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Generalized Helicoidal Surfaces in Euclidean
5-space

Ali Uçum and Makoto Sakaki

Abstract

In this paper, we study generalized helicoidal surfaces in Euclidean 5-
space. We obtain the necessary and sufficient conditions for generalized
helicoidal surfaces in Euclidean 5-space to be minimal, flat or of zero
normal curvature tensor, which are ordinary differential equations. We
solve those equations and discuss the completeness of the surfaces.

1 Introduction

In differential geometry, one of the well-known surfaces is helicoidal surfaces.
Helicoidal surfaces are a generalization of rotational surfaces. These surfaces
are invariant by a subgroup of the group of isometries of the ambient space,
called helicoidal group whose elements can be seen as a composition of a
translation with a rotation for a given axis. In [4], the authors studied the
space of all helicoidal surfaces in Euclidean 3-space which have constant mean
curvatures or constant Gaussian curvatures. This space behaves as a circular
cylinder, where a given generator corresponds to the rotational surfaces and
each parallel corresponds to a periodic family of helicoidal surfaces. In [2], the
cases with prescribed mean curvature or Gauss curvature have been studied.

Helicoidal surfaces were studied by many researchers in different spaces. In
[6], authors constructed linear Weingarten helicoidal surfaces in Minkowski 3-
space under the cubic screw motion. In [5], the authors constructed a helicoidal
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surface with a light-like axis with prescribed mean curvature or Gauss curva-
ture given by smooth function in Minkowski 3-space and solved an open prob-
lem left in [3]. Also, in [7], the authors classify all helicoidal non-degenerate
surfaces in Minkowski 3-space with constant mean curvature whose generating
curve is the graph of a polynomial or a Lorentzian circle.

Besides, in [1], the authors studied rotational surfaces in higher dimen-
sional Euclidean spaces. They obtained some results related with the curva-
ture properties of these surfaces. Also they give examples of rotational surfaces
in Euclidean 5-space.

In this paper, we study generalized helicoidal surfaces in Euclidean 5-space.
We obtain the necessary and sufficient conditions for generalized helicoidal
surfaces in Euclidean 5-space to be minimal, flat or of zero normal curvature
tensor, which are ordinary differential equations. We solve those equations
and discuss the completeness of the surfaces.

2 Preliminaries

Let E5 be the 5–dimensional Euclidean space with standard coordinate system
{x1, x2, x3, x4, x5} and the metric tensor g has the form

g =

5∑
i=1

(dxi)
2

= (dx1)
2

+ (dx2)
2

+ (dx3)
2

+ (dx4)
2

+ (dx5)
2

.

Let M be a surface immersed in the 5-dimensional Euclidean space E5. We
denote the Levi-Civita connections of E5 and M by ∇̃ and ∇, respectively.
Let e1, e2, e3, e4, e5 be an adapted local orthonormal frame in E5 such that
e1, e2 are tangent to M and e3, e4, e5 are normal to M . We know that

∇̃XY = ∇XY + h (X,Y )

and
∇̃Xξ = −AξX + ⊥∇X ξ

where X,Y ∈ Γ (TM) and ξ ∈ Γ
(
TM⊥

)
. Then h is the second fundamental

form, Aξ is the shape operator, and ⊥∇ is the normal connection. We note
that

〈h (X,Y ) , ξ〉 = 〈AξX,Y 〉 .

The normal curvature tensor ⊥R is defined by

⊥R (X,Y ) ξ = ⊥∇X ⊥∇Y ξ − ⊥∇Y ⊥∇X ξ − ⊥∇[X,Y ]ξ ,
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where X,Y ∈ Γ (TM) and ξ ∈ Γ
(
TM⊥

)
. Taking the normal part of the

following equation

∇̃X∇̃Y ξ − ∇̃Y ∇̃Xξ − ∇̃[X,Y ]ξ = 0

where X,Y ∈ Γ (TM) and ξ ∈ Γ
(
TM⊥

)
, we get the Ricci equation〈⊥R (X,Y ) ξ, η

〉
= 〈AηX,AξY 〉 − 〈AξX,AηY 〉

where η ∈ Γ
(
TM⊥

)
.

We may use the ranges of indices:

1 ≤ i, j, k, ... ≤ 2, 3 ≤ r, s, t, ... ≤ 5, 1 ≤ A,B,C, ... ≤ 5.

Set
hsij = 〈h (ei, ej) , es〉

and
Rsrij =

〈⊥R (ei, ej) er, es
〉
,

which are the components of the second fundamental form h and the normal
curvature tensor ⊥R, respectively.

By the Ricci equation, the normal curvature tensor satisfies

Rsrij = (〈Aesei, Aerej〉 − 〈Aerei, Aesej〉) .

Noting that

Aesei =
∑
k

hsikek,

we obtain
Rsrij =

∑
k

(
hsikh

r
jk − hsjkhrik

)
.

Also the mean curvature vector H of M in E5 is defined by

H =
1

2

∑
s

(hs11 + hs22) es.

A surface M is called minimal if H = 0 identically.
The Gauss curvature K of M in E5 is given by

K =
∑
s

(
hs11h

s
22 − (hs12)

2
)
.

A surface M is called flat if K = 0 identically.
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3 Generalized helicoidal surfaces in E5

In this section, we discuss the geometric properties of a generalized helicoidal
surface M in E5 with the parametrization

M : F (t, u) = (α (t) cosu, α (t) sinu, β (t) cosu, β (t) sinu, u) (3.1)

where (α (t))
2

+ (β (t))
2
> 0 and (α′ (t))

2
+ (β′ (t))

2
> 0. Then we have

Ft = (α′ (t) cosu, α′ (t) sinu, β′ (t) cosu, β′ (t) sinu, 0) ,

Fu = (−α (t) sinu, α (t) cosu,−β (t) sinu, β (t) cosu, 1)

and

〈Ft, Ft〉 = (α′ (t))
2

+ (β′ (t))
2
, 〈Ft, Fu〉 = 0, 〈Fu, Fu〉 = 1 +α2 (t) + β2 (t) .

Then we can choose the followings:

e1 =
1√

(α′)
2

+ (β′)
2
Ft =

1√
(α′)

2
+ (β′)

2
(α′ cosu, α′ sinu, β′ cosu, β′ sinu, 0) ,

e2 =
1√

1 + α2 + β2
Fu =

1√
1 + α2 + β2

(−α sinu, α cosu,−β sinu, β cosu, 1) ,

e3 =
1√

α2 + β2
(β sinu,−β cosu,−α sinu, α cosu, 0) ,

e4 =
1√

(α′)
2

+ (β′)
2

(−β′ cosu,−β′ sinu, α′ cosu, α′ sinu, 0) ,

e5 =
1√

α2 + β2
√

1 + α2 + β2

(
−α sinu, α cosu,−β sinu, β cosu,−α2 − β2

)
.

Here {e1, e2} is an orthonormal frame field on M and {e3, e4, e5} is a normal
orthonormal frame field to M .

Also we can easily obtain that

∇̃e1e1 =
(β′α′′ − α′β′′)(
(α′)

2
+ (β′)

2
)2 (β′ cosu, β′ sinu,−α′ cosu,−α′ sinu, 0) ,

∇̃e2e1 =
1√

(α′)
2

+ (β′)
2
√

1 + α2 + β2

(−α′ sinu, α′ cosu,−β′ sinu, β′ cosu, 0) ,

∇̃e2e2 =
1

1 + α2 + β2
(−α cosu,−α sinu,−β cosu,−β sinu, 0) .
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The components of the second fundamental form h are given as follows

h4
11 =

−β′α′′ + α′β′′(
(α′)2 + (β′)2

)3/2 , h3
12 =

−βα′ + αβ′√
(α′)2 + (β′)2

√
1 + α2 + β2

√
α2 + β2

,

h5
12 =

αα′ + ββ′

(1 + α2 + β2)
√

(α′)2 + (β′)2
√
α2 + β2

, h4
22 =

−βα′ + αβ′

(1 + α2 + β2)
√

(α′)2 + (β′)2
,

h3
11 = h5

11 = h4
12 = h3

22 = h5
22 = 0.

Then we get the following theorem and corollary.

Theorem 1. Let M be generalized helicoidal surface parametrized by (3.1).
Then the mean curvature vector H of M is given by

H =
1

2

 −β′α′′ + α′β′′(
(α′)

2
+ (β′)

2
)3/2 +

−βα′ + αβ′

(1 + α2 + β2)

√
(α′)

2
+ (β′)

2

 e4.

Corollary 1. Let M be generalized helicoidal surface parametrized by (3.1).
Then M is minimal if and only if

α′β′′ − β′α′′

(α′)
2

+ (β′)
2 =

βα′ − αβ′

(1 + α2 + β2)
. (3.2)

Let β (t) = t in the equation (3.2) . Then the minimal surface equation is(
α2 + t2 + 1

)
α′′ + (tα′ − α)

(
(α′)

2
+ 1
)

= 0. (3.3)

If α(t) is a linear function, that is, α(t) = pt+q, then from the above equation,
we have q = 0 and α(t) = pt. Then the surface M is a helicoid in a 3-
dimensional subspace of E5. So, in the following, we will consider the case
where α(t) is a nonlinear function.

Multiplying (3.3) by 2α′/
(

(α′)
2

+ 1
)2
, we can get

(
t2

(α′)
2

(α′)
2

+ 1

)′
−

(
α2 + 1

(α′)
2

+ 1

)′
= 0.

Thus we have

t2
(α′)

2

(α′)
2

+ 1
− α2 + 1

(α′)
2

+ 1
= c1
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for a constant c1. Then

α′ = ±

√
α2 + 1 + c1
t2 − c1

and
α′√

α2 + 1 + c1
= ± 1√

t2 − c1
. (3.4)

Changing t to −t if necessary, we may only consider the (+) case.
(i) When c1 = 0, we have

α′√
α2 + 1

=
1

t
.

Integrating it we have

log
∣∣∣√α2 + 1 + α

∣∣∣ = log |t|+ c2

for a constant c2 and √
α2 + 1 + α = c3t

where c3 6= 0 is constant. Thus we get

α =
1

2

(
c3t−

1

c3t

)
,

and its graph is a hyperbola. The corresponding surface M is a complete
minimal surface.

(ii) When c1 6= 0, integrating the equation (3.4) , we have

log
∣∣∣√α2 + 1 + c1 + α

∣∣∣ = log |
√
t2 − c1 + t|+ c2

for a constant c2, and√
α2 + 1 + c1 + α = c3

(√
t2 − c1 + t

)
where c3 6= 0 is constant. Thus we get

α =
1

2c1c3

[(
c1c

2
3 − 1− c1

)
t+
(
c1c

2
3 + 1 + c1

)√
t2 − c1

]
.

Since α (t) is not a linear function, we have c1c
2
3 + 1 + c1 6= 0. When c1 < 0,

the function α (t) is defined for any t ∈ R and its graph is a hyperbola. So we
have a complete minimal surface.
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When c1 > 0, we return to the equation (3.4) and rewrite it as

t′√
t2 − c1

=
1√

α2 + 1 + c1
, t′ =

dt

dα
.

Integrating it with respect to α, we have

log |
√
t2 − c1 + t| = log

∣∣∣√α2 + 1 + c1 + α
∣∣∣+ c2

for constant c2, and√
t2 − c1 + t = c3

(√
α2 + 1 + c1 + α

)
where c3 6= 0 is constant. Hence

t =
1

2c3 (1 + c1)

[(
c23 + c1c

2
3 − c1

)
α+

(
c23 + c1c

2
3 + c1

)√
α2 + 1 + c1

]
.

Since t (α) is not a linear function, we have c23 + c1c
2
3 + c1 6= 0. The function

t (α) is defined for any α ∈ R and its graph is hyperbola. So we get a complete
minimal surface also in this case.

Theorem 2. The nonlinear solution of the minimal surface equation (3.3) is
given by

α =
1

2

(
c3t−

1

c3t

)
,

α =
1

2c1c3

[(
c1c

2
3 − 1− c1

)
t+
(
c1c

2
3 + 1 + c1

)√
t2 − c1

]
, (c1 < 0)

or

t =
1

2c3 (1 + c1)

[(
c23 + c1c

2
3 − c1

)
α+

(
c23 + c1c

2
3 + c1

)√
α2 + 1 + c1

]
, (c1 > 0) ,

where c1 and c3 6= 0 are constants. The corresponding surface M is a complete
minimal surface in any case.

In the following theorem, we give the Gauss curvature of the surface (3.1) .

Theorem 3. Let M be generalized helicoidal surface parametrized by (3.1).
Then the Gauss curvature K of M is given by

K =
(α′β′′ − β′α′′) (αβ′ − βα′)(

(α′)
2

+ (β′)
2
)2

(1 + α2 + β2)
−

(αβ′ − βα′)2
(
1 + α2 + β2

)
+ (αα′ + ββ′)

2(
(α′)

2
+ (β′)

2
)

(1 + α2 + β2)
2

(α2 + β2)
.

(3.5)
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Corollary 2. Let M be generalized helicoidal surface parametrized by (3.1).
Then M is flat if and only if

(α′β′′ − β′α′′) (αβ′ − βα′)(
(α′)

2
+ (β′)

2
) =

(αβ′ − βα′)2
(
1 + α2 + β2

)
+ (αα′ + ββ′)

2

(1 + α2 + β2) (α2 + β2)
.

To study flat surfaces, it is convenient to let

α (t) = P (t) cos (Q (t)) and β (t) = P (t) sin (Q (t)) (3.6)

where P (t) > 0 and Q (t) are nonconstant smooth functions. From the equa-
tion (3.5) , we have

K =
− (P ′)

4
+ P 4 (P ′)

2
(Q′)

2 − P 3
(
1 + P 2

)
(Q′)

2
P ′′ + P 3

(
1 + P 2

)
P ′Q′Q′′

(1 + P 2)
2
(

(P ′)
2

+ P 2 (Q′)
2
)2 .

Then the surface M is flat if and only if

− (P ′)
4

+ P 4 (P ′)
2

(Q′)
2 − P 3

(
1 + P 2

)
(Q′)

2
P ′′ + P 3

(
1 + P 2

)
P ′Q′Q′′ = 0.

(3.7)
Here for Q (t) = t, the equation (3.7) is rewritten as

− (P ′)
4

+ P 4 (P ′)
2 − P 3

(
1 + P 2

)
P ′′ = 0. (3.8)

Multiplying the above equation by 2PP ′ =
(
P 2
)′
, we have

−P 4
(
1 + P 2

) (
(P ′)

2
)′

+ P 4
(
P 2
)′

(P ′)
2 −

(
P 2
)′

(P ′)
4

= 0.

Dividing by P 4 (P ′)
4
, we get(

1 + P 2

(P ′)
2

)′
+

(
1

P 2

)′
= 0.

So
1 + P 2

(P ′)
2 +

1

P 2
=

1

c21

for a positive constant c1. Then

P ′ = ±c1P

√
1 + P 2

P 2 − c21
.
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Thus we find

dt

dP
= ± 1

c1P

√
P 2 − c21
1 + P 2

. (3.9)

Then

t (P ) = ±
∫

1

c1P

√
P 2 − c21
1 + P 2

dP.

Let

I :=

∫
1

c1P

√
P 2 − c21
1 + P 2

dP.

Set √
P 2 − c21
1 + P 2

=: s.

Then

P 2 =
s2 + c21
1− s2

and

PdP =
1 + c21

(1− s2)
2 sds.

So we have

I =
1 + c21
c1

∫
s2

(1− s2) (s2 + c21)
ds =

1

2c1

∫ (
1

1 + s
+

1

1− s
− 2c21
s2 + c21

)
ds

=
1

2c1
log

(
1 + s

1− s

)
− arctan

(
s

c1

)
+ c2

=
1

2c1
log

(√
1 + P 2 +

√
P 2 − c21√

1 + P 2 −
√
P 2 − c21

)
− arctan

 1

c1

√
P 2 − c21
1 + P 2

+ c2

=
1

c1
log

(√
1 + P 2 +

√
P 2 − c21

)
− arctan

 1

c1

√
P 2 − c21
1 + P 2


− 1

2c1
log
(
1 + c21

)
+ c2,

where c2 is a constant.
Let

Φ (P ) :=
1

c1
log

(√
1 + P 2 +

√
P 2 − c21

)
− arctan

 1

c1

√
P 2 − c21
1 + P 2

 .
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We denote by t+ (P ) and t (P ) the solutions of (3.9) in the (+) and (−) cases,
respectively. Then

t+ (P ) = Φ (P ) + c3 and t− (P ) = −Φ (P ) + c4

for some constants c3 and c4. The function t+ (P ) is an increasing function on
(c1,∞) and

lim
P→∞

t+ (P ) =∞, lim
P→c+1

t+ (P ) =
1

2c1
log
(
1 + c21

)
+ c3, lim

P→c+1
t′+ (P ) = 0.

Similarly, t (P ) is a decreasing function on (c1,∞) and

lim
P→∞

t− (P ) = −∞, lim
P→c+1

t− (P ) = − 1

2c1
log
(
1 + c21

)
+c4, lim

P→c+1
t′− (P ) = 0.

We choose c4 such that

1

2c1
log
(
1 + c21

)
+ c3 = − 1

2c1
log
(
1 + c21

)
+ c4.

The curves (P cos (t+ (P )) , P sin (t+ (P ))) and (P cos (t− (P )) , P sin (t− (P )))
can be connected continuously, but it is not a regular curve. So the corre-
sponding surface M cannot be extended as a complete flat surface.

Theorem 4. The solution of the flat surface equation (3.8) is given by

t+ (P ) = Φ (P ) + c3 or t− (P ) = −Φ (P ) + c4,

where

Φ (P ) =
1

c1
log

(√
1 + P 2 +

√
P 2 − c21

)
− arctan

 1

c1

√
P 2 − c21
1 + P 2


and c1 > 0, c3, c4 are constants. The corresponding surface M cannot be
extended as a complete flat surface.

In the following theorem, we consider the case where the normal curvature
tensor of M is identically zero.

Theorem 5. Let M be generalized helicoidal surface parametrized by (3.1).
Then the normal curvature tensor of M is identically zero if and only if(

(α′)
2

+ (β′)
2
)

(βα′ − αβ′) + (α′β′′ − β′α′′)
(
1 + α2 + β2

)
= 0. (3.10)
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Proof. We have

R3
412 = h311h

4
21 − h321h411 + h312h

4
22 − h322h412

=
(βα′ − αβ′)

[(
(α′)

2
+ (β′)

2
)

(βα′ − αβ′) + (α′β′′ − β′α′′)
(
1 + α2 + β2

)]
√
α2 + β2 (1 + α2 + β2)

3/2
(

(α′)
2

+ (β′)
2
)2 ,

R3
512 = h311h

5
21 − h321h511 + h312h

5
22 − h322h512 = 0,

R4
512 = h411h

5
21 − h421h511 + h412h

5
22 − h422h512

=
(αα′ + ββ′)

[(
(α′)

2
+ (β′)

2
)

(βα′ − αβ′) + (α′β′′ − β′α′′)
(
1 + α2 + β2

)]
√
α2 + β2 (1 + α2 + β2)

2
(

(α′)
2

+ (β′)
2
)2 .

Thus ⊥R = 0 if and only if(
(α′)

2
+ (β′)

2
)

(βα′ − αβ′) + (α′β′′ − β′α′′)
(
1 + α2 + β2

)
= 0.

To study surfaces with zero normal curvature tensor, it is convenient to let

α (t) = P (t) cos (Q (t)) and β (t) = P (t) sin (Q (t))

where P (t) > 0 and Q (t) are nonconstant smooth functions. From the equa-
tion (3.10) , we have

PQ′
(
P ′′
(
1 + P 2

)
− P (Q′)

2
)
−
(
2 + P 2

)
(P ′)

2
Q′ −

(
1 + P 2

)
PP ′Q′′ = 0.

(3.11)
Here for Q (t) = t, the equation (3.11) is rewritten as

PP ′′
(
1 + P 2

)
−
(
2 + P 2

)
(P ′)

2 − P 2 = 0. (3.12)

Multiplying by 2PP ′ =
(
P 2
)′
, we have

P 2
(
1 + P 2

) (
(P ′)

2
)′
−
(
2 + P 2

) (
P 2
)′

(P ′)
2 − P 2

(
P 2
)′

= 0.

Dividing by P 6, we get(
1 + P 2

P 4
(P ′)

2
)′

+

(
1

P 2

)′
= 0.
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So
1 + P 2

P 4
(P ′)

2
+

1

P 2
=

1

c21
for a positive constant c1. Then

P ′ = ±P
c1

√
P 2 − c21
1 + P 2

.

Thus we find

dt

dP
= ±c1

P

√
1 + P 2

P 2 − c21
. (3.13)

Then

t (P ) = ±
∫
c1
P

√
1 + P 2

P 2 − c21
dP.

Let

I :=

∫
c1
P

√
1 + P 2

P 2 − c21
dP.

Set √
1 + P 2

P 2 − c21
=: s.

Then

P 2 =
1 + c21s

2

s2 − 1
and

PdP = − 1 + c21

(s2 − 1)
2 sds.

So we have

I = −c1
(
1 + c21

) ∫ s2

(s2 − 1) (1 + c21s
2)
ds

=
c1
2

∫ (
1

s+ 1
− 1

s− 1
− 2

1 + c21s
2

)
ds

=
c1
2

log

(
s+ 1

s− 1

)
− arctan (c1s) + c2

=
c1
2

log

(√
1 + P 2 +

√
P 2 − c21√

1 + P 2 −
√
P 2 − c21

)
− arctan

(
c1

√
1 + P 2

P 2 − c21

)
+ c2

= c1 log

(√
1 + P 2 +

√
P 2 − c21

)
− arctan

(
c1

√
1 + P 2

P 2 − c21

)
− c1

2
log
(
1 + c21

)
+ c2,
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where c2 is a constant.
Let

Ψ (P ) := c1 log

(√
1 + P 2 +

√
P 2 − c21

)
− arctan

(
c1

√
1 + P 2

P 2 − c21

)
.

We denote by t+ (P ) and t (P ) the solutions of (3.13) in the (+) and (−)
cases, respectively. Then

t+ (P ) = Ψ (P ) + c3 and t (P ) = −Ψ (P ) + c4

for some constants c3 and c4.
The function t+ (P ) is an increasing function on (c1,∞) and

lim
P→∞

t+ (P ) =∞, lim
P→c+1

t+ (P ) =
c1
2

log
(
1 + c21

)
−π

2
+c3, lim

P→c+1
t′+ (P ) =∞.

Similarly, t (P ) is a decreasing function on (c1,∞) and

lim
P→∞

t− (P ) = −∞, lim
P→c+1

t− (P ) = −c1
2

log
(
1 + c21

)
+
π

2
+c4, lim

P→c+1
t′− (P ) = −∞.

We choose c4 such that

c1
2

log
(
1 + c21

)
− π

2
+ c3 = −c1

2
log
(
1 + c21

)
+
π

2
+ c4 =: t0.

Let P+ (t) denote the inverse function of t+ (P ) . It is an increasing function
on (t0,∞) and

lim
t→∞

P+ (t) =∞, lim
t→t+0

P+ (t) = c1 lim
t→t+0

P ′+ (t) = 0.

Let P− (t) denote the inverse function of t− (P ) . It is a decreasing function on
(−∞, t0) and

lim
t→−∞

P− (t) =∞, lim
t→t−0

P− (t) = c1 lim
t→t−0

P ′− (t) = 0.

Now we define a function P (t) on R such that P (t) = P+ (t) for t > t0,
P (t0) = c1 and P (t) = P− (t) for t < t0. Then P (t) is a C1 function on R
such that P ′ (t) = P ′+ (t) for t > t0, P

′ (t0) = 0 and P ′ (t) = P ′− (t) for t < t0.
For t 6= t0, it satisfies

P ′′ (t) =

(
2 + P (t)

2
)

(P ′ (t))
2

+ P (t)
2

P (t)
(

1 + P (t)
2
) .
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Then we have
lim
t→t0

P ′′ (t) =
c1

1 + c21
.

Thus we find that P (t) is a C2 function on R, which satisfies the zero normal
curvature tensor equation. So the corresponding surface M is a complete
surface with zero normal curvature tensor.

Theorem 6. The solution of the zero normal curvature tensor equation (3.12)
is given by

t+ (P ) = Ψ (P ) + c3 or t (P ) = −Ψ (P ) + c4

where

Ψ (P ) = c1 log

(√
1 + P 2 +

√
P 2 − c21

)
− arctan

(
c1

√
1 + P 2

P 2 − c21

)

and c1 > 0, c3, c4 are constants. The corresponding surface M can be extended
as a complete surface with zero normal curvature tensor.
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