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Self dual, reversible and complementary duals
constacyclic codes over finite local Frobenius
non-chain rings of length 5 and nilpotency

index 4.

C. A. Castillo-Guillén and C. Álvarez-Garćıa

Abstract

Over finite local Frobenius non-chain rings of length 5 and nilpo-
tency index 4 and when the length of the code is relatively prime to the
characteristic of the residue field of the ring, the structure of the dual of
γ-constacyclic codes is established and the algebraic characterization of
self-dual, reversible γ-constacyclic codes and γ-constacyclic codes with
complementary dual are given.

1 Introduction

After the work of R. Hammons et al. see [7] codes over finite rings have
received considerable attention. Parallel to this, constacyclic codes, self dual
codes, reversible codes and codes with complementary duals over finite rings
have also gained a large popularity among coding theorists. For some of the
works in these directions we refer to [1] [2], [3], [4], [6], [8], [9], [14], [17]. The
class of γ-constacyclic codes plays a very significant role in the theory of error-
correcting codes, these are codes invariant under the mapping σγ : Rn −→ Rn

given by σγ(a0, . . . , an−1) = (γan−1, a0, . . . , an−2), γ is a unit of the ring R.
Reversible codes are codes invariant under the mapping r : Rn −→ Rn given
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by r(a0, . . . , an−1) = (an−1, . . . , a0), see [10]. These codes are used to obtain
DNA codes. Linear complementary dual codes (which is abbreviated to LCD
code) are linear codes that trivially intersect with their duals, [11]. Over
fields cyclic LCD codes are the reversible codes and LCD codes have a good
asymptotically property and meet the asymptotic Gilbert-Varshamov bound,
see [13], [16].

Duals of γ-constacyclic codes, self dual, reversible γ-constacyclic codes
and γ-constacyclic codes with complementary duals over finite local Frobenius
non-chain rings whose maximal ideal has nilpotency index 3 and the length
of the code is relatively prime to the characteristic of the residue field of the
ring were studied in [3], [4]. In [5], finite local Frobenius non-chain rings of
length 5 whose maximal ideal has nilpotency index 4 were determined and the
structure of γ-constacyclic codes over these rings was described. Now, it would
be interesting to determine the dual of γ-constacyclic codes and the algebraic
characterization of self-dual, reversible γ-constacyclic codes and γ-constacyclic
codes with complementary duals over finite local Frobenius non-chain rings of
length 5 whose maximal ideal has nilpotency index 4.

Throughout this work all codes are over finite local Frobenius non-chain
rings of length 5 whose maximal ideal has nilpotency index 4 and the length
of the code is relatively prime to the characteristic of the residue field of the
ring. The purpose of this paper is to obtain structure Theorems for the dual of
a constacyclic code, for self-dual constacyclic codes, for reversible constacyclic
codes and for constacyclic codes with complementary duals. The paper is
organized as follows: in Section 2 facts on finite commutative local rings are
recalled, properties of the reciprocal polynomial over local rings and properties
of finite local Frobenius non-chain rings of length 5 whose maximal ideal has
nilpotency index 4 are given. In Section 3 the structure of the dual of a γ-
constacyclic code is determined, generators for the dual code are obtained from
the generators of the original constacyclic code. The algebraic characterization
of self-dual γ-constacyclic codes is presented in Section 4. In Section 5 the
algebraic characterization of reversible γ-constacyclic codes is presented. The
algebraic characterization of complementary γ-constacyclic codes is given in
Section 6. Examples are included to illustrate the main results.

2 Preliminaries

Throughout this work GF(q) denotes the finite field with q = pd elements, p a
prime, all rings are assumed to be finite, commutative with unit element and
all modules are finitely generated.
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2.1 Rings and local rings

Let R and B be rings, I an ideal of R and M an R-module. The length of M,
denoted by `R(M), is the length of a composition series for M. The annihilator
ideal of M in R is defined as annR(M) := {a ∈ R : am = 0,∀ m ∈ M}. If I
is contained in annR(M) there is a natural structure of (R/I)-module on M,
the scalar multiplication is given by (a+ I,m) 7→ am, a ∈ R,m ∈ M, and the
lattice of R-submodules and (R/I)-submodules of M are the same. If R has
only one maximal ideal m then it is called local, k = R/m its residue field and
it will be denoted by the triple (R,m,GF(q)). R is called a chain ring if the
lattice of its ideals is a chain under set-theoretic inclusion. A finite local ring
(R,m,GF(q)) is Frobenius if annR(m) is the unique minimal ideal of R, see
[15]. F4

5 denotes the family of finite local Frobenius non-chain rings of length
5 whose maximal ideal has nilpotency index 4, see [5].
If (R,m,GF(q)) is a finite local ring, then |M| = |GF(q)|`R(M), see [2], and there
is an integer t ≥ 1 such that mt = 〈0〉 and mt−1 6= 〈0〉, called the nilpotency
index of m. A subset G of M generates M if and only if its image G in M/mM
generates M/mM as a GF(q)-vector space. A set of generators for M obtained
from lifting a basis of the GF(q)-vector space M/mM is called a minimal R-
generating set for M and vR(M) denotes the number of elements in a minimal
R-generating set for M, see [12]. Note that vR(M) = dimGF(q)(M/mM) =
`R(M/mM).

Let (R,m,GF(q)) be a finite local ring, f, g ∈ R[T], γ a unit of R and n ∈ N
with (n, q) = 1. ¯ : R[T]→ GF(q)[T] is the natural ring homomorphism given
by a0 + a1T + . . .+ amTm 7→ (a0 + m) + (a1 + m)T + . . .+ (am + m)Tm, the
polynomial f ∈ R[T] is called basic irreducible if f̄ is irreducible in GF(q)[T],
f and g are called coprime if 〈f〉 + 〈g〉 = R[T]. Hensel’s Lemma guarantees
that factorization into a product of pairwise coprime polynomials in GF(q)[T]
lifts to such a factorization over R[T], see [12]. In fact there is a unique family
of monic basic irreducible pairwise coprime polynomials such that Tn − γ =
f1 · · · fr, see [3].
Let f ∈ R[T] be a monic basic irreducible polynomial, deg(f) = s, T ⊂ R be
a set of representatives of GF(q) and I an ideal of R. From [2], [3] and [5] we
have: (1) B = R[T]/〈f〉 = {a0 + a1T + · · · + as−1Ts−1 : ai ∈ R} is a local
separable extension of R with maximal ideal mB and residue field GF(qs);
(2) the set Ts := {a0 + a1T + · · · + as−1Ts−1 : ai ∈ T} ⊂ B is a set of
representatives of GF(qs); (3) the nilpotency index of m and mB is the same;
(4) `R(I) = `B(IB); (5) vR(I) = vB(IB); (6) A minimal R-generating set for I
is a minimal B-generating set for IB; (7) (annR(I))B = annB(IB); (8) R is a
chain ring if and only if B is a chain ring; (9) R is Frobenius if and only if B
is Frobenius, in this case annB(mB) = mt−1B, where t is the nilpotency index
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of m.
If R is a finite local Frobenius ring, (10) annR(annR(I)) = I; (11) `R(annR(I))+
`R(I) = `R(R); (12) mi−1annR(mi) = mt−1, 2 ≤ i ≤ t−1; (13) vR(annR(m2)) =
vR(m); (14) (mB)i−1annB((mB)i) = mi−1annB(miB) = mi−1annR(mi)B =
mt−1B = (mB)t−1, 2 ≤ i ≤ t − 1; (15) vB(mB) = vR(m) = vR(annR(m2)) =
vB(annR(m2)B) = vB(annB(m2B)) = vB(annB((mB)2)).

Let (R,m,GF(q)) be a finite local Frobenius ring, f ∈ R[T] be a basic
irreducible polynomial, s = deg(f), (B = R[T]/〈f〉,mB,GF(qs)) the separable
extension of R determined by f, T ⊂ R a set of representatives of GF(q) with
0, 1 ∈ T, M a B-module, θ̃ = {θ1, . . . , θl} a sequence of elements of M and
H = (hij) a (k × l) matrix over GF(qs). For the remainder of this work the
following notation will be used:

(1) The number vR(m) = vR(annR(m2)) = vB(mB) = vB(annB((mB)2)) is
denoted by χ;

(2) α̃ = {α1, . . . , αχ} will be a minimal R-generating set for m;

(3) β̃ = {β1, . . . , βχ} will be a minimal R-generating set for annR(m2);

(4) Ts = {a0 + a1T + · · · + as−1Ts−1 : ai ∈ T} ⊂ B will be the set of
representatives of B/mB = GF(qs);

(5) For a ∈ GF(qs), aTs will denote the unique representative of a in Ts;

(6) The B-submodule of M, 〈hTs11θ1 + . . . + hTs1l θl, . . . , h
Ts
k1θ1 + . . . + hTskl θl〉,

will be denoted by HTs
θ̃

.

A (k × n) matrix over GF(q) is said to be in reduced row echelon form,
(rre)-form, if in each row, i = 1, . . . , k, the first nonzero entry is equal to
1, the index of the column in which the 1 occurs, called a pivotal column,
strictly increases with i, and the k pivotal columns are, in order, the columns
of the (k×k) identity matrix. Since each matrix is row equivalent to a unique
reduced row echelon form matrix, the k-dimensional vector subspaces of V are
in one-to-one correspondence with the (k × n) matrices over GF(q) in (rre)-
form. The (k× n) matrix (aij) over the field in (rre)-form corresponds to the
subspace 〈

∑n
i=1 a1iαi, . . . ,

∑n
i=1 akiαi〉.

Lemma 1. ([2], Lemma 1) Let (R,m,GF(q)) be a finite local ring, T ⊆ R a set
of representatives of GF(q), M an R-module and θ̃ = {θ1, . . . , θl} be a minimal
R-generating set for M. Then the B-submodules of M between M and mM of
length k+ `R(mM), where 0 < k < l = dimGF(q)(M/mM) = vR(M), are in one
to one correspondence with the (k× l) matrices over GF(q) in (rre)-form. The
matrix H = (aij) corresponds to the submodule 〈

∑n
i=1 a1iθi, . . . ,

∑n
i=1 akiθi〉+

mM.



SELF DUAL, REVERSIBLE AND COMPLEMENTARY DUALS
CONSTACYCLIC CODES OVER FINITE LOCAL FROBENIUS NON-CHAIN
RINGS OF LENGTH 5 AND NILPOTENCY INDEX 4 29

Observation 1. Let (R,m,GF(q)) be a finite local Frobenius ring, f, s and
(B,mB,GF(qs)) be as above. Let F = {J ideal of B : annB(mB) ⊂ J ⊂
annB((mB)2)}, J ∈ F, G = {I ideal of B : (mB)2 ⊂ I ⊂ mB} and I ∈ G, then:

(1) From relation annB(annB(∗)) = ∗, there is a one to one correspondence
between F and G.

(2) J has length k + 1, k ∈ {1, . . . , χ− 1}, and annB(J) has length `B(B)−
k − 1 = χ− k + `R(m2).

(3) From Lemma 1, relations annB((mB)2) = annR(m2)B and annR(m)B =
annB(mB) = (mB)annB((mB)2), J corresponds to a unique k×χ matrix
in (rre)-form over GF(qs) and annB(J) corresponds to a unique (χ −
k)× χ matrix in (rre)-form over GF(qs).

(4) If HJ = (aij) is the matrix that corresponds to J, the matrix that corre-
sponds to annB(J) will be denoted by H⊥J = (bij).
Let π ∈ {1, . . . , k} and $ ∈ {1, . . . , χ − k}, we have the following rela-
tions:

(a) J = (HJ)Ts
β̃

,

(b) annB(J) = (H⊥J )Tsα̃ + m2B,

(c) (aTsπ1β1 + . . .+ aTsπχβχ)(bTs$1α1 + . . .+ bTs$χαχ) = 0.

(5) I has length k1 + `R(m2), k1 ∈ {1, . . . , χ − 1}, and annB(I) has length
`B(B)− k1 − `R(m2) = χ− k1 + 1.

(6) From Lemma 1, I corresponds to a unique k1 × χ matrix in (rre)-form
over GF(qs) and annB(I) corresponds to a unique (χ−k1)×χ matrix in
(rre)-form, over GF(qs).

(7) If HI = (cij) is the matrix that corresponds to I, the matrix that corre-
sponds to annB(I) will be denoted by H⊥I = (dij).
Let π ∈ {1, . . . , k1} and $ ∈ {1, . . . , χ − k1}, we have the following
relations:

(a) I = (HI)
Ts
α̃ + m2B,

(b) annB(I) = (H⊥I )Ts
β̃

,

(c) (cTsπ1α1 + . . .+ cTsπχαχ)(dTs$1β1 + . . .+ dTs$χβχ) = 0.
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2.2 The reciprocal polynomial and the reciprocal matrix

Let (R,m,GF(q)) be a finite local ring, f, g ∈ R[T], γ be a unit of R, n ∈ N,
with (n, q) = 1. Let f1, . . . , fr the unique family of monic basic irreducible
pairwise coprime polynomials such that Tn−γ = f1 · · · fr. If a0 is the constant
coefficient of f and a0 is a unit, the polynomial a−10 f is denoted by f◦. If f is

a factor of Tn − γ or Tn − γ−1, we will just write f̂ = Tn−γ
f or f̂ = Tn−γ−1

f ,
according to the case. The reciprocal of the polynomial f is defined as f∗ =
Tdeg(f)f( 1

T ). The polynomial f is called self-reciprocal if f∗ is an associate of f.

From [3] and [4] we have the following: (1) Tdeg(f)−deg(f∗)(f∗)∗ = f; (2) If
the constant coefficient of f is not zero, then deg(f) = deg(f∗) and (f∗)∗ = f;
(3) If the leader coefficient of f is a unit, then (fg)∗ = f∗g∗ and f∗ = (f)∗;
(4) If f is a monic basic irreducible polynomial, then f∗ is basic irreducible;
(5) If deg(f) > deg(g), then (f + g)∗ = f∗ + Tdeg(f)−deg(g)g∗; (6) If deg(f) =
deg(g), then Tdeg(f)−deg(f+g)(f + g)∗ = f∗ + g∗; (7) If the leader coefficients of
f and g are units and f and g are coprime, then f∗ and g∗ are coprime; (8)
If δ1, . . . , δk ∈ R[T], then (δ1 + . . . + δk)∗ = Tu1δ∗1 + . . . + Tukδ∗k, for some
u1, . . . , uk non negative integers; (9) Each polynomial f∗i is basic irreducible;
(10) Over fields, self reciprocal polynomials have even degree with the only
exception of T + 1; (11) For 1 ≤ i ≤ r, the constant coefficient of fi is a

unit, deg(fi) = deg(f∗i ), (f∗i )∗ = fi and (f̂i
∗
)∗ = f̂i; (12) (f◦1 )∗, . . . , (f◦r )∗ are

the unique monic basic irreducible pairwise coprime polynomials such that
Tn − γ−1 = (f◦1 )∗ · · · (f◦r )∗; (13) If U is a subset of {1, . . . , r} and F =

∏
u∈U

fi,

then Tn−γ = FF̂, Tn−γ−1 = −γ−1F∗F̂∗ and F̂∗ = −γ−1
∏̂
u∈U

fi
∗
, in particular

f̂∗i = −γ−1 f̂i
∗
, 1 ≤ i ≤ r, note that ̂ in the left side is respect to Tn−γ−1 and̂ in the right side is respect to Tn− γ; (14) If γ = γ−1, then f∗i is an associate

of fj if and only if f∗i is an associate of fj , in particular fi is self-reciprocal
if and only if fi is self-reciprocal; (15) If γ = γ−1, fi is a self reciprocal and
fi 6= T − 1, then fi has even degree; (16) If γ = γ−1, after renumbering there
are non negative integers r1, r2 such that r = r1 + 2r2, f∗2i−1 is an associate of
f2i, 1 ≤ i ≤ r1, and f2r1+i is a self-reciprocal polynomial, 1 ≤ i ≤ r2.
For the remainder of the manuscript the following notation will be used:
(1) When γ = γ−1, the order of the sequence f1, . . . , fr is fixed according to the
last assertion; (2) For u ∈ {1, . . . , r}, u∗ denotes the index of the polynomial
which is associate of fu, observe that (u∗)∗ = u; (3) For U ⊆ {1, . . . , r}, let
U∗ = {u∗ : u ∈ U}. U is called self-reciprocal if U∗ = U and special if
U∩U∗ = ∅. Observe that U is a self-reciprocal set if and only if {1, . . . , r} \U
is a self-reciprocal set; if U is a special set then U∗ is a special set and U ⊆
{1, . . . , 2r1}; ∅ is considered a self-reciprocal and special set.
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The reciprocal matrix is helpful to determine reversible constacyclic codes
and the dual of a constacyclic code, over finite local rings, see [4]. Let
f, g,h ∈ GF(q)[T], whit f irreducible and gT ≡ 1 mod〈f〉, observe that
h(g) ≡ gdeg(h)h∗ mod〈f〉 and ψ : GF(q)[T]/〈f∗〉 → GF(q)[T]/〈f〉 given by

ψ(h + 〈f∗〉) = h(g) + 〈f〉 = gdeg(h)h∗ + 〈f〉 = h∗+〈f〉
Tdeg(h)+〈f〉 is an isomorphism over

GF(q).

Definition 1. Let (R,m,GF(q)) be a finite local ring, f ∈ R[T] a monic basic
irreducible polynomial, n ≥ deg(f), H = (aij) a matrix over GF(qdeg(f)) =
GF(q)[T]/〈f∗〉 and ψ : GF(q)[T]/〈f∗〉 → GF(q)[T]/〈f〉 as above. The matrix
(T

n
ψ(aij)) over GF(qdeg(f)) = GF(q)[T]/〈f〉 is called the n-th reciprocal matrix

of H with respect f and is denoted by H∗(n,f).

Under the notation as in Definition 1, from [4], we have the following
properties: (1) (uH)∗(n,f) = uH∗(n,f), u ∈ GF(q); (2) H∗(n+r,f) = T

r
H∗(n,f); (3)

(H∗(n,f))
∗
(n,f∗) = H. Suppose γ is a unit of R and f is a divisor of Tn − γ, then:

(4) if deg(f) = 1, γ−1H∗(n,f) = H; (5) γ−1H∗(n,f) = γ−1(T
n
ψ(aij)) = (ψ(aij));

(6) if H is in (rre)-form, the matrix γ−1H∗(n,f) is in (rre)-form.

Observation 2. Let (R,m,GF(q)), f, n, H = (aij), ψ as in Definition 1 and
γ a unit of R. Suppose f is self reciprocal, deg(f) = 2s and f|Tn − γ.

(1) ψ is an automorphism of GF(q2s) and ψ2(h + 〈f〉) = ψ[ h∗+〈f〉
Tdeg(h)+〈f〉 ] =

(h∗)∗+〈f〉
Tdeg(h∗)+〈f〉

(Tdeg(h))∗+〈f〉
Tdeg(h)+〈f〉

= Tdeg(h)−deg(h∗)(h∗)∗ + 〈f〉 = h + 〈f〉.

(2) Let α ∈ GF(q2s) = GF(q)[T]/〈f〉 be a root of an irreducible polynomial
over GF(q)[T] of degree s. Since GF(q2s) has only one automorphism of
degree 2 over GF(q), then this automorphism is ψ and the fixed field of
this automorphism is GF(qs) = {h(α) : h(T) ∈ GF(q)[T],deg(h) < s}

(3) γ−1H∗(n,f) = H⇔ H is a matrix over GF(qs).

The following result will be useful later; claims are treated in Corollary 1
and Lemma 2 of [4].

Lemma 2. Let (R,m,GF(q)) be a finite local ring, f ∈ R[T] a monic basic
irreducible, K an ideal of R and θ̃ = {θ1, . . . , θl} a minimal R-generating set
for K. Let ~ρ = (ρ1, . . . , ρl), ~ν = (ν1, . . . , νl) ∈ (R[T])l, where ~ρ is in (rre)-
form, the leader coefficient of each ρi is a unit, n ≥ max{deg(ρi) : 1 ≤ i ≤ l}
and (ν1 + 〈f〉, . . . , νl + 〈f〉) = (ρ1 + 〈f∗〉, . . . , ρl + 〈f∗〉)∗(n,f). There are u1, u2
non negative integers such that:
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(1) ((ρ1θ1 + ρ2θ2 + . . .+ ρlθl)
∗)∗ = ρ1θ1 + ρ2θ2 + . . .+ ρlθl;

(2) Tu1(ρ1θ1 + . . .+ ρlθl)
∗ ≡ ν1θ1 + . . .+ νlθl mod 〈mK, f〉;

(3) ρ1θ1 + . . .+ ρlθl ≡ Tu2(ν1θ1 + . . .+ νlθl)
∗ mod 〈mK, f∗〉.

Lemma 3. Let (R,m,GF(q)), f, deg(f) = s, T, Ts, χ, α̃ = {α1, . . . , αχ},
β̃ = {β1, . . . , βχ}, F, J ∈ F, `B(J) = k + 1, where k ∈ {1, . . . , χ − 1}, HJ =
(aij), H⊥J = (bij), (HJ)∗(n,f∗) = (νij), (H⊥J )∗(n,f∗) = (µij), as in Observation

1. Let n an integer with n ≥ deg(f), (B = R[T]/〈f〉,mB,GF(qs)), (B∗ =
R[T]/〈f∗〉,mB∗,GF(qs)) the separable extensions of R determined by f and f∗,
respectively. We have the following:
(1) Let π ∈ {1, . . . , k} and $ ∈ {1, . . . , χ− k}, the following relations hold in
the ring B:

(νTsπ1β1 + . . .+ νTsπχβχ)∗(bTs$1α1 + . . .+ bTs$χαχ) = 0,

(aTsπ1β1 + . . .+ aTsπχβχ)(µTs
$1α1 + . . .+ µTs

$χαχ)∗ = 0.

(2) The following relation holds in the ring B∗:

〈(aTs11β1 + . . .+ aTs1χβχ)∗, . . . , (aTsk1β1 + . . .+ aTskχβχ)∗〉+ annR(m)B∗ =

〈νTs11β1 + . . .+ νTs1χβχ, . . . , ν
Ts
k1β1 + . . .+ νTskχβχ〉+ annR(m)B∗.

(3) Let φ ∈ R[T] such that φ+ 〈f〉 ∈ J = (HJ)Ts
β̃

, then there exist h1, . . . ,hk ∈
R[T] such that:

φ∗ ≡ h1(νTs11β1+. . .+νTs1χβχ)+. . .+hk(νTsk1β1+. . .+νTskχβχ) mod 〈annR(m), f∗〉.

In particular φ∗ + 〈f∗〉 ∈ ((HJ)∗(n,f∗))
Ts
β̃

, in the ring B∗.

Proof: Observe that T is a unit of the rings B and B∗.
(1) By (3) of Lemma 2, there are non negative integer u1, u2 such that the
following relations hold in B:
(a) aTsπ1β1 + . . . + aTsπχβχ ≡ Tu1(νTsπ1β1 + . . . + νTsπχβχ)∗ mod mannR(m2)B =
annR(m)B,
(b) bTs$1α1 + . . .+ bTs$χαχ ≡ Tu2(µTs

$1α1 + . . .+ µTs
$χαχ)∗ mod m2B,

From (4c) of Observation 1 and (a) and (b) we have

0 = (aTsπ1β1 + . . .+ aTsπχβχ)(bTs$1α1 + . . .+ bTs$χαχ) =

Tu1(νTsπ1β1 + . . .+ νTsπχβχ)∗(bTs$1α1 + . . .+ bTs$χαχ) =

Tu2(aTsπ1β1 + . . .+ aTsπχβχ)(µTs
$1α1 + . . .+ µTs

$χαχ)∗.
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(2) From (2) of Lemma 2, there are units of the ring B∗, σ1, . . . , σk, such that

(aTs11β1 + . . .+ aTs1χβχ)∗ ≡ σ1(νTs11β1 + . . .+ νTs1χβχ) mod 〈annR(m), f∗〉,

...

(aTsk1β1 + . . .+ aTskχβχ)∗ ≡ σk(νTsk1β1 + . . .+ νTskχβχ) mod 〈annR(m), f∗〉,

the assertion follows.
(3) There are φ1, . . . , φk ∈ R[T] such that

φ ≡ φ1(aTs11β1 + . . .+aTs1χβχ) + . . .+φk(aTsk1β1 + . . .+aTskχβχ) mod 〈annR(m), f〉,

then there are v1, . . . , vk non negative integers such that

φ∗1Tv1(aTs11β1 + . . .+ aTs1χβχ)∗ + . . .+ φ∗kTvk(aTsk1β1 + . . .+ aTskχβχ)∗

≡ φ∗1σ1Tv1(νTs11β1 + . . .+ νTs1χβχ) + . . .+ φ∗kσkTvk(νTsk1β1 + . . .+ νTskχβχ)

≡ φ∗ mod 〈annR(m), f∗〉.

Lemma 4. Let (R,m,GF(q)), f, B, B∗, T, Ts, χ, α̃ = {α1, . . . , αχ}, β̃ =
{β1, . . . , βχ} and n as in Lemma 3. Let G as in Observation 1, I ∈ G with
`B(I) = k + `R(m2), k ∈ {1, . . . , χ − 1}, HI = (cij), H⊥I = (dij), (HI)

∗
(n,f∗) =

(ςij) and (H⊥I )∗(n,f∗) = (εij). We have the following:

(1) Let π ∈ {1, . . . , k} and $ ∈ {1, . . . , χ− k}, the following relations hold in
the ring B:

(ςTsπ1α1 + . . .+ ςTsπχαχ)∗(dTs$1β1 + . . .+ dTs$χβχ) = 0,

(cTsπ1α1 + . . .+ cTsπχαχ)(εTs$1β1 + . . .+ εTs$χβχ)∗ = 0.

(2) The following relation holds in the ring B∗:

〈(cTs11α1 + . . .+ cTs1χαχ)∗, . . . , (cTsk1α1 + . . .+ cTskχαχ)∗〉+ m2B∗ =

〈ςTs11α1 + . . .+ ςTs1χαχ, . . . , ς
Ts
k1α1 + . . .+ ςTskχαχ〉+ m2B∗.

(3) Let φ ∈ R[T] such that φ + 〈f〉 ∈ I = (HI)
Ts
α̃ + m2B, then there exist

h1, . . . ,hk ∈ R[T] such that

φ∗ ≡ h1(ςTs11α1 + . . .+ ςTs1χαχ) + . . .+ hk(ςTsk1α1 + . . .+ ςTskχαχ) mod 〈m2, f∗〉.

In particular φ∗ + 〈f∗〉 ∈ ((HI)
∗
(n,f∗))

Ts
α̃ + m2B∗, in the ring B∗.
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Proof: Observe that T is a unit of the rings B and B∗.
(1) By (3) of Lemma 2, there are non negative integer u1, u2 such that
(a) cTsπ1α1 + . . .+ cTsπχαχ ≡ Tu1(ςTsπ1α1 + . . .+ ςTsπχαχ)∗ mod m2B,

(b) dTs$1β1 + . . . + dTs$χβχ ≡ Tu2(εTs$1β1 + . . . + εTs$χβχ)∗ mod mannR(m2)B =
annR(m)B.
From (7) of Observation 1 and (a) and (b) we have

0 = (cTsπ1α1 + . . .+ cTsπχαχ)(dTs$1β1 + . . .+ dTs$χβχ) =

Tu1(ςTsπ1α1 + . . .+ ςTsπχαχ)∗(dTs$1β1 + . . .+ dTs$χβχ) =

Tu2(cTsπ1α1 + . . .+ cTsπχαχ)(εTs$1β1 + . . .+ εTs$χβχ)∗,

the assertion follows.
(2) From (2) of Lemma 2, there are units of the ring B∗, σ1, . . . , σk, such that

(cTs11α1 + . . .+ cTs1χαχ)∗ ≡ σ1(ςTs11α1 + . . .+ ςTs1χαχ) mod 〈m2, f∗〉

...

(cTsk1α1 + . . .+ cTskχαχ)∗ ≡ σk(ςTsk1α1 + . . .+ ςTskχαχ) mod 〈m2, f∗〉

the assertion follows.
(3) There are φ1, . . . , φk ∈ R[T] such that

φ ≡ φ1(cTs11α1 + . . .+ cTs1χαχ) + . . .+ φk(cTsk1α1 + . . .+ cTskχαχ) mod 〈m2, f〉,

then there are v1, . . . , vk non negative integers such that

φ∗1Tv1(cTs11α1 + . . .+ cTs1χαχ)∗ + . . .+ φ∗kTvk(cTsk1α1 + . . .+ cTskχαχ)∗

≡ φ∗1σ1Tv1(ςTs11α1 + . . .+ ςTs1χαχ) + . . .+ φ∗kσkTvk(ςTsk1α1 + . . .+ ςTskχαχ)

≡ φ∗ mod 〈m2, f∗〉.

2.3 The family F4
5

The family of finite local Frobenius non-chain rings of length 5 whose maximal
ideal has nilpotency index 4 is denoted by F4

5. Recently, the rings in the family
F4
5 and the lattice of ideals of a separable extension of a ring in this family

were determined in [5] and for completeness we recall the results here.

Theorem 1. Let (R,m,GF(pd)) ∈ F4
5, then R is isomorphic to one of the

following rings:
If p is odd
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(i) char(R) = p2 and {0, 1, ζ, . . . , ζ2d−2} is the Teichmüller set of the Galois
ring GR(p2, d).

(a) m2 = 〈p〉 = 〈y2〉 and m3 = 〈y3〉 = 〈x2〉.
(1) GR(p2, d)[X,Y]/〈Y2 − p,X2 −Y3,XY〉,
(2) GR(p2, d)[X,Y]/〈ζY2 − p,X2 −Y3,XY〉,
(3) GR(p2, d)[X,Y]/〈Y2 − p,X2 − ζY3,XY〉,
(4) GR(p2, d)[X,Y]/〈ζY2 − p,X2 − ζY3,XY〉.

(b) m2 = 〈y2〉, m3 = 〈p〉 = 〈y3〉 = 〈x2〉 and 3|pd − 1.
(5) GR(p2, d)[X,Y]/〈Y3 − p,X2 −Y3,XY〉,
(6) GR(p2, d)[X,Y]/〈ζY3 − p,X2 −Y3,XY〉,
(7) GR(p2, d)[X,Y]/〈ζ2Y3 − p,X2 −Y3,XY〉,
(8) GR(p2, d)[X,Y]/〈Y3 − p,X2 − ζY3,XY〉,
(9) GR(p2, d)[X,Y]/〈ζY3 − p,X2 − ζY3,XY〉,
(10) GR(p2, d)[X,Y]/〈ζ2Y3 − p,X2 − ζY3,XY〉.

(c) m2 = 〈y2〉, m3 = 〈p〉 = 〈y3〉 = 〈x2〉 and 3 6 |pd − 1.
(11) GR(p2, d)[X,Y]/〈Y3 − p,X2 −Y3,XY〉,
(12) GR(p2, d)[X,Y]/〈Y3 − p,X2 − ζY3,XY〉.

(ii) char(R) = p

(a) m2 = 〈y2〉 and m3 = 〈y3〉 = 〈x2〉.
(13) GF(pd)[X,Y]/〈X2 −Y3,XY〉.

(iii) char(R) = p4 and {0, 1, ζ, . . . , ζpd−2} is the Teichmüller set of the Galois
ring GR(p4, d).

(a) p 6∈ m2, m2 = 〈p2〉 and m3 = 〈p3〉 = 〈x2〉.
(14) GR(p4, d)[X]/〈X2 − p3, pX〉,
(15) GR(p4, d)[X]/〈X2 − ζp3, pX〉.

(iv) char(R) = p3 and {0, 1, ζ, . . . , ζpd−2} is the Teichmüller set of the Galois
ring GR(p3, d).

(a) p 6∈ m2, m2 = 〈x2〉, m3 = 〈p2〉 = 〈x3〉 and 3 6 |pd − 1.
(16) GR(p3, d)[X]/〈p2 −X3, pX〉.

(b) p 6∈ m2, m2 = 〈x2〉, m3 = 〈p2〉 = 〈x3〉 and 3|pd − 1,
(17) GR(p3, d)[X]/〈p2 −X3, pX〉,
(18) GR(p3, d)[X]/〈p2 − ζX3, pX〉,
(19) GR(p3, d)[X]/〈p2 − ζ2X3, pX〉.

If p = 2
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(i) char(R) = 22 and {0, 1, ζ, . . . , ζ2d−2} is the Teichmüller set of the Galois
ring GR(22, d).

(a) m2 = 〈2〉 = 〈y2〉 and m3 = 〈x2〉 = 〈y3〉.
(20) GR(22, d)[X,Y]/〈Y2 − 2,X2 −Y3,XY〉.

(b) m2 = 〈y2〉, m3 = 〈2〉 = 〈x2〉 = 〈y3〉 and 3|2d − 1.
(21) GR(22, d)[X,Y]/〈Y3 − 2,X2 −Y3,XY〉,
(22) GR(22, d)[X,Y]/〈ζY3 − 2,X2 −Y3,XY〉,
(23) GR(22, d)[X,Y]/〈ζ2Y3 − 2,X2 −Y3,XY〉.

(c) m2 = 〈y2〉, m3 = 〈2〉 = 〈x2〉 = 〈y3〉 and 3 6 |2d − 1.
(24) GR(22, d)[X,Y]/〈Y3 − 2,X2 −Y3,XY〉.

(ii) char(R) = 2

(a) m2 = 〈y2〉 and m3 = 〈x2〉 = 〈y3〉.
(25) GF(2d)[X,Y]/〈X2 −Y3,XY〉.

(iii) char(R) = 24.

(a) m2 = 〈22〉, m3 = 〈23〉 = 〈x2〉 and 2 6∈ m2.
(26) GR(24, d)[X]/〈X2 − 23, 2X〉.

(iv) char(R) = 23 and {0, 1, ζ, . . . , ζ2d−2} is the Teichmüller set of the Galois
ring GR(23, d).

(a) 2 6∈ m2, m2 = 〈x2〉, m3 = 〈22〉 = 〈x3〉 and 3 6 |2d − 1.
(27) GR(23, d)[X]/〈22 −X3, 2X〉.

(b) 2 6∈ m2, m2 = 〈x2〉, m3 = 〈22〉 = 〈x3〉 and 3|2d − 1.
(28) GR(23, d)[X]/〈22 −X3, 2X〉,
(29) GR(23, d)[X]/〈22 − ζX3, 2X〉,
(30) GR(23, d)[X]/〈22 − ζ2X3, 2X〉.

For the remainder of the manuscript the following notation will be used.
Let (R,m,GF(q)) ∈ F4

5, T and Ts be as above, α̃ = {α1, α2} a minimal R-
generating set for m, f ∈ R[T] a monic basic irreducible polynomial of degree
s and (B = R[T]/〈f〉,mB,GF(qs)) the separable extension of R determined by
f.

(1) A fixed minimal R-generating set {α1, α2} of m will be considered.
If the ring R is one of the rings (1) − (13) or (20) − (25) mentioned in
Theorem 1, α1 = x and α2 = y.
If the ring R is one of the rings (14), (15) mentioned in Theorem 1,
α1 = x and α2 = p.



SELF DUAL, REVERSIBLE AND COMPLEMENTARY DUALS
CONSTACYCLIC CODES OVER FINITE LOCAL FROBENIUS NON-CHAIN
RINGS OF LENGTH 5 AND NILPOTENCY INDEX 4 37

If the ring R is one of the rings (16) − (19) mentioned in Theorem 1,
α1 = p and α2 = x.
If the ring R is one of the rings (27) − (30) mentioned in Theorem 1,
α1 = 2 and α2 = x.
If the ring R is the ring (26) mentioned in Theorem 1, α1 = x and
α2 = 2.
When we take a minimal R-generating set for m we understand that
{α1, α2} is the ordered minimal R-generating set for m.

(2) Since annR(m2) = 〈α1, α
2
2〉, {α1, α

2
2} will be the fixed minimal R-gene-

rating set for annR(m2).
When we take a minimal R-generating set for annR(m2) we understand
that {β1, β2} is the ordered minimal R-generating set for annR(m2).

(3) We write α̃ for {α1, α2} and β̃ for {α1, α
2
2}.

Lemma 5. Let (R,m,GF(q)) ∈ F4
5, T and Ts be as above, α̃ = {α1, α2}

a minimal R-generating set for m, f ∈ R[T] a monic basic irreducible poly-
nomial of degree s, (B = R[T]/〈f〉,mB,GF(qs)) the separable extension of R
determined by f, then:

(1) The ideals of length 0, 1, 4, 5 of B are 〈0〉, m3, m, B, respectively.

(2) Ideals of length 2 of B are between annR(m2)B and m3B. These ideals
are:

m2 = 〈α2
2〉B, 〈α1 + λTs1 α2

2〉B, . . . , 〈α1 + λTsqsα
2
2〉B, λi ∈ GF(qs).

(3) Ideals of length 3 of B are between mB and m2B. These ideals are:

〈α1, α
2
2〉B, 〈α2〉B, 〈α1+λTs1 α2〉B, . . . , 〈α1+λTsqs−1α2〉B, λi ∈ GF(qs)\{0}.

Observation 3. With the notation as in Lemma 5. Observe the following:

(1) annB(mB) = m3B = 〈α3
2〉B = 〈α2

1〉B.

(2) mB = 〈α1, α2〉B and annR(m2)B = 〈α1, α
2
2〉B are the only non principal

ideals of B.

(3) The ideals (0, 1)Tsα̃ = 〈α2〉B, (1, λi)
Ts
α̃ = 〈α1+λTsi α2〉B, λi ∈ GF(q)\{0},

contain m2B.

(4) The ideal annR(m2)B = 〈α1, α
2
2〉B = (1, 0)Tsα̃ +m2B is simply denoted by

(1, 0)Tsα̃ .
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(5) From (1) of Observation 1 and relation `B(I) + `B(annB(I)) = `B(B),
where I is an ideal of B, the annihilator ideal over the ideals of B of
length 2 and 3 induces the permutations:

(∗)⊥1 , (∗)⊥2 = [(∗)⊥1 ]−1 : {(0, 1), (1, λ) : λi ∈ GF(qs)}

→ {(0, 1), (1, λ) : λi ∈ GF(qs)}

~u 7→ ~u⊥1 := ~v if annB(~uTsα̃ ) = ~vTs
β̃
,

~u 7→ ~u⊥2 := ~v if annB(~uTs
β̃

) = ~vTsα̃ .

Lemma 6. Let (R,m,GF(q)) ∈ F4
5 be any of the rings (1), (2), (5) − (7),

(11), (13), (14), (16), (17), (20) − (28) in Theorem 1. Let f, deg(f) = s,
(B,mB,GF(qs)), T, Ts, α̃ = {α1, α2} and β̃ = {α1, α

2
2} be as above. Then

(1, 0)⊥1 = (0, 1), (0, 1)⊥1 = (1, 0), (1, λ1)⊥1 = (1, λ2), λ1, λ2 ∈ T, λ̄1λ̄2 = −1.

Proof: Assertions follow from the following relations: α2
1 = α3

2, α2α1 = 0,
(0, 1)Tsα̃ = α2B, (1, 0)Ts

β̃
= α1B, (0, 1)Ts

β̃
= m2B, (1, 0)Tsα̃ = annB(m2B) and

(1, λ1)Tsα̃ (1, λ2)Ts
β̃

= 〈(1 + λ1λ2)α3
2〉.

Lemma 7. Let (R,m,GF(q)) ∈ F4
5 be any of the rings (3), (4), (8)−(10), (12),

(15), (18), (29) in Theorem 1. Let f, deg(f) = s, (B = R[T]/〈f〉,mB,GF(qs)),
T, Ts, α̃ = {α1, α2} and β̃ = {α1, α

2
2} be as above. Then

(1, 0)⊥1 = (0, 1), (0, 1)⊥1 = (1, 0), (1, λ1)⊥1 = (1, λ2), λ1, λ2 ∈ T, λ̄1λ̄2 = −ζ̄.

Proof: Assertions follow from relations α2
1 = ζα3

2 and (1, λ1)Tsα̃ (1, λ2)Ts
β̃

=

〈(ζ + λ1λ2)α3
2〉, and the same kind of arguments as in the proof of Lemma 6.

Lemma 8. Let (R,m,GF(q)) ∈ F4
5 be any of the rings (19), (30) in Theorem

1. Let f, deg(f) = s, (B = R[T]/〈f〉,mB,GF(qs)), T, Ts, α̃ = {α1, α2} and
β̃ = {α1, α

2
2} be as above. Then

(1, 0)⊥1 = (0, 1), (0, 1)⊥1 = (1, 0), (1, λ1)⊥1 = (1, λ2), λ1, λ2 ∈ T, λ̄1λ̄2 = −ζ̄2.

Proof: Assertions follow from relations α2
1 = ζ2α3

2 and (1, λ1)Tsα̃ (1, λ2)Ts
β̃

=

〈(ζ2 + λ1λ2)α3
2〉, and the same kind of arguments as in the proof of Lemma 6.

3 Duals of constacyclic codes over rings in F4
5

Let R be a ring and γ be a unit of R. A γ-constacyclic code over R is a
submodule of Rn invariant under the permutation σγ : Rn → Rn given by
(a0, . . . , an−1) 7→ (γan−1, a0, . . . , an−2). These codes can be thought as ideals
in the ring R[T]/〈Tn−γ〉 via the γ-polynomial representation of Rn, rγ : Rn →
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R[T]/〈Tn−γ〉 given by (a0, . . . , an−1) 7→ a0+a1T+ . . .+an−1Tn−1+〈Tn−γ〉.
The dual of a linear code C over R of length n is defined as C⊥ = {~a ∈
Rn : ~a · ~b = 0, ∀ ~b ∈ C}, where · is the usual scalar product on Rn. Let

f =
∑n−1
i=0 aiT

i + 〈Tn − γ〉, g =
∑n−1
i=0 biT

i + 〈Tn − γ〉 in R[T]/〈Tn − γ〉,
then fg∗ = 0 in R[T]/〈Tn − γ〉 if and only if (b0, . . . , bn−1) is orthogonal to
(a0, . . . , an−1) and all of its γ-constacyclic shifts, if and only if (a0, . . . , an−1)
is orthogonal to (b0, . . . , bn−1) and all of its γ−1-constacyclic shifts.

For the rest of this manuscript we write
∑n−1
i=0 aiT

i for the corresponding

coset
∑n−1
i=0 aiT

i + 〈Tn− γ〉 in the ring R[T]/〈Tn− γ〉, n will be the length of
codes, (n, p) = 1, so that, Tn−γ is a product of unique monic basic irreducible
pairwise coprime polynomials in R[T].

The following is the result on the structure of γ-constacyclic codes over a
ring in F4

5, given in [5].

Theorem 2. Let (R,m,GF(q)) ∈ F4
5, γ a unit of R, α̃ = {α1, α2}, β̃ =

{α1, α
2
2}, T and Ts as above and f1, . . . , fr the unique monic basic irreducible

pairwise coprime polynomials such that Tn − γ = f1 · · · fr, si = deg(̄fi). Let C
a γ-constacyclic code of length n over R. Then

(1) There exists a unique partition of [1, r], U0,U1,U2,U3,U4,U5.

(2) For each i ∈ {2, 3} and each u ∈ Ui, there is a unique ~vu ∈ {(0, 1), (1, λ) :
λ ∈ GF(qsu)} such that the corresponding ideal, in R[T]/〈Tn − γ〉, of C
is

〈m3
∏̂
u∈U1

fu,m
∏̂
u∈U4

fu,
∏̂
u∈U5

fu, (~vu)
Tsu
β̃

f̂u, (~vw)
Tsw
α̃ f̂w : u ∈ U2, w ∈ U3〉

and
|C| = q5

∑
u∈U5

su+4
∑
u∈U4

su+3
∑
ν∈U3

su+2
∑
u∈U2

su+
∑
u∈U1

su .

The next result gives the structure of the dual of a constacyclic code over
a ring of the family F4

5. Recall that if C is a linear code of length n over a
finite Frobenius ring R, then |C||C⊥| = |R|n, see [15].

Theorem 3. Let (R,m,GF(q)) ∈ F4
5, γ, α̃ = {α1, α2}, β̃ = {α1, α

2
2}, T, Ts,

f1, . . . , fr, si = deg(̄fi), C as in Theorem 2 and

(1) U0,U1,U2,U3,U4,U5 the unique partition of {1, . . . , r} associated to C,

(2) {~vu : u ∈ U2 ∪ U3} the vectors such that the corresponding ideal, in
R[T]/〈Tn − γ〉, of C is
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〈m3
∏̂
u∈U1

fu,m
∏̂
u∈U4

fu,
∏̂
u∈U5

fu, (~vu)
Tsu
β̃

f̂u, (~vw)
Tsw
α̃ f̂w : u ∈ U2, w ∈ U3〉.

Then
(1) f◦∗1 , . . . , f◦∗r are the unique polynomials such that Tn − γ−1 = f◦∗1 · · · f◦∗r ,
(2) The unique partition of {1, . . . , r}, V0,V1,V2,V3,V4,V5, associated to the
γ−1 constacyclic code C⊥ is V0 = U5, V1 = U4, V2 = U3, V3 = U2, V4 = U1,
V5 = U0,
(3) For u ∈ V2, the unique element in {(0, 1), (1, λ)} over GF(qsu) associated
to C⊥ is γ−1(~v⊥1

u )∗(n,f∗u)
, ⊥1 is taken on the ring R[T]/〈fu〉,

(4) For w ∈ V3, the unique element in {(0, 1), (1, λ)} over GF(qsw) associated
to C⊥ is γ−1(~v⊥2

w )∗(n,f∗w), ⊥2 is taken on the ring R[T]/〈fw〉,
(5) The ideal in R[T]/〈Tn − γ−1〉, associated to the γ−1-constacyclic code C⊥

is:

〈m3
∏̂
u∈U4

f◦∗u ,m
∏̂
u∈U1

f◦∗u ,
∏̂
u∈U0

f◦∗u , (γ−1(~v⊥1
w )∗(n,f∗w))

Tsw∗
β̃

f̂◦∗w ,

(γ−1(~v⊥2
u )∗(n,f∗u))

Tsu∗
α̃ f̂◦∗u : u ∈ U2, w ∈ U3〉 =

〈m3
∏̂
u∈U4

fu∗ ,m
∏̂
u∈U1

fu∗ ,
∏̂
u∈U0

fu∗ , (γ−1(~v⊥1
w )∗(n,fw∗ ))

Tsw∗
β̃

f̂w∗ ,

(γ−1(~v⊥2
u )∗(n,fu∗ ))

Tsu∗
α̃ f̂u∗ : u ∈ U2, w ∈ U3〉 =

〈m3
∏̂
u∈U∗4

fu,m
∏̂
u∈U∗1

fu,
∏̂
u∈U∗0

fu, (γ−1(~v⊥1
w∗)
∗
(n,fw))

Tsw
β̃

f̂w,

(γ−1(~v⊥2
u∗ )∗(n,fu))

Tsu
α̃ f̂u : u ∈ U∗2, w ∈ U∗3〉

and

|C⊥| = q5
∑
u∈U0

su+4
∑
u∈U1

su+3
∑
u∈U2

su+2
∑
u∈U3

su+
∑
u∈U4

su .

Proof: The relation |M| = |GF(q)|`R(M) implies |R| = q5, see Section 2.
First, we prove the relation on |C⊥|. By Theorem 2 and since n =

∑
u∈U0

su+∑
u∈U1

su +
∑
u∈U2

su +
∑
u∈U3

su +
∑
u∈U4

su +
∑
u∈U5

su, then

|C⊥| = q5n

|C|
= q5

∑
u∈U0

su+4
∑
u∈U1

su+3
∑
u∈U2

su+2
∑
u∈U3

su+
∑
u∈U4

su .

The equality about the ideals is easy to prove. Let D the γ−1-constacyclic
code given by

〈m3
∏̂
u∈U4

f◦∗u ,m
∏̂
u∈U1

f◦∗u ,
∏̂
u∈U0

f◦∗u , (γ−1(~v⊥1
w )∗(n,f∗w))

Tsw∗
β̃

f̂◦∗w ,
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(γ−1(~v⊥2
u )∗(n,f∗u))

Tsu∗
α̃ f̂◦∗u : u ∈ U2, w ∈ U3〉.

Since deg(f◦∗u ) = deg(fu), using Theorem 2, the number of elements of D

is |D| = q5
∑
u∈U0

su+4
∑
u∈U1

su+3
∑
u∈U2

su+2
∑
u∈U3

su+
∑
u∈U4

su = |C⊥|. From
(1) of Lemma 3, (1) of Lemma 4 and relations: m4 = 〈0〉, (f∗)∗ = f, when f is a

polynomial with nonzero constant coefficient, f̂i f̂j = 0, in the ring R[T]/〈Tn−
γ〉, for i 6= j, we have D ⊆ C⊥ and the assertion follows.

Let R = GF(pd)[X,Y]/〈X2 − Y3,XY〉, be the ring of cases (13) or (25)
in Theorem 1. Every element of R can be uniquely written as a0 + a1x +
a2y + a3y2 + a4y3, where ai ∈ GF(pd), α̃ = {x, y}, β̃ = {x, y2}, m2 = 〈y2〉,
annR(m2) = 〈x, y2〉, m3 = 〈y3〉 and T = GF(pd) is a set of representatives for
the residue field of R.

Example 1. Let R = GF(2)[X,Y]/〈X2−Y3,XY〉, α̃ = {x, y}, β̃ = {x, y2} be
as above and γ be a unit of R. By Hensel’s Lemma, T15−γ = f1f2f3f4f5, where
f1 = T4 + T + 1, f2 = T4 + T3 + 1, f3 = T4 + T3 + T2 + T + 1, f4 = T2 + T + 1,
f5 = T + 1 ∈ GF(2)[T], then 1∗ = 2, 2∗ = 1, 3∗ = 3, 4∗ = 4, 5∗ = 5.
If U0 = {1}, U1 = {2}, U2 = {3}, U3 = {4}, U4 = {5}, U5 = ∅, let
~v3 = (1, 1 + T + T3) over GF(24) = R[T]/〈f3〉, ~v4 = (1, 1 + T) over GF(22) =
R[T]/〈f4〉. The associated code is:

〈m3
∏̂
u∈U1

fu,m
∏̂
u∈U4

fu,
∏̂
u∈U5

fu, (~vu)
Tsu
β̃

f̂u, (~vw)
Tsw
α̃ f̂w : u ∈ U2, w ∈ U3〉 =

〈y3 f̂2, xf̂5, yf̂5, [x + (1 + T + T3)y2 ]̂f3, [x + (1 + T)y]̂f4〉 =

〈y3f1f3f4f5, xf1f2f3f4, yf1f2f3f4, [x+(1+T+T3)y2]f1f2f4f5, [x+(1+T)y]f1f2f3f5〉.

By Lemma 6 and because (1 + T + T3)−1 = T + T2 + T3, in R[T]/〈f3〉, (1 +
T)−1 = T, in R[T]/〈f4〉, we have ~v⊥2

3 = (1,T + T2 + T3), ~v⊥1
4 = (1,T). Then

γ−1(~v⊥3 )∗(15,f3) = (1, 1 + T), γ−1(~v⊥4 )∗(15,f4) = (1, 1 + T) and the dual code, C⊥,
is:

〈m3
∏̂
u∈U4

f∗u,m
∏̂
u∈U1

f∗u,
∏̂
u∈U0

f∗u, (γ
−1(~v⊥1

w )∗(15,f∗w))
Tsw∗
β̃

f̂∗w,

(γ−1(~v⊥2
u )∗(15,f∗u))

Tsu∗
α̃ f̂∗u : u ∈ U2, w ∈ U3〉 =

〈y3 f̂5, xf̂1, yf̂1, f̂2, [x + (1 + T)y2]f̂4, [x + (1 + T)y]f̂3〉 = 〈y3f1f2f3f4,

xf2f3f4f5, yf2f3f4f5, f1f3f4f5, [x + (1 + T)y2]f1f2f3f5, [x + (1 + T)y]f1f2f4f5〉.
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4 Self-dual constacyclic codes over rings in F4
5

The code C is called self-dual if C = C⊥. In this Section the algebraic charac-
terization of self-dual γ-constacyclic codes over rings in the family F4

5 is given,
when γ = γ−1.

Let (R,m,GF(q)) be a finite local ring, f1, . . . , fr the unique monic basic
irreducible pairwise coprime polynomials such that Tn − γ = f1 · · · fr, u ∈
{1, . . . , r} and U ⊆ {1, . . . , r}. Recall that, U∗ is the set of indexes of the
polynomials which are associates of the polynomials in {fu : u ∈ U}, u∗ denotes
the index of the polynomial which is associate of fu, (u∗)∗ = u, fu∗ = f◦∗u ,∏
u∈U f◦∗u =

∏
u∈U fu∗ =

∏
u∈U∗ fu and there are r1, r2 non negative integers

such that f2i−1 is associate of f2i, 1 ≤ i ≤ r1, and f2r1+i is self-reciprocal
polynomial, 1 ≤ i ≤ r2. U is called self-reciprocal if U∗ = U and special if
U ∩U∗ = ∅.

Theorem 4. Let (R,m,GF(q)) ∈ F4
5, γ, α̃ = {α1, α2}, β̃ = {α1, α

2
2}, T, Ts,

f1, . . . , fr, si = deg(̄fi), C as in Theorem 2, r1, r2 as above and

(1) U0,U1,U2,U3,U4,U5 the unique partition of {1, . . . , r}, associated to C,

(2) {~vu : u ∈ U2 ∪ U3} the vectors such that the corresponding ideal, in
R[T]/〈Tn − γ〉, of C is

〈m3
∏̂
u∈U1

fu,m
∏̂
u∈U4

fu,
∏̂
u∈U5

fu, (~vu)
Tsu
β̃

f̂u, (~vw)
Tsw
α̃ f̂w : u ∈ U2, w ∈ U3〉.

The following conditions are equivalent:

(1) C is self-dual code;

(2) U∗i = U5−i, for i ∈ {0, . . . , 5}, ~vu = γ(~v⊥1
u∗ )∗(n,fu), for u ∈ U2 and

~vw = γ(~v⊥2
w∗)
∗
(n,fw), for w ∈ U3.

(3) U∗i ⊆ U5−i, for i ∈ {0, . . . , 5}, ~vu = γ(~v⊥1
u∗ )∗(n,fu), for u ∈ U2 and

~vw = γ(~v⊥2
w∗)
∗
(n,fw), for w ∈ U3.

Proof: (2)⇔ (3) is easy to prove.
(1) ⇔ (2) From uniqueness in Theorem 2, by Theorem 3 and since {U∗0, U∗1,
U∗2, U∗3, U∗4, U∗5} is a partition of {1, . . . , r},
C = C⊥ ⇔

〈m3
∏̂
u∈U1

fu,m
∏̂
u∈U4

fu,
∏̂
u∈U5

fu, (~vu)
Tsu
β̃

f̂u, (~vw)
Tsw
α̃ f̂w : u ∈ U2, w ∈ U3〉 =
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〈m3
∏̂
u∈U∗4

fu,m
∏̂
u∈U∗1

fu,
∏̂
u∈U∗0

fu, (γ(~v⊥1
w∗)
∗
(n,fw))

Tsw
β̃

f̂w, (γ(~v⊥2
u∗ )∗(n,fu))

Tsu
α̃ f̂u :

u ∈ U∗2, w ∈ U∗3〉,

⇔ U1 = U∗4, U5 = U∗0, U2 = U∗3, 〈(~vu)
Tsu
β̃

f̂u : u ∈ U2〉 = 〈(γ(~v⊥1
u∗ )∗(n,fu))

Tsu
β̃

f̂u :

u ∈ U∗3〉 and 〈(~vu)
Tsu
α̃ f̂u : u ∈ U3〉 = (γ(~v⊥2

u∗ )∗(n,fu))
Tsu
α̃ f̂u : u ∈ U∗2〉,

⇔ U1 = U∗4, U5 = U∗0, U2 = U∗3, for each u ∈ U2 there is ε ∈ U3, for each

w ∈ U3 there is ε ∈ U2 such that 〈(~vu)
Tsu
β̃

f̂u〉 = 〈(γ(~v⊥1
ε )∗(n,fε∗ ))

Tsε∗
β̃

f̂ε∗〉 and

〈(~vw)
Tsw
α̃ f̂w〉 = 〈(γ(~v⊥2

ε )∗(n,fε∗ ))
Tsε∗
α̃ f̂ε∗〉,

⇔ U1 = U∗4, U5 = U∗0, U2 = U∗3, for each u ∈ U2 there is ε ∈ U3, for
each w ∈ U3 there is ε ∈ U2 such that fu = fε∗ , fw = fε∗ , u = ε∗, w = ε∗,
~vu = γ(~v⊥1

u∗ )∗(n,fu) and ~vw = γ(~v⊥2
w∗)
∗
(n,fw), by Lemma 5.

For the next result recall that if γ = 1, the binomial Tn − γ always has
a basic irreducible self reciprocal factor in R[T] and if γ = −1, the binomial
Tn − γ might not have a basic irreducible self reciprocal factor in R[T].

Corollary 1. With the notation as in Theorem 4, if C is a self-dual code there
is not u ∈ {1, . . . , r} such that fu is self reciprocal.
In particular if γ = 1 there is not any self dual γ-constacyclic code over R.

Proof: Since U1 = U∗4, U5 = U∗0 and U2 = U∗3, then each Ui is special and
the assertion follows.

In the following lines some examples are given illustrating the above results.

Example 2. Let (R,m,GF(2d)) ∈ F4
5 and γ a unit of R. From Corollary 1,

there is not any self dual γ-constacyclic code over R.

Example 3. Let R = GF(3)[X,Y]/〈X2 − Y3,XY〉 be the ring of case (13) in
Theorem 1, α̃ = {x, y}, β̃ = {x, y2} as above and γ = 2. By Hensel’s Lemma,
T4 − 2 = T4 + 1 = f1f2, where f1 = T2 + 2T + 2, f2 = T2 + T + 2 ∈ R[T]. We
have 1∗ = 2.
Let U0 = U1 = U4 = U5 = ∅, U2 = {1}, U3 = {2}, ~v1 = (1, 1 + T) over
GF(22) = R[T]/〈f1〉, ~v⊥2

1 = (1, 1 + T), by Lemma 6, ~v2 = 2(~v⊥2
1 )∗(4,f2) =

(1, 2 + T), over GF(22) = R[T]/〈f2〉.
Then the γ-constacyclic code

C = 〈m3
∏̂
u∈U1

fu,m
∏̂
u∈U4

fu,
∏̂
u∈U5

fu, (~vu)
Tsu
β̃

f̂u, (~vw)
Tsw
α̃ f̂w : u ∈ U2, w ∈ U3〉 =

〈[x + (1 + T)y2 ]̂f1, [x + (2 + T)y]̂f2〉 = 〈[x + (1 + T)y2]f2, [x + (2 + T)y]f1〉
is self-dual.
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5 Reversible constacyclic codes over rings in F4
5

A linear code C of length n over the ring R is reversible if it is invariant
under the reversible permutation r : Rn → Rn given by (a0, a1, . . . , an−1) 7→
(an−1, . . . , a1, a0). In this Section the algebraic characterization of reversible
γ-constacyclic codes over rings in the family F4

5 is given, when γ = γ−1.
The following result will be useful; claim (2) was treated in [4].

Lemma 9. Let R be a finite ring, γ a unit of R, r, σγ and rγ the reversible per-
mutation, the γ-constacyclic permutation and the γ-polynomial representation
of Rn, respectively, then:

(1) r ◦ σn−1γ (γ~a) = σγ ◦ r(~a), for all ~a ∈ Rn.

(2) γf∗ = rγ ◦σk+1
γ ◦ r◦ r−1γ (f), for f = a0 + . . .+an−1Tn−1 ∈ R[T]/〈Tn−γ〉

with deg(f) = k.

Proof: (1) Let ~a = (a0, a1, . . . , an−1), then

r ◦ σγ ◦ r(~a) = r ◦ σγ(an−1, . . . , a1, a0) = r(γa0, an−1, . . . , a1) =

(a1, . . . , an−1, γa0) = σn−1γ (γ(a0, a1, . . . , an−1)) = σn−1γ (γ(~a)).

Observation 4. Under the notation as in Lemma 9, let C be a γ-constacyclic
code.

(1) From relation (1) of Lemma 9, σγ(r(C)) = r◦σn−1γ (γC) = r◦σn−1γ (C) =
r(C) and r(C) is a γ-constacyclic code.

(2) Let ~a ∈ Rn, relation σnγ (~a) = γ~a and (2) of Lemma 9, imply σn−k−1γ ◦
r−1γ [(rγ(~a))∗] = r(~a), where k = deg(rγ(~a)). This relation means that
the reversible permutation of ~a can be obtained from the γ- constacyclic
permutation and the reciprocal operation of rγ(~a). This implies that the
ideal corresponding to r(C) is the ideal generated by {f∗ : f ∈ rγ(C)}.

For the next result recall that if δ1, . . . , δk,h1, . . . ,hk ∈ R[T] and the leader
coefficient of each δi is a unit, then (δ1h1 + . . . + δkhk)∗ = Tu1δ∗1h∗1 + . . . +
Tukδ∗kh∗1, for some u1, . . . , uk non negative integers, see Section 2. This implies
if ψ ∈ 〈δ1, . . . , δk〉 then ψ∗ ∈ 〈δ∗1 , . . . , δ∗k〉.

Lemma 10. Let (R,m,GF(q)) ∈ F4
5, γ, α̃ = {α1, α2}, β̃ = {α1, α

2
2}, T, Ts,

f1, . . . , fr, si = deg(̄fi), C as in Theorem 2, r the reversible permutation on Rn

and

(1) U0,U1,U2,U3,U4,U5 the unique partition of {1, . . . , r}, associated to C,
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(2) {~vu : u ∈ U2 ∪ U3} the vectors such that the corresponding ideal, in
R[T]/〈Tn − γ〉, of C is

〈m3
∏̂
u∈U1

fu,m
∏̂
u∈U4

fu,
∏̂
u∈U5

fu, (~vu)
Tsu
β̃

f̂u, (~vw)
Tsw
α̃ f̂w : u ∈ U2, w ∈ U3〉.

Then

(1) V0 = U∗0, V1 = U∗1, V2 = U∗2, V3 = U∗3, V4 = U∗4, V5 = U∗5 is the
unique partition of {1, . . . , r}, associated to r(C),

(2) {γ(~vu∗)
∗
(n,fu)

, γ(~vw∗)
∗
(n,fw) : u ∈ V2 = U∗2, w ∈ V3 = U∗3} are the unique

vectors such that the corresponding ideal, in R[T]/〈Tn − γ〉, of r(C) is

〈m3
∏̂
u∈U∗1

fu,m
∏̂
u∈U∗4

fu,
∏̂
u∈U∗5

fu, (γ(~vu∗)
∗
(n,fu)

)
Tsu
β̃

f̂u, (γ(~vw∗)
∗
(n,fw))

Tsw
α̃ f̂w :

u ∈ U∗2, w ∈ U∗3〉.

Proof: Let D the γ-constacyclic code given by

〈m3
∏̂
u∈U1

fu

∗
,m
∏̂
u∈U4

fu

∗
,
∏̂
u∈U5

fu

∗
, ((~vu)∗(n,f∗u))

Tsu∗
β̃

f̂∗u, ((~vw)∗(n,f∗w))
Tsw∗
α̃ f̂∗w :

u ∈ U2, w ∈ U3〉 =

〈m3
∏̂
u∈U∗1

fu,m
∏̂
u∈U∗4

fu,
∏̂
u∈U∗5

fu, (γ(~vu∗)
∗
(n,f∗

u∗ )
)
Ts(u∗)∗
β̃

f̂∗u∗ ,

(γ(~vw∗)
∗
(n,f∗

w∗ )
)
Ts(w∗)∗
α̃ f̂∗w∗ : u ∈ U∗2, w ∈ U∗3〉 =

〈m3
∏̂
u∈U∗1

fu,m
∏̂
u∈U∗4

fu,
∏̂
u∈U∗5

fu, (γ(~vu∗)
∗
(n,fu)

)
Tsu
β̃

f̂u, (γ(~vw∗)
∗
(n,fw))

Tsw
α̃ f̂w :

u ∈ U∗2, w ∈ U∗3〉.

By (2) and (3) of Lemma 3, (2) and (3) of Lemma 4, and Observation 4, the
corresponding ideal of r(C) is contained in D. Since deg(fi) = deg(f∗i ), using
Theorem 2, the number of elements in D and in C is the same. The assertion
follows.

Theorem 5. Let (R,m,GF(q)) ∈ F4
5, γ, α̃ = {α1, α2}, β̃ = {α1, α

2
2}, T, Ts,

f1, . . . , fr and si = deg(̄fi), C as in Theorem 2 and

(1) U0,U1,U2,U3,U4,U5 the unique partition of {1, . . . , r}, associated to C,
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(2) {~vu : u ∈ U2 ∪ U3} the vectors such that the corresponding ideal, in
R[T]/〈Tn − γ〉, of C is

〈m3
∏̂
u∈U1

fu,m
∏̂
u∈U4

fu,
∏̂
u∈U5

fu, (~vu)
Tsu
β̃

f̂u, (~vw)
Tsw
α̃ f̂w : u ∈ U2, w ∈ U3〉.

The following conditions are equivalent:

(1) C is a reversible code;

(2) Ui is self-reciprocal, for i ∈ {1, . . . , 5}, and ~vu = γ(~vu∗)
∗
(n,fu)

, for u ∈
U2 ∪U3;

(3) Ui is self-reciprocal, for i ∈ {0, . . . , 5}, and ~vu = γ(~vu∗)
∗
(n,fu)

, for u ∈
U2 ∪U3.

Proof: (1)⇔ (2) C is reversible ⇔
U1 = U∗1, U4 = U∗4, U5 = U∗5, for each u ∈ U2 there exists ε ∈ U∗2, for each

w ∈ U3 there exists ε ∈ U∗3 such that 〈(~vu)
Tsu
β̃

f̂u〉 = 〈(γ(~vε∗)
∗
(n,fε)

)
Tsε
β̃

f̂ε〉 and

〈(~vw)
Tsw
α̃ f̂w〉 = 〈(γ(~vε∗)

∗
(n,fε)

)
Tsε
α̃ f̂ε〉, by Lemma 10, uniqueness in Theorem 2

and because U∗0, U∗1, U∗2, U∗3, U∗4, U∗5 is a partition of {1, . . . , r},
⇔ U1 = U∗1, U4 = U∗4, U5 = U∗5, for each u ∈ U2 there exists ε ∈ U∗2, for each

w ∈ U3 there exists ε ∈ U∗3 such that 〈(~vu)
Tsu
β̃

f̂u〉 = 〈(γ(~vε)
∗
(n,fε∗ )

)
Tsε∗
β̃

f̂ε∗〉 and

〈(~vw)
Tsw
α̃ f̂w〉 = 〈(γ(~vε)

∗
(n,fε∗ )

)
Tsε∗
α̃ f̂ε∗〉,

⇔ U1, U2, U3, U4, U5 are self-reciprocal, for each u ∈ U2 there exists ε ∈ U2

such that fu = f◦∗ε and ~vu = γ(~vε)
∗
(n,fε∗ )

, for each w ∈ U3 there exists ε ∈ U3

such that fw = f◦∗ε and ~vw = γ(~vε)
∗
(n,fε∗ )

, by Lemma 5,

⇔ U1, U2, U3, U4, U5 are self-reciprocal, for each u ∈ U2, ~vu = γ(~vu∗)
∗
(n,fu)

,

and for each w ∈ U3, ~vw = γ(~vw∗)
∗
(n,fw),

⇔ U1, U2, U3, U4, U5 are self-reciprocal and for each u ∈ U2 ∪ U3, ~vu =
γ(~vu∗)

∗
(n,fu)

.

(2)⇔ (3) It is easy to check.

Example 4. Let R = GF(2)[X,Y]/〈X2 − Y3,XY〉, γ, α̃ = {x, y}, f1, f2, f3,
f4, f5 as in Example 1, then γ = 1, 1∗ = 2, 2∗ = 1, 3∗ = 3, 4∗ = 4, 5∗ = 5.
Let U1 = {4}, U2 = {1, 2}, U3 = {3}, U4 = {5}, U0 = U5 = ∅, ~v1 =
(1,T), over GF(24) = GF(2)[T]/〈f1〉, ~v2 = γ(~v1)∗(15,f2) = (1,T3 + T2), over

GF(2)[T]/〈f2〉.
Since T3 +T2 ∈ GF(2)[T]/〈f3〉 is a root of the irreducible polynomial T2 +T+
1 ∈ GF(2)[T] then ~v3 = (1,T3 + T2 + 1) over GF(2)[T]/〈f3〉 has the property
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~v3 = γ(~v3)∗(15,f3), by Observation 2. Hence the γ-constacyclic code:

C = 〈m3
∏̂
u∈U1

fu,m
∏̂
u∈U4

fu,
∏̂
u∈U5

fu, (~vu)
Tsu
β̃

f̂u, (~vw)
Tsw
α̃ f̂w : u ∈ U2, w ∈ U3〉 =

〈f̂4,mf̂5, [x + Ty]f̂1, [x + (T3 + T2)y]f̂2, [x + (T3 + T2 + 1)y]f̂3〉 =

〈f1f2f3f5,mf1f2f3f4, [x + Ty]f2f3f4f5, [x + (T3 + T2)y]f1f3f4f5,

[x + (T3 + T2 + 1)y]f1f2f4f5〉

is reversible.

6 Constacyclic codes with Complementary Duals over
rings in F4

5

A linear code with complementary dual is defined to be a linear code C whose
dual code satisfies C∩C⊥ = 〈0〉. In this Section the algebraic characterization
of complementary dual γ-constacyclic codes over rings in the family F4

5 is given,
when γ = γ−1.

Theorem 6. Let (R,m,GF(q)) ∈ F4
5, γ, α̃ = {α1, α2}, β̃ = {α1, α

2
2}, T, Ts,

f1, . . . , fr, si = deg(̄fi), C as in Theorem 2 and

(1) U0,U1,U2,U3,U4,U5 the unique partition of {1, . . . , r}, associated to C,

(2) {~vu : u ∈ U2 ∪ U3} the vectors such that the corresponding ideal, in
R[T]/〈Tn − γ〉, of C is

〈m3
∏̂
u∈U1

fu,m
∏̂
u∈U4

fu,
∏̂
u∈U5

fu, (~vu)
Tsu
β̃

f̂u, (~vw)
Tsw
α̃ f̂w : u ∈ U2, w ∈ U3〉.

The following conditions are equivalent:

(1) C is a Complementary dual code;

(2) U0 and U5 are self-reciprocal and Ui = ∅, for i ∈ {1, 2, 3, 4};

(3) U5 is self-reciprocal and Ui = ∅, for i ∈ {1, 2, 3, 4}.

In this case C = 〈
∏̂
u∈U5

fu〉 and C⊥ = 〈
∏̂
u∈U0

fu〉.
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Proof: First recall the following facts: The intersection of two non zero
ideals of R is not zero; if U = {u1, . . . , uk} ⊆ {1, r}, the ideal generated by∏̂
u∈U fu in R[T]/〈Tn−γ〉 is identified with 〈~0〉⊕R[T]/〈fu1〉⊕ 〈~0〉⊕ . . .⊕〈~0〉⊕

R[T]/〈fuk〉 ⊕ 〈~0〉; the rings R[T]/〈fi〉 are Frobenius, i ∈ {1, . . . , r}.
Now, from Theorem 3,

C⊥ = 〈m3
∏̂
u∈U∗4

fu,m
∏̂
u∈U∗1

fu,
∏̂
u∈U∗0

fu, (γ(~v⊥1
w∗)
∗
(n,fw))

Tsw
β̃

f̂w,

(γ(~v⊥2
u∗ )∗(n,fu))

Tsu
α̃ f̂u : u ∈ U∗2, w ∈ U∗3〉.

Then C ∩ C⊥ = 〈0〉
⇔
[
U∗0 ∪U∗1 ∪U∗2 ∪U∗3 ∪U∗4

]
∩
[
U1 ∪U2 ∪U3 ∪U4 ∪U5

]
= ∅

⇔ U∗0 ∪U∗1 ∪U∗2 ∪U∗3 ∪U∗4 = {1, . . . , r} \U∗5 ⊆ U0

⇔ U∗0 = U0,U
∗
1 = U∗2 = U∗3 = U∗4 = ∅, because |U∗0| = |U0|

⇔ U0 and U5 are self-reciprocal and U∗1 = U∗2 = U∗3 = U∗4 = ∅
⇔ U5 is self-reciprocal and U∗1 = U∗2 = U∗3 = U∗4 = ∅.

Example 5. Let R = GF(2)[X,Y]/〈X2−Y3,XY〉, γ, α̃ = {x, y}, f1, f2, f3, f4,
f5 as in Example 1, then 1∗ = 2, 2∗ = 1, 3∗ = 3, 4∗ = 4, 5∗ = 5 and the self-
reciprocal subsets of {1, 2, 3, 4, 5} are {1, 2}, {1, 2, 3}, {1, 2, 3, 4}, {1, 2, 3, 4, 5},
{1, 2, 4}, {1, 2, 4, 5}, {1, 2, 5}, {3}, {3, 4}, {3, 4, 5} {4}, {4, 5}, {5} and ∅.
The Complementary γ-constacyclic code over R of length 15 and their duals
are the following:

(1) C = 〈f̂1f2〉 = 〈f3f4f5〉 and its dual is C⊥ = 〈f̂3f4f5〉 = 〈f1f2〉;

(2) C = 〈f̂1f2f3〉 = 〈f4f5〉 and its dual is C⊥ = 〈f̂4f5〉 = 〈f1f2f3〉;

(3) C = 〈̂f1f2f3f4〉 = 〈f5〉 and its dual is C⊥ = 〈f̂5〉 = 〈f1f2f3f4〉;

(4) C = 〈 ̂f1f2f3f4f5〉 = 〈1〉 and its dual is C⊥ = 〈0〉;

(5) C = 〈f̂1f2f4〉 = 〈f3f5〉 and its dual is C⊥ = 〈f̂3f5〉 = 〈f1f2f4〉;

(6) C = 〈̂f1f2f4f5〉 = 〈f3〉 and its dual is C⊥ = 〈f̂3〉 = 〈f1f2f4f5〉;

(7) C = 〈f̂1f2f5〉 = 〈f3f4〉 and its dual is C⊥ = 〈f̂3f4〉 = 〈f1f2f5〉;

(8) C = 〈f̂3〉 = 〈f1f2f4f5〉 and its dual is C⊥ = 〈̂f1f2f4f5〉 = 〈f3〉;

(9) C = 〈f̂3f4〉 = 〈f1f2f5〉 and its dual is C⊥ = 〈f̂1f2f5〉 = 〈f3f4〉;

(10) C = 〈f̂3f4f5〉 = 〈f1f2〉 and its dual is C⊥ = 〈f̂1f2〉 = 〈f3f4f5〉;
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(11) C = 〈f̂4〉 = 〈f1f2f3f5〉 and its dual is C⊥ = 〈̂f1f2f3f5〉 = 〈f4〉;

(12) C = 〈f̂4f5〉 = 〈f1f2f3〉 and its dual is C⊥ = 〈f̂1f2f3〉 = 〈f4f5〉;

(13) C = 〈f̂5〉 = 〈f1f2f3f4〉 and its dual is C⊥ = 〈̂f1f2f3f4〉 = 〈f5〉;

(14) C = 〈0〉 and its dual is C⊥ = 〈1〉.
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