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Abstract

In this paper, we study generalized helicoidal surfaces in Euclidean 5-
space. We obtain the necessary and sufficient conditions for generalized
helicoidal surfaces in FEuclidean 5-space to be minimal, flat or of zero
normal curvature tensor, which are ordinary differential equations. We
solve those equations and discuss the completeness of the surfaces.

1 Introduction

In differential geometry, one of the well-known surfaces is helicoidal surfaces.
Helicoidal surfaces are a generalization of rotational surfaces. These surfaces
are invariant by a subgroup of the group of isometries of the ambient space,
called helicoidal group whose elements can be seen as a composition of a
translation with a rotation for a given axis. In [4], the authors studied the
space of all helicoidal surfaces in Euclidean 3-space which have constant mean
curvatures or constant Gaussian curvatures. This space behaves as a circular
cylinder, where a given generator corresponds to the rotational surfaces and
each parallel corresponds to a periodic family of helicoidal surfaces. In [2], the
cases with prescribed mean curvature or Gauss curvature have been studied.

Helicoidal surfaces were studied by many researchers in different spaces. In
[6], authors constructed linear Weingarten helicoidal surfaces in Minkowski 3-
space under the cubic screw motion. In [5], the authors constructed a helicoidal
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surface with a light-like axis with prescribed mean curvature or Gauss curva-
ture given by smooth function in Minkowski 3-space and solved an open prob-
lem left in [3]. Also, in [7], the authors classify all helicoidal non-degenerate
surfaces in Minkowski 3-space with constant mean curvature whose generating
curve is the graph of a polynomial or a Lorentzian circle.

Besides, in [1], the authors studied rotational surfaces in higher dimen-
sional Euclidean spaces. They obtained some results related with the curva-
ture properties of these surfaces. Also they give examples of rotational surfaces
in Euclidean 5-space.

In this paper, we study generalized helicoidal surfaces in FEuclidean 5-space.
We obtain the necessary and sufficient conditions for generalized helicoidal
surfaces in Euclidean 5-space to be minimal, flat or of zero normal curvature
tensor, which are ordinary differential equations. We solve those equations
and discuss the completeness of the surfaces.

2 Preliminaries

Let E® be the 5-dimensional Euclidean space with standard coordinate system
{1,292, 3,24, x5} and the metric tensor g has the form

5
9= (de)’ = (de))” + (dw2)* + (dws)” + (daa)” + (das)”
i=1
Let M be a surface immersed in the 5-dimensional Euclidean space E?. We
denote the Levi-Civita connections of E°> and M by V and V, respectively.

Let e, eq,e3,e4,e5 be an adapted local orthonormal frame in E° such that
e1, eo are tangent to M and es, eq, e5 are normal to M. We know that

VxY = VxY +h(X,Y)
and _
Vxé=—-AcX +1Vx ¢

where X,Y € I'(TM) and £ € T (TM*) . Then h is the second fundamental
form, A is the shape operator, and LV is the normal connection. We note
that

(h(X,Y),8) = (AeX,Y).

The normal curvature tensor ~R is defined by

TR (X,)Y)E=1Vx TVy £ TVy 1Vx E— TV xy €,
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where XY € T'(TM) and £ € T (TMJ-). Taking the normal part of the
following equation

VxVy€ —VyVx€—Vixy£ =0
where X,V e T'(TM) and £ €T (TML)7 we get the Ricci equation
(TR(X,Y)&m) = (A)X, AY) — (AeX, AY)

where n € I’ (TMJ-).
We may use the ranges of indices:

1<i,jk,...<2, 3<rst..<5 1<AB,C,..<5.

Set
hi; = (h(ei,€;) , es)
and
7S"ij = <J'R (eiaej)eraes>a

which are the components of the second fundamental form h and the normal
curvature tensor + R, respectively.
By the Ricci equation, the normal curvature tensor satisfies

rij = ((Ae,€i A ej) = (Ae,eis Ac,e5).

rij
Noting that
Ac.e; = thkek,
k

we obtain

f«ij = Z (hfkh’}k - hjkh:k) :
k

Also the mean curvature vector H of M in E® is defined by

1 S S
H =35> (B +h3) e

S

A surface M is called minimal if H = 0 identically.
The Gauss curvature K of M in E® is given by

K=" (hiahs — (n5)°).

A surface M is called flat if K = 0 identically.
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3 Generalized helicoidal surfaces in E°

In this section, we discuss the geometric properties of a generalized helicoidal
surface M in E® with the parametrization

M: F(t,u) = (a(t)cosu,a(t)sinu, 8 (t)cosu, B (t)sinu,u) (3.1)
where (o (£))° + (8 () > 0 and (o (£))* + (8’ (t))* > 0. Then we have

F, = (o (t)cosu,a’ (t)sinu, 3 (t)cosu, 8 (t)sinu,0),
F, = (—a(t)sinu,a(t)cosu,—p (t)sinu, S (t)cosu, 1)

and
(Fi, ) = (o (0)* + (B (1))7, (Fi, Fu) =0, (Fu,Fu)=1+0a(t)+5(t).

Then we can choose the followings:

1 1
er = F = (a/ cosu, o’ sinu, B cosu, B sinu,0),
2 2 2 2
(@)”+(8) ()" +(8)
1 1
ey = F, = (—asinu, acosu, —fsinu, fcosu, 1),
V1+a? 4 52 V1+a? 4 52
1
e3 = ——— (Bsinu,—Bcosu, —asinu,acosu,0),
3 /a2 + ﬂQ ( )
1
eg, = ———(—f cosu,—f3 sinu,a’cosu,a’sinu,0),
(@) + ()’
1
es = —asinu, acosu, —fsinu, fcosu, —a’ — 52) .
° \/a2+ﬂ2\/1+a2+52( )

Here {e1,e2} is an orthonormal frame field on M and {es, eq,e5} is a normal
orthonormal frame field to M.
Also we can easily obtain that

- (5/0/1 _ alﬂ//)

Veer = ———— (B cosu, ' sinu, —a' cosu, —a sinu, 0)
() +87)
~ 1
Ve,€1 = (—a’sinu, a’ cosu, —B' sinu, 3 cosu,0),
() + (8)° V1 +a? + 57
~ 1
Ve, = ———— (—acosu, —asinu, —f cosu, —fsinu,0).

1+ a2+ p?
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The components of the second fundamental form h are given as follows

py = B a8 g’ +aff
((0/)2 + (ﬂ')2)3/2 (a’)2 + (5/)2\/1 + a2+ 52\/a2 + 32
CYO/“’B/B/ —ﬁa'+aﬁ’

h?? = ) h%Q = ;

(1+ a2+ 52) 4/ (@) + (8)"V/o? + 5 (14 a2+ 82) /()" + (87
Wiy = hi1 = hiz = h3; = hi = 0.

Then we get the following theorem and corollary.

Theorem 1. Let M be generalized helicoidal surface parametrized by (3.1).
Then the mean curvature vector H of M is given by

1 —B/a”"i‘a/ﬁ” —Ba/"i‘OlB/
= — €q.

(@2 +@?)"  +az+ )0+ @)

Corollary 1. Let M be generalized helicoidal surface parametrized by (3.1).
Then M is minimal if and only if
-V -V ’ /
a62 ﬁa2: Ba 2@62 - (3.2)
(@) +(8)°  (A+a?+p?)

Let § (t) =t in the equation (3.2). Then the minimal surface equation is
(@®+t+1)a + (ta' — a) ((a')2 + 1) =0. (3.3)

If a(t) is a linear function, that is, a(t) = pt+gq, then from the above equation,
we have ¢ = 0 and «t) = pt. Then the surface M is a helicoid in a 3-
dimensional subspace of E®. So, in the following, we will consider the case
where «(t) is a nonlinear function.

2
Multiplying (3.3) by 2a// ((a')2 + 1) , we can get

o (@) Coe2e1 )
(@) +1 (@) +1

2
.2 (o) a? +1 —

() 41 - (@) +1

Thus we have
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for a constant c¢;. Then

and

=+ .
Vaz+1+¢ V2 — ¢

Changing t to —t if necessary, we may only consider the (+) case.
(1) When ¢; = 0, we have

o 1

VaZ+1 ot
Integrating it we have
1og‘ a2+1+o¢‘ = log |t| + ¢2

for a constant ¢y and
Voaz+14+a=cst

where c3 # 0 is constant. Thus we get

1 : 1
o= —|\c3t—— 1],
2 3 Cgt

and its graph is a hyperbola. The corresponding surface M is a complete
minimal surface.
(74) When ¢; # 0, integrating the equation (3.4), we have

log‘ a2+1+cl+a‘:10g|\/t2701+t\+02

for a constant cs, and

vVaZ+l+c+a=cs (\/tQ—cl—i—t)

where cg # 0 is constant. Thus we get

1

o= [(clcg—l—cl)t—l—(clc§+1+cl) t2—cl}.
28103

Since « (t) is not a linear function, we have c1c3 + 1+ ¢; # 0. When ¢; < 0,

the function « (t) is defined for any ¢t € R and its graph is a hyperbola. So we

have a complete minimal surface.
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When ¢; > 0, we return to the equation (3.4) and rewrite it as

v 1 b
V2= Va2F+1l+e¢ da’

Integrating it with respect to «, we have

log|\/t2—cl+t|:log‘ a2+1—|—cl+a‘+02

for constant ¢, and

V2 —c+t=c3 (\/a2—|—1+cl+a)

where c3 # 0 is constant. Hence

1
] {(cg +clc§ —cl)aJr (cg +clc§ +cl) vaz+1 +cl} .

. —
2c5 (14 ¢

Since t (@) is not a linear function, we have c3 + c1¢% + ¢1 # 0. The function
t (o) is defined for any « € R and its graph is hyperbola. So we get a complete
minimal surface also in this case.

Theorem 2. The nonlinear solution of the minimal surface equation (3.3) is

given by
1 y 1
a=—-|ct——
2 3 Cgt ’
1
= [(clcg—l—cl)t—k(clc§+l—|—cl) t2—cl}, (1 <0)
2cqc3
or
1
t:7{02+602—c a+ (E+cck+e a2+1+c}, c1 > 0),
203(1+Cl)<3 165 —c1) a+ (g +ecg+e)V 1), (a>0)

where ¢ and c3 # 0 are constants. The corresponding surface M is a complete
minimal surface in any case.

In the following theorem, we give the Gauss curvature of the surface (3.1).

Theorem 3. Let M be generalized helicoidal surface parametrized by (3.1).
Then the Gauss curvature K of M 1is given by

- (a/'B" = p'a”) (ap’ = Ba’) (af — Ba’)? (1+ a2+ 8?%) + (aa’ + ﬂﬂ’)Q.
(@2 +@?) @razt)  (@F+E)7)0+a2+5) (@462

(3.5)
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Corollary 2. Let M be generalized helicoidal surface parametrized by (3.1).
Then M is flat if and only if

(/8" — B'a") (af' — Ba’) _ (aB' = Ba’)’ (1+a®+ B°) + (aa’ + BB’
(@) +(57?) (1+ a2+ 52 (a2 + 7) |

To study flat surfaces, it is convenient to let
a(t)=P(t)cos(Q(t)) and S(t)= P (t)sin(Q (t)) (3.6)

where P (t) > 0 and @ (¢) are nonconstant smooth functions. From the equa-
tion (3.5), we have

K _ (P/)4 +P4 (P/)Q (Q/)Q _p3 (1 —|—P2) (Q/)Q P+ pP3 (1 —|—P2) P/Q/Q//
1+ P2 (P4 P2 Q)

Then the surface M is flat if and only if

_ (P/)4 + P4 (P/)2 (Q/)Q _ P3 (1 +P2) (Q/>2 P// +P3 (1 + P2) P/QIQ// —0.
(3.7)

Here for @Q (t) = t, the equation (3.7) is rewritten as
— (P + PY(P')* = P*(1+ P*) P" =0. (3.8)

Multiplying the above equation by 2PP’ = (PQ)/, we have
!
PP () 4 P (P (P - () (P =0

Dividing by P*(P')*, we get

(1(;;2)'+ (L) o

14+ P2 1 1

TR

So

for a positive constant ¢;. Then
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Thus we find

Then

Let

Set

Then

and

So we have

j 1+c?

dt 1 P2 —¢2
R .
dP caP\ 1+ P2

1 |[P2—¢
= — dP.
t(P) i/ caP\ 1+ P2
1 [P2—¢
= | — dP.
I / 8113\/14—7]32

=

11 1+s
—log | ——
2cq S 1—s

C1

201

i10 Vit
V1+

P2 _ 2
T s.
P2 _ 82 + C%
1—s2
1 2
PdP = i 621)2sds.
-8
52 d 1 1 + 1 2¢3
§ = — -
s2) (s2 4+ ¢2) 2¢y 1+s 1—s s2+4¢c
> — arctan <S) + c2
C1
P2 P2 _ 2 1 P2 _ 2
+ \/ a) - arctan | — 621 + co
Pz /P2—¢2 a\ l1+P

_% log (1 + c%) + ca,

1

where ¢ is a constant.
Let

o (P):=

1 1
— log (\/1+P2+\/P26%) — arctan | —
C1 C1

Liog (VIt P24 /P2 fan | L/ 22=
- —C — arctan —
C1 Og 1 C1 1+P2

P2 —¢?

1+ P2

)as
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We denote by ¢4 (P) and ¢_(P) the solutions of (3.9) in the (+) and (—) cases,
respectively. Then

ty (P)=®(P)+c3 and t_(P)=—-2(P)+c

for some constants c3 and ¢4. The function ¢4 (P) is an increasing function on
(c1,00) and

1
lim ¢ty (P) =00, lim t; (P)= Sor log (1+¢f) 4¢3, lim #, (P) =0.
a

P—oo P—scf P—cf

Similarly, ¢_ (P) is a decreasing function on (¢1,00) and

1
lim ¢t (P) = o0, lim t_(P)=—;—log (1+¢i)+cs, lim ¢ (P)=0.
1

P—oo P—)cir P—)c;r

We choose ¢4 such that

b

5, log (1 + C%) + 4.

1
Q—Cllog(l—l—c%)-i—c;g:

The curves (P cos (t4 (P)), Psin (t4 (P))) and (P cos (t— (P)), Psin (t— (P)))
can be connected continuously, but it is not a regular curve. So the corre-
sponding surface M cannot be extended as a complete flat surface.

Theorem 4. The solution of the flat surface equation (3.8) is given by
ty(P)=®(P)4+c3 or t_(P)=—-P(P)+cy,

where

1 1 [P2-¢2
<I>(P)qlog<\/1+P2+\/PQC%>arctan — it

Cc1 1+ P2

and c¢1 > 0, c3, cq4 are constants. The corresponding surface M cannot be
extended as a complete flat surface.

In the following theorem, we consider the case where the normal curvature
tensor of M is identically zero.

Theorem 5. Let M be generalized helicoidal surface parametrized by (3.1).
Then the normal curvature tensor of M 1is identically zero if and only if

((O/)2 + (6’)2) (Ba' —af) + (/8" = f'a") (1+a®+8%) =0 (3.10)
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Proof. We have
R}, = hihgy — B3 ki, + hiyha, — hishiy

(50/ —04,3/) {((a/)2 + (ﬂ/)2) (ﬁa’ —aﬁ/) + (O/,B” _B/a//) (1 +a2 +ﬁ2)}

D)
VaZ+ B (1+ a2+ 82 (@) + (8)°)
R, = Bih3 — B3 kT, + hiyhd, — hishly =0,
Ri, = hiyh3y — ko bl + highd, — hiohdy
(ao/—i—ﬁﬂ') {((a/f + (ﬁ/)2) (ﬁo/ —aﬁ’) + (O/BH _ﬁ/a//) (1 +Oz2 +52)}
3 .
Va2 5% (1+a? + 52)° ((a’>2 + (6/)2)

Thus R = 0 if and only if

i

((O/)2 4 (5/)2) (50‘/ . aﬁ') + (a/ﬁn . 5/0//) (1 + a2 +ﬂ2) —0.
O]

To study surfaces with zero normal curvature tensor, it is convenient to let

a(t)=P(t)cos(Q(t) and f(t) = P(t)sin(Q (1))

where P (t) > 0 and @ (t) are nonconstant smooth functions. From the equa-
tion (3.10), we have

PQ’ (P” (1+P*)-P (Q’)Q) — (24 P?) (P’ Q — (1+PY) PPQ" =0.
(3.11)
Here for @Q (t) = t, the equation (3.11) is rewritten as
PP" (1+ P?) — (2+ P?) (P')* ~ P2 = 0. (3.12)
Multiplying by 2PP" = (P?)", we have

p2 (1 +P2) ((P’)Q)/ B (2 n P2) (P2)/(P')2 _ p? (pz)/ = 0.

Dividing by PS, we get

() () -
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So
1+ P2

P4

for a positive constant ¢;. Then

(P + 53 =

Thus we find
o [1+P
dp~ — P P2 — ¥
Then
_ g [14 P2
Let
Cc1 1+ P2
7= [ 2L
/P P2—c%d
Set
1+ P2
=:s.
P2 —¢
Then -
1+cys
P2: 1
s2 -1
and )
1+c]
PdP = (5 )2sds.
So we have
2 5
I = —¢ (1 d
Cl( +Cl)/(82—1)(1+c§52) s
_a 1 B 1 B 2 s
2 s+1 s—1 1+c2s?

1
1) arctan (¢18) + ¢o

\/1+P2—\/P2—c% P2 —¢2

=c1log

7 N

P2 —¢2 2

1+ P2
14 P24 4/P2%2— c%) — arctan <01 +> — c—llog

(3.13)

1+ P2 P2 —c? 1+ P2
= ! log <\/ + +\/ c1> — arctan <01 +> + co

(1 + c%) + ¢,
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where ¢ is a constant.
Let

1+ P2
U (P) := ¢ log (\/ 1+ P2+,/P?— C%) — arctan (cl PQ+2> :
2

We denote by t4 (P) and t_(P) the solutions of (3.13) in the (+) and (—)
cases, respectively. Then

ty (P)=9(P)+c¢3 and t_(P)=-9(P)+c
for some constants c3 and c4.

The function ¢4 (P) is an increasing function on (c1,00) and

lim ¢y (P) = oo, lim t; (P) = %1 log (1 + cf)—g+c3, lim #, (P) = oo.

P—oo P~>c;r P~>c;r

Similarly, ¢_ (P) is a decreasing function on (¢;,00) and

lim ¢ (P) = =00, lim t- (P) = =5 log (1+ )+ +eq, lim ¢ (P) = —ox.

P—oo P%cf P—c]

We choose ¢4 such that

C C
Ellog(l—i—cf)—g—kc:s=—5llog(1+c?)+g+04=:to.

Let Py (t) denote the inverse function of ¢, (P). It is an increasing function
on (tg,00) and

lim Py (t) =00, lim Py (t)=¢; lim P, (¢) =0.

t—o0 t—td t—td

Let P_ (t) denote the inverse function of t_ (P). It is a decreasing function on
(—o0,tp) and

lim P_(t)=0c0, limP_(t)=c¢; lim P’ (t)=0.

t——00 t—ty t—ty

Now we define a function P () on R such that P (t) = Py (t) for t > to,
P(ty) = ¢1 and P(t) = P_(t) for t < tg. Then P (t) is a C! function on R
such that P’ (t) = P} (t) for t > to, P’ (to) = 0 and P’ (t) = P’ (t) for t < to.
For t # tg, it satisfies

(2 +P (t)2) (P' ()% + P (t)?
P(1) (1 + P(t)2>

P// (t) —
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Then we have

lim P () = — 2.
AP0 = 177

Thus we find that P () is a C? function on R, which satisfies the zero normal
curvature tensor equation. So the corresponding surface M is a complete
surface with zero normal curvature tensor.

Theorem 6. The solution of the zero normal curvature tensor equation (3.12)
1s given by

ty (P)=9(P)+cg or t-(P)=-U(P)+cy

where

=5 [, o 1+ P2
\I/(P)cllog( 1+P2+ P2C%> — arctan <C1 PQ—C%)

and ¢y > 0, c3, ¢4 are constants. The corresponding surface M can be extended
as a complete surface with zero normal curvature tensor.
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