivalued operator due
to Proposition I11.4 in i13] Consequently, there is a measurable selection
function f for g. Thus, f € Spog, and

1F() = F(O)] < o(®e(llg — 8le),
for all t € J. Define

h(t) = go + (Ig (1),
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for each t € J. Consequently, we find

b Bl < 3100 -7
< Jg(e®e(ls —dlle))
te s(afl)
< lele=etla—gle) ([ F2 )
S L )]

for each ¢ € J. On account of (4.2), we find

1 =Rl < ¢(llg —Bllo)-
Regarding the analogy, changing the roles of g and g, yields

Hq(9(g), () < ¢(llg —gllo)-

As a result, Q is a p—contraction.

By taking Lemma 2.6 into account, we deduce that fixed point of Q pos-
sesses a solution of the inclusion (1.1)-(1.2) on J. Further, [Theorem 2.7, (i)]
yields that Q is a m.w.P.o.

Now, we assert that the problem (1.1)-(1.2) is g.U.t stable.
For this purpose, take € > 0 and v € C(J) for which there is g € C(J) so that
t

g(t) —go € (G F)(t,I(1); te,
and
log —vlle <e
with
@2 F) (. v(0) = {(3w)(0; w e Spo}s ted.

Then Hy(y,Q(y)) < e. In addition, we conclude that Q is a multivalued
p—contraction. Regarding [Theorem 2.7, (i)-(ii)], we deduce that Q is a W-
m.w.P.o. Thus, the fixed point problem g € Q(g) is g.U.t. stable. In conclu-
sion, the problem (1.1)-(1.2) is g.U.t. stable. The rest follows from [Theorem
2.7, (iii)].

5 Coupled System of Caputo Fractional ¢-Difference
Inclusions

This section is devoted for the existence, uniqueness and Ulam stability of
(1.3)-(1.4). Here, € := C(J) x C(J) denotes the Banach space with the norm

(g, V)lle = llgllc + I¥lc-
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Lemma 5.1. Let G : € — C described as

(G(g1,92))(t) = ((G191) (1), G2g — 2)(1)); t €, (5.1)
where G; : C(J) = C(J); i = 1,2, are defined by
(Gi(g1,82))(t) =1 + (J5/9:)(1); €T, (5.2)

where g; € Sk,og,; © = 1,2. Then, fized points of G form the solutions of the
system (1.3)-(1.4).

Definition 5.2. By a coupled solutions of problem (1.3)-(1.4) we mean a
continuous coupled functions (g1, 92) those satisfy the initial condition (1.4),
and the equations g;(t) = i; + (Jg'vi)(t) on J, where v; € Sp,oq,; 1 = 1,2.

Keeping Lemma 5.1 on mind, we shall investigate the existence and Ulam
stability of (1.3)-(1.4), as in Theorem 4.2.

Theorem 5.3. Assume that the multifunctions F; : J x R x R — Ng,(R)
satisfy the following hypotheses

(Ho1) The multifunctions t — F;(t,91,82) are jointly measurable for each
g eER; 1=1,2,

(Ho2) The multifunctions g; — F(t,91,02) are lower semi-continuous for al-
most all t € J;

(Hos) There exist p; € L>®(J,Ry) and p; :€ & such that

Hd(Fi(t7glng)7 Fi(t7 9717 972) < pt(t)§01(|g’t - ED? (53)
and T |
| pill o
— = <1 5.4
Toltay =5 (5.4)

or for almost all t € J, and each g1,92,91, 092 € R.

(Hoa) There exist integrable functions ¢; : J — R such that for almost all t € J
and each g; € R; i = 1,2, we have

Fi(t,91,92) C ¢;(t)B(0,1),
where B(0,1) ={v e CJ) : |lv|lc < 1}.
Then, we have

(a) Problem (1.3)-(1.4) possess a solution and G is a m.w.P.o;
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(b) In addition, if each @; is quasi-homogenous, (i = 1,2, ) then the problem
(1.8)-(1.4) is g. U. t. stable, and G is a V-m.w.P.o, with ¥ = (¥, Us)

and the the functions U;; i = 1,2 defined by U;(t) :=t+ Zgo?(t), for
n=1

each t € [0, 00).

6 An Example

We aim to deal with the Cauchy problem of Caputo fractional i—difference
inclusion

{(C@}ﬁg)(t) € F(ta(t); te[o,1], (6.1)
g(t)li=0 = 1,
for

F(tg(t) = {v € C([0,1],R) : [f1(t, a(t))| < [v] < [f2(t, a(t))[}; t € [0,1],

where f1, fo : [0,1] x R — R, such that

gt 2alt
e Rtat) = S,

fita(t) =

Set a = % and suppose that F' is both convex and closed multivalued function.
Notice that the solutions of the problem (6.1) are the solutions

g € A(g) ( the fixed point inclusion)

where the multifunction operator A : C([0,1],R) — P(C([0,1],R)) is de-
scribed as

(Ag)(0) = {1+ @10 f € Swag}5 te 0,1]
For each t € [0,1] and all z1, 22 € C([0,1],R), we have

1f2(t, 22) — fi(t,z1)[le < e 7Yz — 21l c.

Consequently, we conclude that all hypotheses (H;) — (Hs) are achieved with
o(t) = e~ 10—,

As a next step, we indicate that condition (4.2) is fulfilled for T' = 1. For
clarification, we note that ||o||z~ = e~?, (14 ) > 1. After an elementary
calculation, one can get that

T p

= <27 < 1.
Li(1+3)
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Furthermore, (Hy) is fulfilled with ¢(t) =

t2€71071
[E3IEY

; te[0,1], where

[Fllp = sup{[fllc : f € Srog}; for all g e C([0,1],R).

As a result, Theorem 4.2 implies that:

(a) The problem (6.1) possesses a solution and A is a m.w.P.o.

(b) The function p(t) = At forms quasi-homogenous. Hence, the problem

(6.1) is g.U.t. stable, and A is a ¥-m.w.P.o, with the function ¥ defined
by U(t) :=t+ (1 — At)~1, for each t € [0, A™1).
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