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On the Complex and Chaotic Dynamics of
Standard Logistic Sine Square Map
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Abstract

In this article, we set up a new nonlinear dynamical system which
is derived by combining logistic map and sine square map in Mann
orbit (a two step feedback process) for ameliorating the stability per-
formance of chaotic system and name it Standard Logistic Sine Square
Map (SLSSM). The purpose of this paper is to study the whole dynam-
ical behavior of the proposed map (SLSSM) through various introduced
aspects consisting fixed point and stability analysis, time series repre-
sentation, bifurcation diagram and Lyapunov exponent. Moreover, we
show that our map is significantly superior than existing other one di-
mensional maps. We investigate that the chaotic and complex behavior
of SLSSM can be controlled by selecting control parameters carefully.
Also, the range of convergence and stability can be made to increase
drastically. This new system (SLSSM) might be used to achieve better
results in cryptography and to study chaos synchronization.

1 Introduction

In nature, chaos is a nonlinear phenomena of nonlinear dynamical systems
which is unpredictable, aperiodic and extreme sensitive on initial values [1, 2].
There is diversity of fields in which chaotic maps and fractals are widely studied
[3, 4, 5, 6, 7, 8, 9, 10].
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The logistic map (a quadratic polynomial which was investigated as a pop-
ulation growth model) is a nonlinear dynamical system, originally due to P.F.
Verhulst in 1945 and 1947 [11]. The logistic map is given by the equation

xn+1 = µxn(1− xn), n = 0, 1, 2, ... , (1.1)

where xn ∈ [0, 1]. It represents the population at any time n, where µ is
a control parameter indicating the rate of population growth [13]. May [14]
was the first mathematician who published his article on the dynamics of
logistic map and it opened a new door for researchers in the field of modern
chaos theory due to its simplest form. Nowadays, logistic map has become
a milestone and widely applied in every branch of science, for example, in
cryptography [15, 16, 17, 18], to control traffic and traffic signals [25, 19, 20,
21, 22, 23, 24], to generate chaotic signals for securing communication system
[26], as a chaotic noise analog generator and in circuits [27, 28] and in many
other fields [29].
Sine map is one dimensional chaotic dynamical system defined in [11] and
given by the equation

xn+1 = λsin(πxn), n = 0, 1, 2, ... , (1.2)

where xn ∈ [0, 1] and λ > 0. The qualitative dynamics of the Logistic and sine
maps are identical as both are unimodel. Sine map had been used to secure
Communication [32], Chaos-based Image Cryptography [33], transmission [34]
etc. For more details and applications of sine map one may refer to [35, 36, 37,
38]. In 1993, Xie et al. [30] developed symbolic dynamics for the sine square
map, which is related to a hybrid optical bi-stability device and given by

xn+1 = λsin2(xn −B), |xn −B| ≤ π, n = 0, 1, 2... . (1.3)

Philominathan et al. [31] studied the statistical dynamics of sine square map.
In 2nd decade of 21st century, researchers (Wu et al. [35], de Carvalho et

al. [36], Wu et al. [37], Hua et al. [38] and many others) studied the chaotic
behavior of a dynamical system which is obtained by connecting two dynam-
ical systems. They demonstrated that obtained new systems have excellent
ergodicity, extreme improved chaotic range and more complex chaotic behav-
ior than existing systems. These features encouraged authors to apply new
systems to get better outputs in cryptography, signal processing, bioengineer-
ing, and secure communication systems. These facts inspired us to investigate
a new dynamical system by connecting two dynamical systems.

Mann [39] investigated a fixed point iterative method. Authors [40] used
this method to study the dynamical properties of the logistic map. They
found that by applying this method the range of convergence and stability of
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the logistic map increased drastically to a larger value of control parameters.
Recently, Ashish et al. [22, 41] studied the logistic map in superior orbit and
they presented a better Traffic control model.

In this article, we set up a new dynamical system which is obtained by con-
necting logistic map and sine square map in superior orbit and call it Standard
Logistic Sine Square Map (SLSSM). The whole paper is divided into four sec-
tions. A brief introduction is given in Section 1. In Section 2, some basic
definitions are recalled that have been taken into account during our study.
Section 3 is dedicated to the formation of a new dynamical system (SLSSM).
This section is further divided into five subsections in which entire dynamical
behavior of SLSSM has been detected by adopting fixed point and stability
analysis, time series representation, bifurcation diagram and Lyapunov expo-
nent techniques. In Section 4, we prove the superiority of SLSSM by comparing
its stability and chaos performance with existing other one dimensional maps.
Finally, we present a brief discussion and concluding remarks in Section 5.

2 Preliminaries

This section deals with basic definitions, facts and notations which are roots
of our study.

Definition 2.1. [11]. Let X be a nonempty subset of real numbers and g be
a self-map on X, i.e., g : X → X. For a point x0 ∈ X, the Picard Orbit (PO)
is the set of all the iterates of a point x0 , i.e.,

PO(g, x0) = {xn : xn = g(xn−1), n = 1, 2, ...}. (2.1)

Here, the orbit of the initial point x0 (also known as seed) represents a sequence
gn(x0) with respect to g .

Definition 2.2. (Fixed point). Consider a mapping g : X → X, where X is
a nonempty set. Then, the point x0 ∈ X is known as fixed point if g(x0) =
x0 [11].

Definition 2.3. (Periodic point). Let X be a nonempty subset of real num-
bers and g : X → X be a mapping. A point x0 ∈ X is said to be periodic
point of g with period q if gq(x0) = x0. The point x0 has prime period m if
gm(x0) = x0 and gn(x0) 6= x0 for 0 < n < m [11].
The orbit PO(g, x0) is said to be periodic orbit or periodic cycle if the point
x0 is a periodic point.

Definition 2.4. [11]. Let g : R → R be a differentiable map having a fixed
point x0. Then, the fixed point x0 is known as:
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1. attracting (stable) fixed point or sink if |g′(x0)| < 1,

2. repelling (unstable) fixed point or source if |g′(x0)| > 1,

3. neutral (indifferent) if |g′(x0)| = 1,

where g′(x0) is the first order derivative of the map g at x = x0.

Definition 2.5. (Lyapunov exponent). Consider a differentiable map g : R→
R. The Lyapunov exponent (LE) of g for an orbit {an} is defined by

σ(a1) = lim
n→∞

1

n

n∑
i=1

ln |g′(ai)|, (2.2)

provided this limit exists [12].

Definition 2.6. Let g : X → X be a map, where X is a nonempty set.
Consider a sequence {zn} of iterates for initial point z0 ∈ X in the following
way

zn+1 = αng(zn) + (1− αn)zn, n = 1, 2, 3, ... , (2.3)

where αn is a sequence of positive numbers in [0, 1] for each n. Then, this
sequence is called Superior orbit [40], which is originally due to W.R. Mann
[39]. If we take αn = 1 then, Superior orbit (2.3) reduces in Picard orbit (2.1).

3 Formation of the Dynamical System SLSSM

We construct a dynamical system i.e., Standard Logistic Sine Square Map
(SLSSM) which is established by combining two dynamical systems, namely,
logistic map and sine square map in superior orbit (2.3). The proposed map
Sµ,αn is given by

Sµ,αn
(xn) = xn+1 = αnµxn(1−xn)+αnλ sin2(2πxn)+(1−αn)xn, n = 0, 1, 2, ... ,

(3.1)
where xn = x ∈ [0, 1] and αn ∈ [0, 1] is a sequence. For simplicity, we take
αn = α ∈ [0, 1] throughout this article. Also, parameters α, µ, λ ∈ [0, 1]
alter the dynamical behavior of SLSSM and control the intensity level of non-
linear perturbed map given by (3.1), i.e., α, µ and λ are known as control
parameters. We adopt the following experimental methodologies to analyze
the whole dynamical behavior of the system SLSSM by running a program in
Matlab.
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3.1 Fixed point and stability analysis of SLSSM

The fixed points of the map (3.1) can be found out by using Definition 2.2,
therefore, to find fixed points, we can write

Sµ,α(x) = x

i.e., αµx(1− x) + αλ sin2(2πx) + (1− α)x = x

αµx(1− x) + αλ sin2(2πx)− αx = 0

The map Sµ,α(x) has two fixed points being a quadratic equation. One
can instantly observe that x = 0 is always a fixed point of Sµ,α(x). It is
difficult to calculate analytically second fixed point due to non-linearity of the
system. The control parameters affect it, i.e., second fixed point depends on
parameters α, µ and λ. The map Sµ,α is iterated 100 times, i.e., 100 number of
iterations have been observed to compute the fixed points (see Table 1) for all
x ∈ [0, 1], in which one parameter, say λ = 0.2 (some other values can be taken)
has been considered as fixed. Moreover, the maximum value of parameter µ
has also been obtained for which the system SLSSM remains convergent and
stable. Here, we compute fixed points upto four decimal points by taking the
maximum value of µ upto two decimal points for which the system SLSSM
remains convergent .

α Fixed Point
Maximum value of µ

for convergence for stability

0.9 0.7381 2.79 3.99

0.8 0.7474 2.90 4.38

0.7 0.7548 3.00 4.47

0.6 0.7752 3.33 4.82

0.5 0.7938 3.72 5.31

0.4 0.8191 4.42 6.00

0.3 0.8550 5.89 7.23

0.2 0.9005 9.29 9.70

0.1 0.9419 16.75 16.75

Table 1: Fixed points and range of convergence and stability of SLSSM

From Table 1, we observe that whole dynamical behavior of SLSSM de-
pends on parameter α. As we decrease the value of α, system remains stable
for a larger value of µ. Thus, the system can be stabilized for larger values
of µ by reducing the value of parameter α, i.e., the range of convergence and
stability of SLSSM can be increased drastically upto µ = 16.75.
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Further, fixed points exist where the diagonal line y = x intersects the map
Sα,µ as shown in Fig. 1 by a and b. We have presented the fixed points a and
b at α = 0.9 for µ = 2.79.

Fig. 1. Graphical representation of fixed points of Sµ,α(x) at α = 0.9 for µ = 2.79

3.2 Time series representation of SLSSM for α = 0.9, 0.5 and 0.1

In this section, adopting time series depiction of SLSSM, we attempt to cor-
roborate the fixed points and stability results given in Table 1 experimentally.
We obtain the optimum value of µ for different choices of α against some initial
values of x ∈ [0, 1] using 100 number of iterations.

Example 3.1. Describe the whole dynamical behavior of SLSSM (3.1) for
α = 0.9 and for all x ∈ [0, 1] by using time series representation of dynamical
systems.

Solution. We analyze the whole dynamical behavior of SLSSM for α = 0.9
by portraying Figs. 2, 3, 4, 5 and 6. We observe from Fig. 2 that the trajectory
of SLSSM converges to a fixed point for µ ≤ 2.79 for all values of x. The system
SLSSM exhibits more complicated behavior for 2.79 < µ ≤ 3.87, as system
fluctuates between 2, 4 and 8 stable fixed points. The orbit oscillates between
2 stable fixed points for all x ∈ [0, 1] and for µ ∈ (2.79, 3.09] ∪ [3.68, 3.82] as
depicted in Fig. 3 at µ = 3.82. There exists 4 stable solutions of the system or
orbit vibrates between 4 stable fixed points for µ ∈ (3.10, 3.23] ∪ [3.37, 3.49] ∪
[3.58, 3.67] ∪ [3.83, 3.86]. We have illustrated this fact by Fig. 4 for µ = 3.20.
Furthermore, the fluctuation in the orbit tends to 8 stable fixed points when
the parameter µ lies in the range [3.24, 3.36] ∪ [3.50, 3.54] (see Fig. 5). Also,
as we increase µ from µ = 3.86, more and more oscillations take place in the
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orbit of the system. Ultimately, chaos starts to exists, i.e., system becomes
chaotic. This behavior is depicted in Fig. 6 for µ = 3.92.

Remark 3.2. The proposed dynamical system SLSSM (3.1) is more interest-
ing than that of logistic map (1.1) and sine map (1.3) due to its marvellous and
complex periodic behavior. Unlike these systems, SLSSM has the property to
exhibit periodic fixed points of periods 4 and 2 even after the occurrence of
periodic fixed points of periods 8, i.e., the system possesses the attribute of
reducing the periodicity of the periodic fixed points.

Note 3.3. One cannot easily interpret the behavior of SLSSM only by com-
puting starting range of parameter µ. It is requirement of the system that its
behavior should be examined for all values of µ ∈ [2.80, 3.86] as explained in
Example 3.1.

Fig. 2. Stable convergent solution of SLSSM for α = 0.9, µ = 2.79

Fig. 3. 2-Stable fixed point oscillation of SLSSM for α = 0.9, µ = 3.82
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Fig.4. 4-StablefixedpointoscillationofSLSSMforα = 0.9, µ = 3.20

Fig.5. 8-StablefixedpointoscillationofSLSSMforα = 0.9, µ = 3.31

Fig.6. DivergentbehaviorofSLSSMforα = 0.9, µ = 3.92

Example 3.4. By drawing time series diagram, examine the whole dynamical
behavior of SLSSM (3.1) for α = 0.5 and for all x ∈ [0, 1] by taking 100 number
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of iterations.

Solution. For this specific value of parameter α, the system has stable fixed
point for 0 < µ ≤ 3.72 for all x ∈ [0, 1]. This fact is presented in Fig. 7 for
x0 = 0.5 and µ = 3.72. The trajectory of SLSSM fluctuates between 2 fixed
points for 3.72 < µ ≤ 4.76 as shown in Fig. 8 at µ = 4.75. Further, orbit
starts to show more and more vibrations, i.e., the system exhibits sensitive
dependence on initiators when parameter µ increases through µ > 5.4. Fig. 9
shows this chaoticity of SLSSM for x0 = 0.9 at µ = 6.

Fig.7. StableconvergentsolutionofSLSSMforα = 0.5, µ = 3.72

Fig.8. 2-StablefixedpointfluctuationofSLSSMforα = 0.5, µ = 4.75
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Fig.9. UnstabledivergentsolutionofSLSSMforα = 0.5, µ = 6

Example 3.5. Show that the stability of the map Sα,µ(x) can be extended
by decreasing the parameter α. Explain this fact for all x ∈ [0, 1] by taking
α = 0.1.

Solution. The proposed map Sα,µ(x) given by (3.1), converges to a stable
fixed point 0.9419 when the parameter µ exists in the range (0, 16.75]. This
convergent behavior is depicted in Fig. 10 for all x0 ∈ [0, 1] at µ = 16.
Moreover, the map Sα,µ(x) cannot be defined for all µ > 16.75, since in this
range xn+1 > 1 as shown in Fig. 11 for µ = 16.79 which represents the
undefined behavior of the system.

Fig.10. StableconvergentfixedpointofSLSSMforα = 0.1, µ = 16
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Fig.11. UndefinedSLSSMforα = 0.1, µ = 16.79

3.3 Bifurcation analysis of SLSSM for different choices of µ

The bifurcation diagrams are the tools generally used to classify the dynamical
systems in nonlinear regimes. Bifurcation diagrams exhibit an abrupt change
which occurs in the asymptotic solutions of a dynamical system.

In this section, the whole dynamical behavior of the system SLSSM (3.1)
is presented by drawing bifurcation diagrams for α = 0.9, 0.5 and 0.1. A route
from periodic regime to chaotic regime has been demonstrated in Figs. 12,
13, 14 by letting step size of µ = 0.001, initiator x0 = 0.5 and the number of
iterations (N) = 800.

In Fig. 12, the whole dynamical system SLSSM has been split into different
regimes which interpret the complication of the system. For 0 < µ ≤ 2.82,
SLSSM has a stable fixed point and a period doubling bifurcation occurs for
2.82 < µ ≤ 3.16 as depicted by regimes of period 1 and 2. Further, SLSSM
represents a route from more than 2 periods to 2 periods for 3.16 < µ ≤ 3.67.
The system acquires a route from periodic to chaos when parameter µ exceeds
from 3.86, i.e., for µ > 3.86, where the system shows sensitive dependence on
initiators.
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Fig.12. BifurcationplotofSLSSMfor2 ≤ µ ≤ 4, α = 0.9, x0 = 0.5

Furthermore, the period doubling bifurcation of SLSSM is also presented
for α = 0.5 by Fig.13. In the figure, SLSSM has stable solutions for 0 < µ ≤
5.31. The system cannot be defined when the parameter µ exceeds from 5.31
as described by undefined regime.

Fig.13. BifurcationplotofSLSSMfor2.5 ≤ µ ≤ 6.5, α = 0.5, x0 = 0.5

Moreover, from Fig. 14, we observe that SLSSM remains stable for an
extendable range of µ, i.e., for 0 < µ ≤ 20.34 since orbit converges to a
fixed point. The system cannot be defined if the value of µ increases through
µ = 20.34 since in this range orbit xn > 1, i.e., xn /∈ [0, 1] which demonstrates
the undefined behavior of the system SLSSM.
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Fig.14. StableandunstableregimesofSLSSMfor12 ≤ µ ≤ 30, α = 0.1, x0 = 0.5

Remark 3.6. The system SLSSM acquires more and more dynamical prop-
erties when the value of parameter α ∈ [0, 1] increases as described by bifur-
cation diagrams, i.e., for α = 0.1, 0.5, the system exhibits fixed point and
periodic properties; for α = 0.9, system has fixed point, periodicity, reduction
in periodicity and chaotic properties.

3.4 Mathematical and experimental approach of SLSSM by Lya-
punov exponent

The Lyapunov exponent (LE) enables one to measure the chaoticity of a non-
linear dynamical system. It measures the degree at which orbits starting from
very close initial points diverge or converge over time. If the orbits diverse ex-
ponentially, the system shows sensitive dependence on initial conditions, i.e.,
the system becomes chaotic. Further, the system becomes dissipative (stable)
if the orbits converge. We are going to estimate the Lyapunov exponent only
for finite orbits as considering infinite orbits is impossible. The Lyapunov ex-
ponent for the dynamical system SLSSM is described in the following manner:

We start by considering two nearby initial orbits Snµ,α(x) and Snµ,α(x+ h),
where 0 < h < 1, α ∈ (0, 1), µ > 0 and n denotes the number of iterations.
Let us express the divergence ∆ of these orbits by an exponential growth heσn.
Then, we have

Snµ,α(x+ h)− Snµ,α(x) = ∆,

i.e., Snµ,α(x+ h)− Snµ,α(x) = heσn.

This implies
Snµ,α(x+ h)− Snµ,α(x)

h
= eσn. (3.2)
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Letting limit as h→ 0 on each side of (3.2), we have

lim
h→0

Snµ,α(x+ h)− Snµ,α(x)

h
= lim
h→0

eσn.

This gives
(Snµ,α)′(x) = eσn. (3.3)

Taking logarithm on both side, we have

σ =
1

n
ln |(Snµ,α)′(x)|, (3.4)

where (Snµ,α)′(x) represents the first order derivative of Snµ,α(x). The map
Snµ,α(x) is a recursive map, therefore, we have x2 = Sµ,α(x1), x3 = Sµ,α(x2), x4 =
Sµ,α(x3) , ..., xn+1 = Sµ,α(xn), then, using chain rule of derivatives, (Snµ,α)′(x1)
can be written as

(Snµ,α)′(x1) = S′µ,α(xn) · S′µ,α(xn−1) ... S′µ,α(x2) · S′µ,α(x1). (3.5)

Using (3.5), (3.4) reduces to

σ =
1

n

{
ln |S′µ,α(xn) · S′µ,α(xn−1) ... S′µ,α(x2) · S′µ,α(x1)|

}
.

Now, applying the property of logarithm, the value of σ can be expressed as

σ =
1

n

{
ln |S′µ,α(xn)|+ ln |S′µ,α(xn−1)|+ ...+ ln |S′µ,α(x2)|+ ln |S′µ,α(x1)|

}
σ =

1

n

n∑
i=1

ln |S′µ,α(xi)|, (3.6)

which is required Lyapunov exponent of SLSSM.
From this definition, we draw the following results about the behavior of the
dynamical system SLSSM in the form of remarks.

Remark 3.7. The above discussion of Lyapunov exponent σ, can be used
to predict how much the dynamical system SLSSM depends on initial condi-
tions. For σ > 0, the system exhibits extreme sensitive dependence on initial
conditions and for σ < 0, the system remains dissipative (stable).

Remark 3.8. For periodic orbit with any period q, σ takes the form

σ =
1

q

q∑
i=1

ln |S′µ,α(xi)|. (3.7)
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Remark 3.9. Particularly, for q = 1, i.e., for fixed orbit, Lyapunov exponent
σ reduces to

σ = ln |S′µ,α(x1)|. (3.8)

Example 3.10. Evaluate the dynamical behavior of the map Sµ,α(x) =
αµx(1 − x) + αλ sin2(2πx) + (1 − α)x; x ∈ [0, 1] by plotting Lyapunov ex-
ponent at α = 0.9 for 1 ≤ µ ≤ 4.5. Further, examine the behavior of fixed
and periodic orbits by computing Lyapunov exponent for
(a) µ = 2.5, α = 0.9 and
(b) µ = 3.4, α = 0.9.

Solution. (a) We have shown in Section 3.3, that each orbit of SLSSM is
a fixed orbit for 0 < µ ≤ 2.82 and x ∈ [0, 1]. The fixed point is 0.7045 for
µ = 2.5. The Lyapunov exponent (σ) is determined by solving (3.8). Here,

Sµ,α(x) = αµx(1− x) + αλ sin2(2πx) + (1− α)x,

and
(Sµ,α)′(x) = αµ(1− 2x) + 2παλ sin(4πx) + (1− α). (3.9)

Putting α = 0.9, µ = 2.5 and x = 0.7045, we obtain

(S2.5,0.9)′(0.7045) = 0.9× 2.5(1− 2× 0.7045) + 2π× 0.9× 0.2 sin(4π× 0.7045)

+(1− 0.9) = −0.6462 radian

Next, substituting the value of (S2.5,0.9)′(0.7045) in (3.8), we have

σ = ln | − 0.6462| = −0.4366.

Thus, the estimated value of Lyapunov exponent is −0.4366, i.e., σ < 0, there-
fore, orbit of x = 0.7045 is stable. The fixed point 0.7045 becomes the stable
attractor for the map S2.5,0.9(0.7045).

(b) We observe from Section 3.3, that for µ = 3.4, and for all x ∈ [0, 1], the
orbit of SLSSM is periodic of period-4. Thus, the periodic points are evaluated
as x1 = 0.8152, x2 = 0.6937, x3 = 0.8779 and x4 = 0.5024 for µ = 3.4. The
Lyapunov exponent (σ) is determined by solving (3.7) for q = 4. From (3.9),
we have

(S3.4,0.9)′(x1) = 0.9×3.4(1−2×0.8152)+2π×0.9×0.2 sin(4π×0.8152)+(1−0.9)

= −2.6554 radian (3.10)

(S3.4,0.9)′(x2) = 0.9×3.4(1−2×0.6937)+2π×0.9×0.2 sin(4π×0.6937)+(1−0.9)
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= −0.3504 radian (3.11)

(S3.4,0.9)′(x3) = 0.9×3.4(1−2×0.8779)+2π×0.9×0.2 sin(4π×0.8779)+(1−0.9)

= −3.3429 radian (3.12)

(S3.4,0.9)′(x4) = 0.9×3.4(1−2×0.5024)+2π×0.9×0.2 sin(4π×0.5024)+(1−0.9)

= 0.1194 radian (3.13)

To determine the value of σ, we use (3.10), (3.11), (3.12) and (3.13) in
(3.7), we have

σ =
1

4
{ln | − 2.6554|+ ln | − 0.3504|+ ln | − 3.3429|+ ln |0.1194|}

=
1

4
{0.4241− 0.4554 + 0.5241− 0.9230}

=
1

4
(−0.4302)

i.e., σ = −0.1076

Thus, the determined value of Lyapunov exponent is −0.1076, which is
negative. Therefore, periodic points x1, x2, x3 and x4 are the stable attrac-
tors for the map Sµ,α(x).
In Fig. 15, we plot Lyapunov exponent (σ) to ascertain the behavior of dy-
namical system Sµ,α(x) for 1 ≤ µ ≤ 4.5 at α = 0.9. To plot it, we consider
10, 000 iterations i.e. N= 10,000 and initiator x0 = 0.5. From the figure, it
is clear that SLSSM has remained stable for 0 < µ ≤ 3.86 since in this range
σ < 0 , i.e., the system possesses stable orbits. Also, orbit in the zoomed
rectangular area, shows extreme sensitive dependence on initial condition as
here σ > 0. Thus, chaos may be occurred in the system when we increase the
parameter µ through µ = 3.86.
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Fig. 15. Lyapunov exponent diagram of SLSSM for x0 = 0.5, 1 ≤ µ ≤ 4.5 at α = 0.9

Example 3.11. Explain the dynamical behavior of the map Sµ,α(x) = αµx(1−
x) +αλ sin2(2πx) + (1−α)x; x ∈ [0, 1] by plotting Lyapunov exponent for the
following values of parameters µ and α:
(a) 1 ≤ µ ≤ 7 at α = 0.7,
(b) 1 ≤ µ ≤ 30 at α = 0.1.

Solution. (a) We determine the dynamical behavior of SLSSM by drawing
the Lyapunov exponent diagram (see Fig. 16) for the given values of param-
eters and initiator x0 = 0.5. We notice that for 0 < µ ≤ 5.9, the maximum
Lyapunov exponent σ remains negative, which expresses the stable behavior
of the system. For the increased range of parameter µ, i.e., for 5.9 < µ ≤ 7,
the spectrum of Lyapunov exponents starts to approach to a positive value of
σ, which is an indication of the chaos in the dynamical system SLSSM.

Fig.16. LyapunovexponentdiagramofSLSSMforx0 = 0.3, 1 ≤ µ ≤ 7atα = 0.7

Solution. (b) The stability of dynamical systems can be increased by con-
trolling the parameters, we analyze this fact by estimating the value of Lya-
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punov exponent σ at a decreased value of parameter α, i.e., at α = 0.1. At
this particular value of α, the system SLSSM exhibits stable behavior for an
increased range of parameter µ, i.e., for 0 < µ ≤ 20.34 whose all orbits con-
verge to a fixed point.
Now, we determine the Lyapunov exponent (σ) for α = 0.1, µ = 20 and
x = 0.9510 by solving (3.8).
From (3.9), we obtain

(S20,0.1)′(0.9510) = 0.1× 20(1− 2× 0.9510) + 2π × 0.1× 0.2 sin(4π × 0.9510)

+(1− 0.1) = −0.9766 radian

Now, substituting this value in (3.8), we have

σ = ln | − 0.9766| = −0.0103.

Thus, the estimated value of the Lyapunov exponent is −0.0103, i.e., σ <
0, therefore, the fixed point 0.9510 becomes stable attractor for the map
S20,0.1(0.9510).

We have interpreted this fact experimentally in Fig. 17. We notice that
σ < 0 for 0 < µ ≤ 20.34, therefore, the system exhibits stable and fixed orbit
for this extended range of µ. After this range of µ, system starts to show
unstable behavior.

Fig.17. LyapunovexponentplotofSLSSMforx0 = 0.5, 1 ≤ µ ≤ 20.34atα = 0.1

3.5 A new experimental analysis of SLSSM through combined study
of bifurcation and Lyapunov exponent

In this section, we try to understand the complex behavior of proposed sys-
tem SLSSM by combining two diagrams, i.e., say, bifurcation diagram and
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Lyapunov exponent diagram. This experimental approach enables us to ex-
amine the accurate value of parameter µ obtained in previous sections at which
system alters its behavior. We have divided the whole region of the dynami-
cal system SLSSM into different regimes separated by a magenta dotted line
as shown in figures. Fig. 18 shows the combined graphical representation of
bifurcation and Lyapunov exponent for 1 ≤ µ ≤ 4.5 at α = 0.9. The system
possesses two regimes, stable periodic regime and chaotic regime, separated
by a magenta dotted line at µ = 3.86, which is the maximum value of µ for the
system to be stable, thereafter chaos occurs. At µ = 3.86, Lyapunov exponent
σ is negative. We divide the whole region of SLSSM into three regimes (stable,
undefined and chaotic regime) at specific values of parameter µ as illustrated
in Figs. 19 and 20 for α = 0.5 and α = 0.1 respectively. From the figures, it
can be noticed that system maintains its stability for a larger value of µ by
decreasing the value of α. Moreover, when σ exceeds the value 0, the system
intends to be chaotic.

Fig.18. BifurcationplotversusLyapunovexponentdiagramofSLSSMfor1 ≤ µ ≤ 4.5at
α = 0.9
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Fig.19. BifurcationplotversusLyapunovexponentdiagramofSLSSMfor1 ≤ µ ≤ 7at
α = 0.5

Fig.20. BifurcationplotversusLyapunovexponentdiagramofSLSSMfor12 ≤ µ ≤ 30at
α = 0.1

4 Superiority of SLSSM

To prove the excellence and superiority of SLSSM, we compare its stability and
chaos performance with existing one dimensional maps in terms of bifurcation
plots.

4.1 Stability performance of SLSSM

In order to facilitate comparison, we compare the stability performance of
SLSSM with existing one dimensional maps: logistic map given by (1.1), sine
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map represented by the relation (1.2) and squared sine logistic map [36].
From Fig. 21, we observe that SLSSM remains stable for 0 < µ ≤ 20.34

as we have already shown in Subsection 3.3. Sine map is stable for 0 <
λ ≤ 0.86 while logistic map shows its stable behavior for 0 < µ ≤ 3.57 as
shown by Subfigures 21a and 21b respectively. Also, one dimensional squared
sine logistic map attains its stability performance for 0 < µ ≤ 3.5. Hence,
SLSSM has largest range of stability which is very higher than the existing
one dimensional chaotic maps.

(a) (b)

(c) (d)

Fig. 21. Bifurcation plots (a) sine map (b) logistic map (c) squared sine logistic map and
(d) standard logistic sine square map (SLSSM).

4.2 Chaos performance of SLSSM

The chaos performance of a chaotic map is very significant tool for image
encryption. The properties of chaotic maps such as: extreme sensitivity on
initial conditions, ergodicity and unpredictable behavior are very suitable for
image encryption. In 1997, the chaos based image encryption was firstly intro-
duced by Fridrich [42]. Subsequently, authors [37, 38] developed new chaotic
system by combining two different chaotic systems which has better chaos
performance to design a higher security encryption structure. Motivated by
them, here, we also evaluate the chaos performance of SLSSM so that it can
be used in image encryption.

In Fig. 22, we evaluate the chaos performance of sine map, logistic map
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and SLSSM by magnifying the chaotic regimes of their respective bifurcation
diagrams represented in Fig. 21. From the figure, we notice that SLSSM
shows chaotic behavior for 26.6 ≤ µ ≤ 30.8. Sine map has chaotic behavior
for 0.87 ≤ λ ≤ 1. The logistic map remains chaotic for 3.58 ≤ µ ≤ 4.
Therefore, the SLSSM has a wider chaotic range and therefore, more complex
chaotic behavior than the other existing one dimensional chaotic maps.

(a) (b) (c)

Fig. 22. Chaos performance (a) sine map (b) logistic map (C) standard logistic sine
square map (SLSSM).

Remark 4.1. The stability and chaos performance of SLSSM is wider than
that of sine map and logistic map. Therefore, this map might be applied in
image encryption to obtain better results than existing one dimensional maps.

5 Discussion and Conclusion

We propose a new dynamical system Standard Logistic Sine Square Map
(SLSSM) by combining logistic map and sine square map. The new sys-
tem SLSSM possesses two extra control parameters which alters the whole
dynamics of the system as compared to logistic map and sine map. The con-
trol parameters are denoted by α, µ and λ. The entire dynamical behavior
of SLSSM is analyzed adopting the fixed point and stability analysis, time
series representation, bifurcation diagram, Lyapunov exponent and combined
diagrams of bifurcation and Lyapunov exponent. The following concluding
remarks are drawn from our investigation:

1. The fixed point analysis technique has been utilized to calculate the fixed
points of the proposed system (3.1). Further, the stability performance of
the uncontrolled system has also been checked. The range of convergence
and stability of SLSSM can be increased upto µ = 16.75 by controlling
parameters (see Table 1).



ON THE COMPLEX AND CHAOTIC DYNAMICS OF STANDARD LOGISTIC
SINE SQUARE MAP 223

2. The complicated and rich periodic dynamical behavior of SLSSM has
been experimentally presented using time series representation at α =
0.9, 0.5, 0.1 to verify the stability results obtained by using fixed point
analysis.

3. The bifurcation analysis is used to evaluate various dynamic properties
of SLSSM such as fixed point, period doubling, reduction in periodicity
and route from periodic to chaos for 0 < µ ≤ 4.5 at α = 0.9.

4. The irregularity of the dynamical system has been illustrated numer-
ically and experimentally by Lyapunov exponent technique. Further,
combined diagrams of bifurcation and Lyapunov exponent are demon-
strated to determine various regimes of the system SLSSM.

5. This worthwhile study has been carried out to analyze and control the
dynamic complication of proposed SLSSM. It is observed that by choos-
ing control parameters carefully, the dynamics of SLSSM can be effec-
tively controlled.

6. Also, SLSSM has wider range of stability and chaos than that of sine
map, logistic map and squared sine logistic map (see, Section 4). There-
fore, our system might be used in all nonlinear phenomenons such as
cryptography, chaotic noise analog generator, control traffic and traffic
signals etc. where one dimensional dynamical systems (logistic map, sine
map etc.) have been used so far.

7. Our future work is to study interesting problems concerning control and
synchronization of new system (SLSSM). Also, we will apply the chaotic
map SLSSM in image encryption to obtain better results.
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