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Notes on the zero-divisor graph and
annihilating-ideal graph of a reduced ring

Mehdi Badie

Abstract

We translate some graph properties of AG(R) and Γ(R) to some
topological properties of Zariski topology. We prove that the facts “(1)
The zero ideal of R is an anti fixed-place ideal. (2) Min(R) does not
have any isolated point. (3) Rad(AG(R)) = 3. (4) Rad(Γ(R)) = 3.
(5) Γ(R) is triangulated (6) AG(R) is triangulated.” are equivalent.
Also, we show that if the zero ideal of a ring R is a fixed-place ideal,
then dtt(AG(R)) = |B(R)| and also if in addition |Min(R)| > 2, then
dt(AG(R)) = |B(R)|. Finally, it is shown that dt(AG(R)) is finite if and
only if dtt(AG(R)) is finite if and only if Min(R) is finite.

1 Preliminary

Researchers try to define a graph illustration for some kind of mathematical
aspects. For example see [3] in the lattice literature, [13] in the measure
literature and [16] in the real-valued continuous functions literature. The study
of translating graph properties to algebraic properties is an interesting subject
for mathematicians. The concept of zero-divisor graph of a commutative was
initiated in [17]. In this article the authors let all elements of the commutative
ring be vertices of the graph. The authors in [12] studied the zero-divisor graph
whose vertices are the non-zero zero-divisor elements. Studying of this graph
has been continued in several articles; see [24, 11, 4, 5, 28, 29]. Also, first the
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annihilating-ideal graph is introduced and studied in [18] and then it has been
studied in several articles; see [19, 10, 2, 1, 26, 21, 27]. In those researches
some graph properties of the graphs of AG(R) and Γ(R) is characterized by
some ring properties of R. In this article, we study more graph properties,
for example the radius, triangulation and domination and total domination
number of these graphs by some ring properties and topological properties of
Zariski topology. We find the impossible assumption “Γ(R) is a triangulated
graph” in [29, Corollary 3.3] and some mistakes in the proof of [27, Theorem
2.2]. In [27, Theorem 2.2], it is shown that the total domination of AG(R) is
equal to the cardinal of the family all maximal elements of A(R)∗. By giving
a counterexample, we show that [27, Theorem 2.2] is not true. Finally, by
giving some facts, we correct these mistakes.

In the next section, first we recall some pertinent definitions and then give
a retract of the annihilating ideal graph. Sec. 3 is devoted to the translat-
ing graph properties of these graphs to Zariski topology. Also, we note an
impossible assumption in [29, Corollary 3.3]. In Sec. 4, we characterize the
radius of Γ(X) and AG(X). In the last section, the domination number of the
annihilating-ideal graph is studied and we note some mistakes in [27, Theorem
2.2].

2 Introduction

Throughout this article, R is a commutative unitary reduced ring. By Spec(R),
we mean the set of all prime ideals of R. A semi-prime ideal means an ideal
which is the intersection of a family of prime ideals. R is called a reduced ring
if the zero ideal of R is semi-prime. For each ideal I of R and each subset S of
R, we denote the ideal {x ∈ R : Sx ⊆ I} by (I : S). When I = {0}, we write
Ann(S) instead of ({0} : S) and call it the annihilator of S. Also, we write
Ann(a) instead of Ann({a}). A prime ideal P is said to be a minimal prime
ideal over an ideal I if there are not any prime ideal strictly contained in P
that contains I. By Min(I), we mean the set of all minimal prime ideals over
I. We use Min(R) instead of Min({0}). A prime ideal P is called a Bourbaki
associated prime divisor of an ideal I if (I : x) = P , for some x ∈ R. We
denote the set of all Bourbaki associated prime divisors of an ideal I by B(I).
It is easy to see that B(I) ⊆ Min(I), for any ideal I of a ring R. We use
B(R) instead of B({0}). Let I be a semi-prime ideal, then P◦ ∈ Min(I) is
called irredundant with respect to I if I 6=

⋂
P◦ 6=P∈Min(I) P . If I is equal to

the intersection of all irredundant ideals with respect to I, then we call it a
fixed-place ideal. In this case, exactly by [6, Theorem 2.1], we have I =

⋂
B(I).

If B(I) = ∅, then I is called an anti-fixed place ideal. We use B(R) instead of
B({0}). For more information about the fixed-place ideals and anti fixed-place
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ideals, see [6, 7].
Let G =

〈
V (G), E(G)

〉
be an undirected graph. A vertex is called a

pendant vertex if it is adjacent to just one vertex. For each pair of vertices u
and v in V (G), the length of the shortest path between u and v, denoted by
d(u, v), is called the distance between u and v. The eccentricity of a vertex
u of G is denoted by ecc(u) and is defined to be maximum of {d(u, v) : v ∈
G}. The minimum of {ecc(u) : u ∈ G}, denoted by Rad(G), is called the
radius of G. We say G is triangulated if each vertex of G is a vertex of some
triangle. Two vertices u and v are called orthogonal if u and v are adjacent
and there are not any vertex which is adjacent to the both vertices u and
v. A graph homomorphism ϕ from a graph G =

〈
V (G), E(G)

〉
to a graph

H =
〈
V (H), E(H)

〉
is a map from V (G) to V (H) that {u, v} ∈ E(G) implies

{f(u), f(v)} ∈ E(H), for all pairs of vertices u, v ∈ V (G). A retraction is a
homomorphism ϕ from a graph G to a subgraph H of G such that ϕ(v) = v,
for each vertex v ∈ V (H). In this case, the subgraph H is called a retract
of G. A subset D of vertices of a graph is called a dominating set if every
vertex of the graph is either in D or adjacent to some vertex of D. Also, a
total dominating set of a graph is a family S of vertices of the graph such that
every vertex is adjacent to some vertex of S. The domination number and total
domination number of a graph is the minimum cardinality of dominating and
total dominating sets of the graph, respectively. We denote the domination
and total domination numbers of a graph G by dt(G) and dtt(G), respectively.
For every u, v ∈ V (G), we denote the length of the shortest cycle containing
u and v by gi(u, v).

Suppose that I and a are an ideal and element of R, respectively. If
Ann(I) 6= {0}, then I is called annihilating-ideal and if Ann(a) 6= {0}, then
a is called a zero-divisor element. Let A(R)∗ be the family of all non-zero
annihilating-ideals and Z(R)∗ be the family of all non-zero zero-divisor el-
ements of R. AG(R) is a graph with the vertices A(R)∗ and two distinct
vertices I and J are adjacent if IJ = {0}. Also, Γ(R) is a graph with vertices
Z(R)∗ and two distinct vertices a and b are adjacent if ab = 0. AG(R) and
Γ(R) are called the annihilating-ideal graph and the zero-divisor graph of R,
respectively.

Throughout this article, all Y ⊆ Spec(R) is considered by Zariski topology;
i.e., by assuming as a base for the closed sets of Y , the sets hY (a) = {P ∈ Y :
a ∈ P}. Hence, the closed sets of Y are of the form hY (I) =

⋂
a∈I hY (a) =

{P ∈ Y : I ⊆ P}, for some ideal I in R. Also, we set hc
Y (I) = Y \ hY (I).

When Y = Min(R), we write hm instead of hY . A point P ∈ Spec(R) is
called a quasi-isolated point, if P is an isolated point of Min(R). By [23,
Theorem 2.3 and Corollary 2.4], the space Min(R) is a Hausdorff space in
which {hc

m(a) : a ∈ R} is a base of clopen sets.
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In this research, C(X) denotes the ring of all real-valued continuous func-
tions on a Tychonoff space X and we abbreviate A(C(X))∗ and AG(C(X))
by A(X)∗ and AG(X), respectively. We denote the set of all isolated points
of X, by I(X). A space X is called almost discrete, if I(X) = X.

The reader is referred to [14, 30, 31, 22, 20] for undefined terms and nota-
tions.

For each subset S of R, let P
S

be the intersection of all minimal prime
ideals containing S. An ideal I in R is said to be strongly z◦-ideal (or briefly
sz◦-ideal) if P

F
⊆ I, for every finite subset F of I. Since the intersection of

a family of strong z◦-ideals is a strong z◦-ideal, the smallest strong z◦-ideal
containing an ideal I exists, and we denote it by Isz◦ . For more details about
the strong z◦-ideals, see [25, 9, 8].

Lemma 2.1. Let I and J be two vertices of AG(R). I is adjacent to J if and
only if Isz◦ is adjacent to Jsz◦ .

Proof. ⇒). Suppose that a ∈ Isz◦ and b ∈ Jsz◦ , then by [8, Proposition 7.5],
finite subsets F of I and G of J exist such that hm(G) ⊆ hm(a) and hm(H) ⊆
hm(b). Since I is adjacent to J , it follows that IJ = {0}, so GH = {0}, this
implies that Min(R) = hm(GH) = hm(G)∪hm(H) ⊆ hm(a)∪hm(b) = hm(ab),
thus hm(ab) = Min(R), hence ab ∈ khm(ab) = {0}, and, therefore ab = 0.
This shows that Isz◦Jsz◦ = {0} and thus Isz◦ is adjacent to Jsz◦ .
⇐). It is clear.

Proposition 2.2. The family of all sz◦-ideals of A(R)∗ is a retract of AG(R).

Proof. Suppose that I ∈ A(R)∗, so J ∈ A(R)∗ exists such that IJ = {0}.
By Lemma 2.1, we have Isz◦ is adjacent to Jsz◦ . Since 0 6= I ⊆ Isz◦ ⊆
Ann(Jsz◦) ⊆ Ann(J) 6= R, it follows that Isz◦ ∈ A(R)∗. This shows that ϕ
from A(R)∗ to the family of all sz◦-ideals of A(R)∗, defined by ϕ(I) = Isz◦ , is
a retraction, and, therefore the family of all sz◦-ideals of A(R)∗ is a retract of
AG(R).

3 Zariski Topology

In this section, we give Zariski topological characterization of elements of
Γ(R) and AG(R), then we characterize the adjacency, distance, orthogonality,
eccentricity and triangulation. Also, it is shown that the radius of these graphs
are strictly greater that 1.

Lemma 3.1. Let Y ⊆ Spec(R) and
⋂
Y = {0}. Then

(a) a = 0 if and only if hY (a) = Y , for each a ∈ R.
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(b) Ann(a) 6= 0 if and only if hc
Y (a) 6= Y , for each a ∈ R.

(c) I = {0} if and only if hY (I) = Y , for each ideal I of R.

(d) I is an annihilating-ideal if and only if hc
Y (I) 6= Y .

(e) For each a, b ∈ Z(R)∗, a is adjacent to b if and only if hc
Y (a)∩hc

Y (b) = ∅.

(f) For each I, J ∈ A(R)∗, I is adjacent to J if and only if hc
Y (I)∩hc

Y (J) =
∅.

Proof. (a) and (c). Since
⋂
Y = {0}, they are clear.

(b). Since Ann(a) = khc
Y (a), it follows that Ann(a) 6= {0} if and only

if khc
Y (a) 6= {0}, and it is equivalent to say that hkhc

Y (a) 6= Y , because⋂
Y = {0}, and, therefore they are equivalent to hc

Y (I) 6= Y .
(d). The proof is analogously similar to the proof of part (b).
(e) and (f). They are evident.

In [29, Proposition 2.2], the concept of distance in Γ(R) is characterized
by Zariski topology on Spec(R). In the following proposition, we general-
ize this characterization by every reduced family of prime ideals and also we
characterize the concept of distance in AG.

Proposition 3.2. Let I, J ∈ A(R)∗, a, b ∈ Z(R)∗, Y ⊆ Spec(R) and
⋂

Y =
{0}. Then

(a) d(a, b) = 1 if and only if hc
Y (a) ∩ hc

Y (b) = ∅.

(b) d(a, b) = 2 if and only if hc
Y (a) ∩ hY (b) 6= ∅ and hc

Y (a) ∪ hc
Y (b) is not

dense in Y .

(c) d(a, b) = 3 if and only if hc
Y (a) ∩ hc

Y (b) 6= ∅ and hc
Y (a) ∪ hc

Y (b) is dense
in Y .

(d) d(I, J) = 1 if and only if hc
Y (I) ∩ hc

Y (J) = ∅.

(e) d(I, J) = 2 if and only if hc
Y (I) ∩ hc

Y (J) 6= ∅ and hc
Y (I) ∪ hc

Y (J) is not
dense in Y .

(f) d(I, J) = 3 if and only if hc
Y (I)∩hc

Y (J) 6= ∅ and hc
Y (I)∪hc

Y (J) is dense
in Y .
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Proof. (a) and (d). They are clear, by Lemma 3.1.
(b ⇒). By Lemma 3.1, we have hc

Y (a) ∩ hc
Y (b) 6= ∅. By the assumption,

there is an element c ∈ Z(R)∗ such that c is adjacent to the both vertices a
and b. Now Lemma 3.1 implies that

hc
Y (a) ∩ hc

Y (c) = hc
Y (a) ∩ hc

Y (c) = ∅ ⇒ hc
Y (a) ∪ hc

Y (b) ⊆ hY (c) (∗)

Since c 6= 0, by Lemma 3.1, it follows that hY (c) 6= Y . Since hY (c) is closed,
by (∗), it follows that hc

Y (a) ∪ hc
Y (b) is not dense in Y .

(b ⇐). Part (a) concludes that d(a, b) > 1. Since {hc
Y (c) : c ∈ R} is a base

for Zariski topology, by the assumption, it follows that there is some c ∈ R
such that hc

Y (a)∪ hc
Y (b) ⊆ hY (c) ⊂ Y , so hc

Y (a)∩ hc
Y (c) = hc

Y (a)∩ hc
Y (c) = ∅,

Y 6= hY (a) and hc
Y (c) 6= Y , hence c ∈ Z(R)∗ and c is adjacent to the both

vertices a and b and thus d(a, b) = 2.
(c). It deduces from parts (a), (b) and [12, Theorem 2.2].
(e). By the fact that {hc

Y (K) : K is an ideal of R} is a base for Zariski
topology, it is similar to part (b)

(f). It concludes from parts (d), (e) and [18, Theorem 7.1].

Theorem 3.3. Let I, J ∈ A(R)∗, a, b ∈ Z(R)∗, Y ⊆ Spec(R) and
⋂
Y = {0}.

Then

(a) Two vertices I and J are orthogonal if and only if hc
Y (I) ∩ hc

Y (J) = ∅
and hc

Y (I) ∪ hc
Y (J) = Y .

(b) Two vertices a and b are orthogonal if and only if hc
Y (a)∩hc

Y (b) = ∅ and

hc
Y (a) ∪ hc

Y (b) = Y .

Proof. (a ⇒). By the assumption and Lemma 3.1, we have I is adjacent
to J and thus hc

Y (I) ∩ hc
Y (J) = ∅. If hc

Y (I) ∪ hc
Y (J) 6= Y , since {hc

Y (K) :
K is an ideal of R} is a base for Zariski topology, it follows that there is some
ideal K of R such that hc

Y (K) ∩ [hc
Y (I) ∪ hc

Y (J)] = ∅, so hc
Y (K) ∩ hc

Y (I) =

hc
Y (K) ∩ hc

Y (J) = ∅, hc
Y (K) 6= Y and hc

Y (K) 6= Y , hence K ∈ A(R)∗, by
Lemma 3.1, and K is adjacent to the both vertices I and J , by Lemma 3.1,
which contradicts the assumption and thus hc

Y (I) ∪ hc
Y (J) = Y .

(a⇐). By the assumption and Lemma 3.1, we have hc
Y (I)∩hc

Y (J) = ∅. On
the contrary, suppose that there is an K ∈ A(R)∗ such that K is adjacent to
the both vertices I and J , then hc

Y (K)∩ [hc
Y (I) ∪ hc

Y (J)] = [hc
Y (K) ∩ hc

Y (I)]∪
[hc

Y (K) ∩ hc
Y (J)] = ∅, by Lemma 3.1. Since K ∈ A(R)∗, by Lemma 3.1, it

follows that hc
Y (K) 6= ∅, and, therefore hc

Y (I) ∪ hc
Y (J) 6= Y , which contradicts

the assumption.
(b). By the fact that {hc

Y (c) : c ∈ R} is a base for Zariski topology, the
proof is similar to part (a).
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Suppose that
⋂
Y = {0}. Since for every I ∈ A(R)∗, it follows that I

and Ann(I) are orthogonal and thus, we have hc
Y (I) ∩ hc

Y (Ann(I)) = Y , by
the above theorem. Similarly, for every a ∈ Z(R)∗ and b ∈ Ann(a), we have
hc
Y (a) ∪ hc

Y (b) = Y .

Theorem 3.4. Suppose that I ∈ A(R)∗, a ∈ Z(R)∗, Y ⊆ Min(R) and
⋂

Y =
{0}. Then

(a) ecc(I) > 1, for every I ∈ A(R)∗.

(b) ecc(I) = 2 if and only if hc
Y (I) is singleton.

(c) ecc(I) = 3 if and only if hc
Y (I) is not singleton.

(d) ecc(a) > 1, for every a ∈ Z(R)∗.

(e) ecc(a) = 2 if and only if hc
Y (a) is singleton.

(f) ecc(a) = 3 if and only if hc
Y (a) is not singleton.

Proof. Since R is not an integral domain and
⋂
Y = {0}, it follows that

|Y | > 2.
(c ⇒). By the assumption there is some J ∈ A(R)∗ such that d(I, J) = 3.

Lemma 3.2 implies that hc
Y (I) ∩ hc

Y (J) = ∅ and hc
Y (I) ∪ hc

Y (J) = Y . On the
contrary, suppose that hc

Y (I) is singleton, then hc
Y (I) ⊆ hc

Y (J), and, therefore

hc
Y (J) = hc

Y (I) ∪ hc
Y (J) = Y . Hence J /∈ A(R)∗, by Lemma 3.1, which is a

contradiction.
(c ⇐). By the assumption, there are distinct prime ideals P and Q in

hc
Y (I). Since Y ⊆ Min(R) is Hausdorff and {hc

Y (K) : K is an ideal of R} is
a base for Y , there are ideals J and K such that hc

Y (J), hc
Y (K) ⊆ hc

Y (I),
P ∈ hc

Y (J), Q ∈ hc
Y (K) and hc

Y (J) ∩ hc
Y (K) = ∅. Thus

hc
Y (J + Ann(I)) ∩ hc

Y (K) = [hc
Y (J) ∪ hc

Y (Ann(I))] ∩ hc
Y (K)

⊆ [hc
Y (J) ∩ hc

Y (K)] ∪ [hc
Y (Ann(I)) ∩ hc

Y (I)] = ∅.

Hence hc
Y (J + Ann(I)) 6= Y and hc

Y (J + Ann(I)) 6= Y , and, therefore we have
J + Ann(I) ∈ A(R)∗. Since

hc
Y (I) ∩ hc

Y (J + Ann(I)) ⊇ hc
Y (I) ∩ hc

Y (J) = hc
Y (I) 6= ∅

and
hc
Y (I) ∩ hc

Y (J + Ann(I)) ⊇ hc
Y (I) ∩ hc

Y (Ann(I)) = Y,

by Proposition 3.2, we have d(I, J + Ann(I)) = 3, and, therefore ecc(I) = 3,
by [18, Theorem 7.1].
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(a). Suppose that there is some I ∈ A(R)∗ such that ecc(I) = 1. Part (c)
concludes that hc

Y (I) is singleton, so there is some P ∈ Y such that hc
Y (I) =

{P}, hence Ann(I) = P and thus {0} 6= I ⊆ Ann(P ). Since ecc(I) = 1,
it follows that I is adjacent to Ann(P ), consequently IAnn(P ) = {0}, this
implies that for every a ∈ I, we have a2 ∈ IAnn(P ) = {0}, and, therefore
a2 = 0. Since R is reduced, it follows that a = 0 and consequently I = {0},
which is a contradiction.

(b). By parts (a), (c) and [18, Theorem 7.1], it is clear.
The proof of parts (d), (e) and (f) are similar to parts (a), (b) and (c),

respectively.

The following corollary is an immediate consequence of the above theorem.

Corollary 3.5. RadΓ(R) > 1 and RadAG(R) > 1.

Lemma 3.6. Let a ∈ Z(R)∗, I ∈ A(R)∗, Y ⊆ Min(R) and
⋂

Y = {0}. Then

(a) a is a vertex of a triangle if and only if hY (a) is not singleton.

(b) I is a vertex of a triangle if and only if hY (I)◦ is not singleton.

Proof. (a⇒). By the assumption, there are vertices b, c ∈ A(R)∗ such that a, b
and c are pairwise distinct adjacent vertices. Thus hc

Y (a), hc
Y (b) and hc

Y (c) are
pairwise disjoint nonempty sets, by Lemma 3.1, hence hc

Y (b)∪ hc
Y (c) ⊆ hY (a)

and |hc
Y (b) ∪ hc

Y (c)| > 2. Since hc
Y (b) ∪ hc

Y (c) is open, it follows that hY (a) is
not singleton.

(a ⇐). Suppose that P and Q are distinct elements of hY (a). Since
Y ⊆ Min(R) is Hausdorff, hY (a) is open and {hc

Y (x) : x ∈ R} is a base for
Y , it follows that there are b, c ∈ R such that P ∈ hc

Y (b) ⊆ hY (a), Q ∈
hc
Y (c) ⊆ hY (a) and hc

Y (b)∩ hc
Y (c) = ∅, and, therefore hc

Y (a), hc
Y (b) and hc

Y (c)
are pairwise disjoint nonempty sets which are not dense in Y . Now Lemma
3.1 implies that b, c ∈ A(R)∗ and Theorem 3.1 concludes that a, b and c are
pairwise distinct adjacent vertices and thus a is a vertex of a triangle.

(b). It is similar to part (a).

Proposition 3.7. Suppose that a, b ∈ Z(R)∗ are not pendant vertices, Y ⊆
Min(R) and

⋂
Y = {0}. Then

(a) hc
Y (a) ∩ hc

Y (b) = ∅ and hc
Y (a) ∪ hc

Y (b) 6= Y if and only if gi(a, b) = 3.

(b) If 2 /∈ Z(R), hc
Y (a) ∩ hc

Y (b) = ∅ and hc
Y (a) ∪ hc

Y (b) = Y , then gi(a, b) =
4.

(c) Suppose that hc
Y (a)∩hc

Y (b) 6= ∅. Then hc
Y (a) ∪ hc

Y (b) 6= Y if and only if
gi(a, b) = 4.
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(d) Suppose that 2 /∈ Z(R) and hc
Y (a)∩hc

Y (b) 6= ∅. Then hc
Y (a) ∪ hc

Y (b) = Y
if and only if gi(a, b) = 6.

Proof. By Lemma 3.1, the proof is similar to [29, Theorem 3.4].

Theorem 3.8. Suppose that I, J ∈ A(R)∗ and they are not pendant vertices.
The following statements hold.

(a) hc
Y (I) ∩ hc

Y (J) = ∅ and hc
Y (I) ∪ hc

Y (J) 6= Y if and only if gi(I, J) = 3.

(b) If hc
Y (I) ∩ hc

Y (J) = ∅ and hc
Y (I) ∪ hc

Y (J) = Y , then gi(I, J) = 4.

(c) If hc
Y (I) ∩ hc

Y (J) 6= ∅ and hc
Y (I) = hc

Y (J), then gi(I, J) = 4.

(d) If hc
Y (I) ∩ hc

Y (J) 6= ∅ and hc
Y (I) 6= hc

Y (J) and Y \ hc
Y (I) ∪ hc

Y (J) is not
singleton, then gi(I, J) = 4.

(e) If hc
Y (I)∩hc

Y (J) 6= ∅, hc
Y (I) 6= hc

Y (J) and Y \hc
Y (I) ∪ hc

Y (J) is singleton,
then 4 6 gi(I, J) 6 5.

(f) If gi(I, J) = 5, then hc
Y (I) ∩ hc

Y (J) 6= ∅, hc
Y (I) 6= hc

Y (J) and Y \
hc
Y (I) ∪ hc

Y (J) is singleton.

Proof. (a ⇒). By Lemma 3.1, I is adjacent to J and by Theorem 3.3, I and
J are not orthogonal. Thus gi(I, J) = 3.

(a ⇐). By the assumption, I is adjacent to J and, I and J are not
orthogonal, so by Lemma 3.1, we have hc

Y (I)∩hc
Y (J) = ∅ and, by Proposition

3.3, we have hc
Y (I) ∪ hc

Y (J) 6= Y .
(b). By the assumption, we have IJ = {0} and we can see easily that

hY (I)◦∩hY (J)◦ = ∅. We know that hc
Y (Ann(I)) ⊆ hY (I)◦ and hc

Y (Ann(J)) ⊆
hY (J)◦, so hc

Y (Ann(I)) ∩ hc
Y (Ann(J)) = ∅. Now Lemma 3.1 concludes that

Ann(I)Ann(J) = {0}. Since I and J are not pendant vertices, there are
I1, J1 ∈ A(X)∗ such that I is adjacent to I1 6= J and J is adjacent to J1 6= I,
so II1 = JJ1 = {0}, thus I1 ⊆ Ann(I) and J1 ⊆ Ann(J), hence I1J1 ⊆
Ann(I)Ann(J) = {0}, and, therefore I1J1 = {0}. Consequently, I − J − J1 −
I1 − I is a cycle. The assumption and part (a) conclude that gi(I, J) > 3 and
thus gi(I, J) = 4.

(c). We conclude from the assumption and part (a) that gi(I, J) > 4.
Clearly Ann(I),Ann(J) ∈ A(R)∗. Since hc

Y (I) = hc
Y (J), it follows that

hc
Y (I)∩hc

Y (Ann(J)) ⊆ hc
Y (I)∩hY (J)◦ = hc

Y (I)∩hc
Y (J)

c

= hc
Y (I)∩hc

Y (I)
c

= ∅,
so, by Lemma 3.1, we have IAnn(J) = {0}. Similarly, we can show that
JAnn(I) = {0}. If Ann(I) 6= Ann(J), then I − Ann(I) − J − Ann(J) − I is
a cycle, and, therefore gi(I, J) = 4. Now we suppose that Ann(I) = Ann(J).
Since I is adjacent to Ann(I) and I is not a pendant vertex, it follows there
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is some vertex I1 ∈ A(X)∗ distinct from Ann(I) such that I is adjacent to I1,
then I1I = {0}, so I1 ⊆ Ann(I) = Ann(J), and, therefore I1J = {0}. Conse-
quently, I −Ann(I) = Ann(J)− J − I1 − I is a cycle and thus gi(I, J) = 4.

(d). We can conclude from the assumption and part (a) that gi(I, J) > 4.
Since {hc

Y (K) : K is an ideal of R} is a base for Y , Y is Hausdorff and Y \
hc
Y (I) ∩ hc

Y (J) is not singleton, it follows that there are two distinct ideals K1

and K2 such that hc
Y (K1)∩ (hc

Y (I)∪hc
Y (J)) = hc

Y (K2)∩ (hc
Y (I)∪hc

Y (J)) = ∅.
Hence hc

Y (I) ∩ hc
Y (K1) = hc

Y (K1) ∩ hc
Y (J) = hc

Y (J) ∩ hc
Y (K2) = hc

Y (K2) ∩
hc
Y (I) = ∅. Then, by Lemma 3.1, we have K1,K2 ∈ A(R)∗ and I −K1 − J −

K2 − I is a cycle. Consequently, gi(I, J) = 4.
(e). By part (a), we have gi(I, J) > 4. Since Y \ hc

Y (I) ∪ hc
Y (J) 6= Y and

{hc
Y (K) : K is an ideal of R} is a base for Y , it follows that there is some

ideal K1 of R such that hc
Y (K1) ∩ [hc

Y (I) ∪ hc
Y (J)] = ∅, so hc

Y (K1) ∩ hc
Y (I) =

hc
Y (K1)∩hc

Y (J) = ∅. By Lemma 3.1, we have K1 ∈ A(R)∗ and K1 is adjacent
to the both vertices I and J . If there is some K2 ∈ A(R)∗ distinct from K1 such
that hc

Y (K1) = hc
Y (K2), then K2 also is adjacent to the both vertices I and J .

Thus gi(I, J) = 4. Now suppose that hc
Y (K) = hc

Y (K1) implies that K = K1.

If hc
Y (I) ⊆ hc

Y (J), then hc
Y (I) ⊆ hc

Y (J), so Y \ hc
Y (I) ∪ hc

Y (J) = Y \ hc
Y (J),

and, therefore, by the assumption, Y \ hc
Y (J) is singleton. Since J is not a

pendant vertex, there is some vertex K2 such that K2 is adjacent to J , thus,
by Lemma 3.1, we have hc

Y (K2) ∩ hc
Y (J) = ∅, so hc

Y (K2) ∩ hc
Y (J) = ∅ and

thus hc
Y (K2) ⊆ Y \hc

Y (J). By Lemma 3.1, we have hc
Y (K2) 6= ∅ and therefore

hc
Y (K2) = Y \hY (J). Similarly, we can show that hc

Y (K1) = Y \hY (J), hence

hc
Y (K1) = hc

Y (K2), which is a contradiction. Hence hc
Y (I) 6⊆ hc

Y (J). Similarly,

one can show that hc
Y (J) 6⊆ hc

Y (I) and thus hc
Y (I) \ hc

Y (J) and hc
Y (J) \ hc

Y (I)
are disjoint nonempty open sets. Since {hc

Y (K) : K is an ideal of R} is a base

for Y , there are distinct ideals K2 and K3 such that hc
Y (K2) ⊆ hc

Y (I) \ hc
Y (J)

and hc
Y (K3) ⊆ hc

Y (J) \ hc
Y (I). Consequently, hc

Y (J) ∩ hc
Y (K2) = hc

Y (K2) ∩
hc
Y (K3) = hc

Y (K3)∩ hc
Y (I) = ∅. By Lemma 3.1, we have K2,K3 ∈ A(R)∗ and

I −K1 − J −K2 −K3 − I is a cycle, and, therefore gi(I, J) 6 5.
(f). It is clear, by parts (a)-(e).

Suppose that R = Z×Z×Z×Z, I = {0}×Z×Z×{0}, J = Z×{0}×Z×{0},
R′ = R×R×R×R, I ′ = {0}×R×R×{0} and J = R×{0}×R×{0}. Then
the both pair vertices I, J ∈ A(R)∗ and I ′, J ′ ∈ A(R′)∗ satisfy the conditions
of part (e) of the above theorem but it is seen readily that gi(I, J) = 4 and
gi(I ′, J ′) = 5.

Now we can conclude the following corollary from the above theorem and
[6, Corollary 4.2].

Corollary 3.9. If there are I, J ∈ A(R)∗ such that gi(I, J) = 5, then the
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following equivalent conditions hold

(a) Min(R) has an isolated point.

(b) B(R) 6= ∅.

4 Radius and Triangulation

This section is devoted to study of the radius and the triangulation of Γ(R)
and AG(R). We show that the concept of the anti fixed-place ideal plays the
main role in this studying.

Theorem 4.1. The following statements are equivalent.

(a) RadΓ(R) = 3.

(b) RadAG(R) = 3.

(c) The zero ideal of R is an anti fixed-place ideal.

(d) The Min(R) does not have any isolated point.

Proof. (a) ⇒ (b). Suppose that RadAG(R) 6= 3, then, by Corollary 3.5 and
[19, Theorem 1.4], there is some I ∈ A(R)∗ such that ecc(I) = 2, hence,
by Theorem 3.4, there is some P ∈ Min(R) such that hc

m(I) = {P} and thus
Ann(I) = P . Set 0 6= a ∈ I, then ∅ 6= hc

m(a) ⊆ hc
m(I) = {P}, so hc

m(a) = {P},
and, therefore ecc(a) = 2, by Theorem 3.4. Consequently, RadΓ(R) 6= 3.

(b)⇒ (c). Suppose that the zero ideal of R is not an anti fixed-place ideal,
then there is an affiliated prime ideal P , hence a ∈ Z(R)∗ exists such that
Ann(a) = P , this implies that

〈
a
〉
∈ A(R)∗ and hc

m(
〈
a
〉
) = hc

m(a) = {P},
and, therefore RadAG(R) 6= 3, by Theorem 3.4.

(c) ⇒ (a). Suppose that RadΓ(R) 6= 3. Then Corollary 3.5 and [18] imply
that some a ∈ Z(R)∗ exists such that ecc(a) = 2, hence, by Theorem 3.5,
there is some P ∈ Min(R) such that hc

m(a) = {P}, thus Ann(a) = P , hence
P is an affiliated prime ideal, so P ∈ B(R) 6= ∅, and, therefore the zero ideal
of R is not an anti fixed-place ideal.

(c) ⇔ (d). It implies from [6, Corollary 4.3].

The following corollary is an immediate consequence of [19, Theorem 1.4],
the above theorem and Corollary 3.5.

Corollary 4.2. The following statements are equivalent.

(a) RadΓ(R) = 2.
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(b) RadAG(R) = 2.

(c) The zero ideal of R is not an anti fixed-place ideal.

(d) The Min(R) has an isolated point.

Now we can conclude the following corollary from the above theorem and
corollary.

Corollary 4.3. RadΓ(R) = RadAG(R).

Corollary 4.4. Suppose that X is a Tychonoff topological space. Then

RadΓ(X) = RadAG(X) =

{
2 If X has an isolated point.

3 If X does not have any isolated point.

Proof. It concludes from [6, Corollary 5.4], Theorem 4.1 and Corollary 4.2.

Theorem 4.5. The following statements are equivalent.

(a) The zero ideal of R is an anti fixed-place ideal.

(b) Γ(R) is triangulated.

(c) Min(R) does not have any isolated point.

Proof. (a) ⇒ (b). Suppose that Γ(R) is not triangulated, then a ∈ Z(R)∗

exists such that a is not a vertex of any triangle, so, by Lemma 3.6, we have
hm(a) is singleton, hence there is a P ∈ Min(R) such that hm(a) = {P}.
Since hm(a) is open and {hc

m(x) : x ∈ R} is a base for Y , it follows that b ∈ R
exists such that P ∈ hc

m(b) ⊆ hm(a) = {P}, thus hc
m(b) = {P}, and, therefore

Ann(b) = P . It shows that P is an affiliated prime ideal, hence P ∈ B(R) 6= ∅
and consequently the zero ideal is not an anti fixed-place ideal.

(b) ⇒ (c). By [29, Theorem 3.1], the space Spec(R) does not have any
quasi-isolated point, i.e., Min(R) does not have any isolated point.

(c) ⇒ (a). It concludes from [6, Corollary 4.3].

Theorem 4.6. The following statements are equivalent.

(a) The zero ideal of R is an anti fixed-place ideal.

(b) AG(R) is triangulated.

(c) Min(R) does not have any isolated point.
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Proof. (a) ⇒ (b). It is similar to the proof of part (a) ⇒ (b) of the previous
theorem.

(b)⇒ (a). Suppose that the zero ideal of R is not an anti fixed-place ideal.
Then P ∈ B(R) 6= ∅ exists, hence P is an affiliated prime ideal, so there is some
a ∈ R such that Ann(a) = P and thus hc

m(a) = {P}. This implies that {P} is
open in Min(R), therefore hc

m(P ) = Min(R) \ {P} is closed and consequently

hc
m(P ) = Min(R) \ {P}. Thus hm(P )◦ =

(
hc
m(P )

)c
= {P}. Now Lemma 3.6

concludes that P is not a vertex of any triangle, and, therefore AG(R) is not
triangulated.

(a) ⇔ (c). It is clear, by [6, Corollary 4.3].

In [29, Corollary 3.3], it is asserted that “Let R be a reduced ring and let
Spec(R) be finite. Then Γ(R) is a triangulated graph if and only if Spec(R)
has no isolated points.”. If Spec(R) is finite, then Min(R) is finite, so the zero
ideal of R is fixed-place, and, therefore it is not anti fixed-place. Hence, by
the above theorem, Γ(R) is not triangulated. Hence the assumption “Γ(R) is
a triangulated graph” in this assertion is not possible.

Now we can conclude the following corollary from the above theorems.

Corollary 4.7. Γ(R) is triangulated if and only if AG(R) is triangulated.

Now we can conclude easily from Theorem 4.5 and [6, Corollary 5.4] that
Γ(X) is triangulated if and only if X does not have any isolated point. This
fact is shown in [15, Proposition 2.1]. Also, we can conclude easily from
Theorem 4.6 and [6, Corollary 5.4] that AG(X) is triangulated if and only if
X does not have any isolated point. This fact also is shown in [16, Theorem
4.5].

If Min(R) is finite, then the zero ideal of R is fixed-place, hence it is not
anti fixed-place, and, therefore RadΓ(R) = RadAG(R) = 2, , by Corollary 4.2.

Suppose that D is an integral domain and R be an arbitrary ring. Then
{0} × R ∈ B(D × R) 6= ∅, so the zero ideal of D × R is not an anti fixed-
place ideal, thus, by Corollary 4.2 and Theorems 4.5 and 4.6, RadΓ(R) =
RadAG(R) = 2 and the graphs AG(R) and Γ(R) are not triangulated.

5 Domination Number

The main purpose of this section is studying of domination numbers of AG(R)
and then AG(X). In this studying, we employ the Bourbaki associated prime
divisor of the zero ideal and the fixed-place ideal notions.

Lemma 5.1. Let I be an ideal in A(R)∗. The following statements are equiv-
alent.
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(a) I is prime.

(b) I is a maximal element of A(R)∗.

(c) I is a Bourbaki associated prime divisor of the zero ideal of R.

Proof. (a) ⇒ (b). Suppose that I ⊆ J and J ∈ A(R)∗, then 0 6= a ∈ Ann(J)
exists. Since R is a reduced ring, it follows that a /∈ J , then a /∈ I and aJ ⊆ I,
hence J ⊆ I and thus I = J . Consequently, I is a maximal element of A(R)∗.

(b) ⇒ (c). Since I ∈ A(R)∗, it follows that there is some 0 6= a ∈ R
such that Ann(a) = I. Suppose that xy ∈ I and x /∈ I, then I = Ann(a) ⊆
Ann(ax), so y ∈ Ann(ax) ⊆ Ann(a) = I, by the maximality of I, hence I
is prime, and, therefore I is a Bourbaki associated prime divisor of the zero
ideal.

(c) ⇒ (a). It is clear.

Proposition 5.2. The following statements hold.

(a) Suppose that I ∈ A(R)∗. I is contained in some maximal element of
A(R)∗ if and only if Min(I) ∩B(R) 6= ∅.

(b) Every element of A(R)∗ is contained in some maximal element of A(R)∗

if and only if the zero ideal of R is a fixed-place ideal.

(c) A(R)∗ does not have any maximal element if and only if the zero ideal
of R is an anti fixed-place ideal.

Proof. (a ⇒). By Lemma 5.1, some P ∈ B(R) exists such that I ⊆ P , since
P ∈ Min(R), it follows that P ∈ Min(I), and, therefore P ∈ B(R)∩Min(R) 6=
∅.

(a ⇐). It is clear, by Lemma 5.1.
(b ⇒). On the contrary, suppose that

⋂
P∈B(R) P 6= {0} and thus there is

some 0 6= a ∈
⋂

P∈B(R) P . Then

Ann(a) = (0 : a) =
( ⋂
P∈Min(R)

P : a
)

=
⋂

a/∈P∈Min(R)

P

By the assumption, there is some P◦ ∈ B(R) such that Ann(a) ⊆ P◦, then⋂
a/∈P∈Min(R) P ⊆ P◦, and, therefore⋂

P◦ 6=P∈Min(R)

P ⊆
⋂

a/∈P∈Min(R)

P ⊆ P◦
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⇒ {0} =
( ⋂

P◦ 6=P∈Min(R)

P
)
∩ P◦ =

⋂
P◦ 6=P∈Min(R)

P

which is a contradiction.
(b ⇐). By the assumption,

⋂
P∈B(R) P = {0}. So

Ann(I) = (0 : I) =
( ⋂
P∈B(R)

P : I
)

=
⋂

P∈B(R)

(P : I) =
⋂

I 6⊆P∈B(R)

P

Hence P ∈ B(R) exists such that I ⊆ P and thus, by Lemma 5.1. It completes
the proof.

(c). It is evident, by Lemma 5.1.

In the proof of [27, Theorem 2.2], it is claimed that “By Zorn’s Lemma, it
is clear that if A(R)∗ 6= ∅, then A(R)∗ has a maximal element” and “for every
J ∈ A(R)∗, there exists I ∈ M [the family of all maximal elements of A(R)∗]
such that J ⊆ I”. But the chain of elements of A(R)∗ need not have an upper
bound and thus A(R)∗ does not satisfy the conditions of Zorn’s Lemma. By
the above proposition, an ideal of A(R)∗ need not contained in a maximal
element of A(R)∗. In the following example, we give a counterexample.

Example 5.3. Since R does not have any isolated point, by [6, Corollary 5.4],
the zero ideal of C(R) is an anti fixed-place ideal and therefore B(C(R)) = ∅.
Then Lemma 5.1 implies that the family of all maximal elements of A(C(R))∗

is empty.

Also, in [27, Theorem 2.2], it is asserted that “Let M be the set of all
maximal elements of the set A(R)∗. If |M | > 1, then dttAG(R) = M”. In
Example 5.8, we show that this assertion is not true.

In the following theorem, we show that the cardinal of B(R) is a lower
bound of dtt(AG(R)). Also, Theorem 5.5 shows that if the zero ideal of R is
fixed-place, then |B(R)| = dtt(AG(R)). Finally, we know that if Min(R) is a
finite set (for example R is a Noetherian ring), then the zero ideal of R is a
fixed-place ideal and thus |Min(R)| = |B(R)| = dtt(R).

Theorem 5.4. The following hold.

(a) |B(R)| 6 dtt(AG(R)).

(b) If |Min(R)| > 2, then |B(R)| 6 dt(AG(R)).

Proof. (a). Suppose that D is a total dominating set of AG(R). For each
P ∈ B(R), there is some IP ∈ D, such that IP is adjacent to P , so PIP = {0},
hence P ⊆ Ann(IP ) and thus P = Ann(IP ), by Lemma 5.1. Now suppose
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that IP = IQ, for some P,Q ∈ B(R), then P = Ann(IP ) = Ann(IQ) = Q
and thus the map P  IP is one-to-one. This implies that |B(R)| 6 |D| and
consequently |B(R)| 6 dtt(AG(R)).

(b). Let D be a dominating set. For each P ∈ B(R), if P ∈ D, then we
set KP = P and if P /∈ D, there is some KP ∈ D such that KP is adjacent
to P . Suppose that KP = KQ, for some P,Q ∈ B(R). If P,Q ∈ D, then
P = KP = KQ = Q. If P,Q /∈ D, then P and Q are adjacent to KP and KQ,
respectively, so PKP = QKQ = {0}, thus P ⊆ Ann(KP ) and Q ⊆ Ann(KQ),
and, therefore P = Ann(KP ) = Ann(KQ) = Q, by Lemma 5.1. Finally,
without loss of generality, we assume P ∈ D and Q /∈ D, then P = KP and
KQ is adjacent to Q, so P is adjacent to Q and thus PQ = {0}. Hence for
each P ′ ∈ Min(R), we have PQ = {0} ⊆ P ′, and, therefore either P ⊆ P ′

or Q ⊆ P ′, and, therefore, by Lemma 5.1, either P = P ′ or Q = P ′. This
implies that |Min(R)| 6 2, which contradicts the assumption. Consequently,
the map P  KP is one-to-one. This implies that |B(R)| 6 |D| and thus
|B(R)| 6 dt(AG(R)).

Theorem 5.5. If the zero ideal of R is a fixed-place ideal, then

(a) dtt(AG(R)) = |B(R)|.

(b) If |Min(R)| > 2, then dt(AG(R)) = |B(R)|.

Proof. (a). By the above theorem, it is sufficient to show that dtt(AG(R)) 6
|B(R)|. For every P ∈ B(R), pick a

P
∈ R, such that Ann(a

P
) = P . For

each K ∈ A(R)∗, by the assumption and Proposition 5.2, there is some P ∈
B(R) such that K ⊆ P = Ann(a

P
), so Ra

P
K = {0}, and, therefore K is

adjacent to Ra
P

. This implies that {Ra
P

: P ∈ B(R)} is a dominating set
and consequently dtt(AG(R)) 6 |B(R)|.

(b). By the fact that dt(AG(R)) 6 dtt(AG(R)), it follows from part (a)
and the above theorem.

We recall that if Min(R) is finite, then the zero ideal of R is a fixed-place
ideal and Min(R) = B(R). Thus [26, Theorem 2.4] and [27, Theorem 2.4]
are immediate consequences of the above theorem. Also, we can conclude the
following corollary from the above theorem and [6, Theorems 5.2 and 5.5].

Corollary 5.6. Suppose that X is an almost discrete space. Then

(a) dtt(AG(X)) = |I(X)|.

(b) If |X| > 2, then dt(AG(X)) = |I(X)|.

Theorem 5.7. If the zero ideal of a ring R is not a fixed-place ideal, then
dt(AG(R)) and dtt(AG(R)) are infinite.
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Proof. Suppose that D is a dominating set of AG(R). By Proposition 5.2,
there is some J1 ∈ A(R)∗ which is not contained in a maximal element of
A(R)∗. If J1 ∈ D, then we set I1 = K1 = J1. If J1 /∈ D, then there is some
vertex I1 ∈ D which is adjacent to J1, then J1I1 = {0}, so J1 ⊆ Ann(I1). In
this case, we set K1 = Ann(I1). Since J1 is not contained in a maximal element
of A(R)∗ and J1 ⊆ K1, there is some J2 ∈ A(R)∗ such that K1 ⊂ J2. Similarly,
we can find K2 ∈ A(R)∗ in which either I2 = K2 ∈ D or K2 = Ann(I2), for
some I2 ∈ D. By induction, we have the following chain

J1 ⊆ K1 ⊂ J2 ⊆ K2 ⊂ . . . ⊂ Jn ⊆ Kn ⊂ . . .

Now suppose that n 6= m, then Kn 6= Km. Without loss of generality, we
assume n < m, hence we have four cases

case 1: If In = Kn and Im = Km, then it is evident that In 6= Im.

case 2: If Kn = Ann(In) and Km = Ann(Im), so it is clear that In 6= Im.

case 3: If Kn = In and Km = Ann(Im), then In ⊂ Ann(Im), so we have InIm =
{0}. Hence In 6= Im, because otherwise, I2n = {0} and therefore In =
{0}, which is a contradiction.

case 4: If Kn = Ann(In) and Km = Im, then Ann(In) ⊂ Im, so we have
Ann(Im) ⊆ Ann(Ann(In)). Hence In 6= Im, because otherwise, simi-
lar to case 3, Ann(In) = {0}, which is a contradiction.

Since {In : n ∈ N} ⊆ D, it follows that D is infinite and consequently
dt(AG(R)) is infinite. Hence dtt(AG(R)) is infinite, by the fact that

dt(AG(R)) 6 dtt(AG(R)).

Now by the above theorem, dtt(AG(C(R))) and dt(AG(C(R))) are infinite,
so the inequality in Theorem 5.4, can be proper.

Example 5.8. Suppose that R = C(R)×R×R. It is easy to see that if M is
the family of all maximal elements of A(R)∗, then M = B(C(R) × R × R) =
{C(R)×R×{0}, C(R)×{0}×R}, by Lemma 5.1, Proposition 5.2 and Example
5.3. Since the zero ideal of R is not a fixed-place ideal, by the above theorem,
it follows that dtt(R) is infinite. Thus |M | 6= dtt(R).

Corollary 5.9. The following statements are equivalent

(a) dtt(AG(R)) is finite

(b) dtt(AG(R)) is finite
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(c) Min(R) is finite

Proof. It follows immediately from Theorems 5.5 and 5.7 and the fact that if
Min(R) is finite, then the zero ideal is a fixed-place ideal.

Finally in the following proposition, we generalize [27, Theorem 2.3] to the
infinite version.

Proposition 5.10. For each reduced ring R, we have

dtt(Γ(R)) 6 dtt(AG(R)).

Proof. Suppose that D is a total dominating set of AG(R). So for each I ∈ P ,
there is some 0 6= a

I
∈ I. For every a ∈ R, there is some I ∈ D such that I is

adjacent to Ra in AG(R), thus RaI = {0}, hence aa
I

= 0, and, therefore a
I

is adjacent to a in Γ(R). Consequently, {a
I

: I ∈ D} is a total dominating set
of Γ(R) and this implies that dtt(Γ(R)) 6 dtt(AG(R)).
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