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Self dual, reversible and complementary duals
constacyclic codes over finite local Frobenius
non-chain rings of length 5 and nilpotency
index 4.

C. A. Castillo-Guillén and C. Alvarez-Garcia

Abstract

Over finite local Frobenius non-chain rings of length 5 and nilpo-
tency index 4 and when the length of the code is relatively prime to the
characteristic of the residue field of the ring, the structure of the dual of
~y-constacyclic codes is established and the algebraic characterization of
self-dual, reversible y-constacyclic codes and vy-constacyclic codes with
complementary dual are given.

1 Introduction

After the work of R. Hammons et al. see [7] codes over finite rings have
received considerable attention. Parallel to this, constacyclic codes, self dual
codes, reversible codes and codes with complementary duals over finite rings
have also gained a large popularity among coding theorists. For some of the
works in these directions we refer to [1] [2], [3], [4], [6], [8], [9], [14], [17]. The
class of y-constacyclic codes plays a very significant role in the theory of error-
correcting codes, these are codes invariant under the mapping o : R — R"
given by o(ag, ..., an-1) = (Yan—1,a0,...,an—2), v is a unit of the ring R.
Reversible codes are codes invariant under the mapping ¢t : R — R” given
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by t(ag,...,an-1) = (@n-1,...,a0), see [10]. These codes are used to obtain
DNA codes. Linear complementary dual codes (which is abbreviated to LCD
code) are linear codes that trivially intersect with their duals, [11]. Over
fields cyclic LCD codes are the reversible codes and LCD codes have a good
asymptotically property and meet the asymptotic Gilbert-Varshamov bound,
see [13], [16].

Duals of v-constacyclic codes, self dual, reversible 7y-constacyclic codes
and ~y-constacyclic codes with complementary duals over finite local Frobenius
non-chain rings whose maximal ideal has nilpotency index 3 and the length
of the code is relatively prime to the characteristic of the residue field of the
ring were studied in [3], [4]. In [5], finite local Frobenius non-chain rings of
length 5 whose maximal ideal has nilpotency index 4 were determined and the
structure of «-constacyclic codes over these rings was described. Now, it would
be interesting to determine the dual of y-constacyclic codes and the algebraic
characterization of self-dual, reversible y-constacyclic codes and ~y-constacyclic
codes with complementary duals over finite local Frobenius non-chain rings of
length 5 whose maximal ideal has nilpotency index 4.

Throughout this work all codes are over finite local Frobenius non-chain
rings of length 5 whose maximal ideal has nilpotency index 4 and the length
of the code is relatively prime to the characteristic of the residue field of the
ring. The purpose of this paper is to obtain structure Theorems for the dual of
a constacyclic code, for self-dual constacyclic codes, for reversible constacyclic
codes and for constacyclic codes with complementary duals. The paper is
organized as follows: in Section 2 facts on finite commutative local rings are
recalled, properties of the reciprocal polynomial over local rings and properties
of finite local Frobenius non-chain rings of length 5 whose maximal ideal has
nilpotency index 4 are given. In Section 3 the structure of the dual of a ~y-
constacyclic code is determined, generators for the dual code are obtained from
the generators of the original constacyclic code. The algebraic characterization
of self-dual v-constacyclic codes is presented in Section 4. In Section 5 the
algebraic characterization of reversible ~y-constacyclic codes is presented. The
algebraic characterization of complementary -y-constacyclic codes is given in
Section 6. Examples are included to illustrate the main results.

2 Preliminaries

Throughout this work GF(q) denotes the finite field with ¢ = p? elements, p a
prime, all rings are assumed to be finite, commutative with unit element and
all modules are finitely generated.
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2.1 Rings and local rings

Let R and B be rings, I an ideal of R and M an R-module. The length of M,
denoted by ¢gr (M), is the length of a composition series for M. The annihilator
ideal of M in R is defined as anng(M) := {a € R:am =0,V m € M}. If I
is contained in anng (M) there is a natural structure of (R/I)-module on M,
the scalar multiplication is given by (a +1I,m) — am, a € R,m € M, and the
lattice of R-submodules and (R/I)-submodules of M are the same. If R has
only one maximal ideal m then it is called local, k = R/m its residue field and
it will be denoted by the triple (R, m, GF(g)). R is called a chain ring if the
lattice of its ideals is a chain under set-theoretic inclusion. A finite local ring
(R,m,GF(q)) is Frobenius if anng(m) is the unique minimal ideal of R, see
[15]. F denotes the family of finite local Frobenius non-chain rings of length
5 whose maximal ideal has nilpotency index 4, see [5].

If (R, m, GF(q)) is a finite local ring, then |M| = |GF(¢)|"*™) see [2], and there
is an integer ¢+ > 1 such that m’ = (0) and m!~! = (0), called the nilpotency
index of m. A subset G of M generates M if and only if its image G in M/mM
generates M/mM as a GF(q)-vector space. A set of generators for M obtained
from lifting a basis of the GF(g)-vector space M/mM is called a minimal R-
generating set for M and vg (M) denotes the number of elements in a minimal
R-generating set for M, see [12]. Note that vg(M) = dimgpg)(M/mM) =

Let (R, m, GF(q)) be a finite local ring, f, g € R[T], v a unit of R and n € N
with (n,q) = 1. ~: R[T] — GF(¢)[T] is the natural ring homomorphism given
by ap + a1 T+ ...+ anT™ — (ag + m) + (a1 + )T + ... + (am, +m)T™, the
polynomial f € R[T] is called basic irreducible if f is irreducible in GF(q)[T],
f and g are called coprime if (f) + (g) = R[T]. Hensel’s Lemma guarantees
that factorization into a product of pairwise coprime polynomials in GF(q)[T]
lifts to such a factorization over R[T], see [12]. In fact there is a unique family
of monic basic irreducible pairwise coprime polynomials such that T" — v =
fy .- -f,, see [3].

Let f € R[T] be a monic basic irreducible polynomial, deg(f) = s, T C R be
a set of representatives of GF(gq) and I an ideal of R. From [2], [3] and [5] we
have: (1) B = R[T]/{f) = {ao + a1 T + -+ +as_1T57! : a; € R} is a local
separable extension of R with maximal ideal mB and residue field GF(¢*);
(2) the set Ty := {ap + a1 T + -+ +as_1T57! : a; € T} C B is a set of
representatives of GF(¢®); (3) the nilpotency index of m and mB is the same;
(4) ¢r(I) = ¢g(IB); (5) vr(I) = vg(IB); (6) A minimal R-generating set for I
is a minimal B-generating set for IB; (7) (anng(I))B = anng(IB); (8) R is a
chain ring if and only if B is a chain ring; (9) R is Frobenius if and only if B
is Frobenius, in this case anng(mB) = m!~!B, where ¢ is the nilpotency index
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of m.

If R is a finite local Frobenius ring, (10) anng (anng (I)) = I; (11) ¢r(anng (1)) +
(r(I) = fr(R); (12) m* tanng (m') = m*~1, 2 <4 <¢-1; (13) VR(annR( 2)) =
vr(m); (14) (mB)"lanng((mB)?) = m'~ 1annB( B) =

m!~IB = (mB)!"!, 2 <i <t —1; (15) vg(mB) = vg(m) = vg(anng(m
vp(anng (m?)B) = vg(anng(m?B)) = vg(anng((mB)?)).

Let (R,m,GF(q)) be a finite local Frobenius ring, f € R[T] be a basic
irreducible polynomial, s = deg(f), (B = R[T]/(f),mB, GF(¢*)) the separable
extension of R determined by f, T C R a set of representatives of GF(g) with
0,1 € T, M a B-module, § = {61,...,0;} a sequence of elements of M and
H = (hi;) a (k x [) matrix over GF(¢®). For the remainder of this work the
following notation will be used:

(1) The number vg(m) = vg(anng(m?)) = vg(mB) = vg(anng((mB)?)) is
denoted by y;

(2) @ ={a,...,a,} will be a minimal R-generating set for m;
(3) B={B1,...,By} will be a minimal R-generating set for anng (m?);

(4) Ts = {ap + a1 T+ -+ +as_1T*71 : q; € T} C B will be the set of
representatives of B/mB = GF(¢°);

(5) For a € GF(¢*), a™ will denote the unique representative of a in T;

6) The B-submodule of M, Y0, + ...+ hTSGZ, cee hls0, + ...+ hi:0, ,
11 1 k1 kl
will be denoted by Hgs.

A (k x n) matrix over GF(q) is said to be in reduced row echelon form,

(rre)-form, if in each row, i« = 1,...,k, the first nonzero entry is equal to
1, the index of the column in which the 1 occurs, called a pivotal column,
strictly increases with ¢, and the k pivotal columns are, in order, the columns
of the (k x k) identity matrix. Since each matrix is row equivalent to a unique
reduced row echelon form matrix, the k-dimensional vector subspaces of V are
in one-to-one correspondence with the (k x n) matrices over GF(q) in (rre)-
form. The (k x n) matrix (a;;) over the field in (rre)-form corresponds to the
subspace (3°1 | a1, .., Doy ki)
Lemma 1. (/2/, Lemma 1) Let (R, m, GF(q)) be a finite local ring, T C R a set
of representatives of GF(q), M an R-module and 6 = {61, ...,0;} be a minimal
R-generating set for M. Then the B-submodules of M between M and mM of
length k4 (g (mM), where 0 < k < I = dimgpg)(M/mM) = vr(M), are in one
to one correspondence with the (k x 1) matrzces over GF(q) in (rre)-form. The
matriz H = (a;;) corresponds to the submodule (3 ;| a1:0;, ..., Y i axif;) +
mM.
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Observation 1. Let (R,m,GF(q)) be a finite local Frobenius ring, f, s and
(B,mB, GF(¢®)) be as above. Let § = {J ideal of B : anng(mB) C J C
anng((mB)?)}, J € §, & = {l ideal of B: (mB)2 C 1 C mB} and 1 € &, then:

(1)

(2)

(9)

From relation anng(anng(x)) = *, there is a one to one correspondence
between § and &.

J has length k+ 1, k € {1,...,x — 1}, and anng(J) has length {5(B) —
kflzX*kJrfR(mQ).

From Lemma 1, relations anng((mB)?) = anng (m?)B and anng (m)B =
anng(mB) = (mB)anng((mB)?), J corresponds to a unique k x x matriz
in (rre)-form over GF(¢®) and anng(J) corresponds to a unique (x —
k) x x matriz in (rre)-form over GF(¢®).

If Hy = (a;;) is the matriz that corresponds to J, the matriz that corre-
sponds to anng(J) will be denoted by HE = (b;;).

Let m € {1,...,k} and w € {1,...,x — k}, we have the following rela-
tions:

(@) 3= (1),
(b) anng(J) = (Hf)5 +m?B,
(¢) (agslﬁl + ...+ ag;ﬁx)(bgflal + ...+ bgjxax) =0.

I has length ki + fr(m?), k1 € {1,...,x — 1}, and anng(1) has length
EB(B) —ky — ER(mQ) =x—k +1.

From Lemma 1, 1 corresponds to a unique ki X x matriz in (rre)-form
over GF(q®) and annp(I) corresponds to a unique (x — k1) X x matriz in
(rre)-form, over GF(¢®).

If Hy = (¢4 ) is the matriz that corresponds to 1, the matriz that corre-
sponds to anng(I) will be denoted by Hi- = (d;;).

Let m € {1,...,k1} and w € {1,...,x — k1}, we have the following
relations:

(a) T= (H)} +m?B,
(b) amn(D) = (BT,

(¢) (cg‘ial 4+ ...+ cE;(aX)(d?;l@l +...+ dTwSXﬁX) =0.
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2.2 The reciprocal polynomial and the reciprocal matrix

Let (R, m,GF(q)) be a finite local ring, f,g € R[T], 7 be a unit of R, n € N,
with (n,q) = 1. Let fi,...,f. the unique family of monic basic irreducible
pairwise coprime polynomials such that T™ —~ = f; - - - f,.. If ag is the constant
coefficient of f and ag is a unit, the polynomial aalf is denoted by f°. If f is
a factor of T™ — v or T" — y~1, we will just write f= % or f = Tn_f7717
according to the case. The reciprocal of the polynomial f is defined as f* =
Tdes(®) f(%) The polynomial f is called self-reciprocal if f* is an associate of f.
From [3] and [4] we have the following: (1) Tdes(D—des(E)(f+)x — f, (2) If
the constant coefficient of f is not zero, then deg(f) = deg(f*) and (f*)* = f;
(3) If the leader coefficient of f is a unit, then (fg)* = f*g* and f* = (f)*;
(4) If f is a monic basic irreducible polynomial, then f* is basic irreducible;
(5) If deg(f) > deg(g), then (f+ g)* = f* + Tdes(D—desle)g* (6) If deg(f) =
deg(g), then Tdee(M)—dea(t+e) (f 4 o)* — f* 4 o*; (7) If the leader coefficients of
f and g are units and f and g are coprime, then f* and g* are coprime; (8)
If 61,...,0k € R[T], then (61 + ...+ &g)* = T“167 + ... + T"*§;, for some
u1,...,u; hon negative integers; (9) Each polynomial f is basic irreducible;
(10) Over fields, self reciprocal polynomials have even degree with the only
exception of T + 1; (11) For 1 < i < r, the constant coefficient of f; is a
unit, deg(f;) = deg(f*), (£°)* = f; and (£, )* = f; (12) (£2)*,...,(f°)* are
the unique monic basic irreducible pairwise coprime polynomials such that
T — 4=t = (f2)* .-+ (£2)*; (13) If U is a subset of {1,...,r} and F = [] f;,
ueU
then T" —~ = Fﬁ T —~~1 = —’y_lF*ﬁ* and F* = —W_Iﬁ\fi*, in particular
uelU
f} = —7_1f:*, 1 < ¢ < r, note that ~in the left side is respect to T® —~~! and
~in the right side is respect to T —; (14) If v = v~, then f; is an associate
of f; if and only if f is an associate of f?-, in particular f; is self-reciprocal
if and only if f; is self-reciprocal; (15) If v = v~1, f; is a self reciprocal and
f; # T — 1, then f; has even degree; (16) If v = v~ 1, after renumbering there
are non negative integers r, o such that » = r; 4 2rq, f5,_; is an associate of
f2i, 1 < ¢ <rq, and fo,, 4, is a self-reciprocal polynomial, 1 < i < rs.
For the remainder of the manuscript the following notation will be used:
(1) When v = v~ 1, the order of the sequence fi, ..., f, is fixed according to the
last assertion; (2) For w € {1,...,7}, u* denotes the index of the polynomial
which is associate of f,, observe that (u*)* = u; (3) For U C {1,...,r}, let
U* = {u* : u € U}. U is called self-reciprocal if U* = U and special if
UNU* = (). Observe that U is a self-reciprocal set if and only if {1,...,7}\U
is a self-reciprocal set; if U is a special set then U* is a special set and U C
{1,...,2r1}; 0 is considered a self-reciprocal and special set.
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The reciprocal matrix is helpful to determine reversible constacyclic codes
and the dual of a constacyclic code, over finite local rings, see [4]. Let
f,g,h € GF(q)[T], whit f irreducible and gT = 1 mod(f), observe that

h(g) = g*=™h* mod(f) and ¥ : GF(q)[T]/(t*) — GF(q)[T]/(f) given by
W(h+ <f*>) =h(g) + (f) = deg( Jh* + +({) = Td};;(%% is an isomorphism over
GF(q).

Definition 1. Let (R, m,GF(q)) be a finite local ring, f € R[T| a monic basic
irreducible polynomial, n > deg(f ), H = (ai;) a matriz over GF(gies®)) =
GF(q)[T]/(f*) and ¢ : GF(q)[T }/(T‘> — GF(q)[T]/(f) as above. The matriz
(T"(ai;)) over GF(qi°8®)) = GF(q)[T]/(f) is called the n-th reciprocal matriz
of H with respect f and is denoted by H(m)

Under the notation as in Definition 1, from [4], we have the following
properties: (1) (uH)f, ¢y = uH{, ), u € GF(q); (2) H{, ¢ = =T HE, 6 (3)
(szn’f))’(kn’f*) = H. Suppose + is a unit of R and f is a divisor of T™ — +, then:

(4) if deg(f) = 1, 7 'H{, 5y = H; (5) 7T, ) = T HT W(ai) = (lay));
(6) if H is in (rre)-form, the matrix 'y—lHE‘n,f) is in (rre)-form.

Observation 2. Let (R,m,GF(q)), f, n, H= (a;;), ¥ as in Definition 1 and
~v a unit of R. Suppose { is self reciprocal, deg(f) = 2s and {|T™ — ~.

(1) ¢ is an automorphism of GF(¢*®) and ¥?*(h + (f)) = w[lﬁi}e}%ﬁ_)m] =
() (1)

) o) pdeg()—deg(h) (h¥)* 4 (F) = h + (f).

(rdeg(h) )« 4 ()
Tdeg(m) D)

(2) Let a € GF(¢*%) = GF(q)[T]/{f) be a root of an irreducible polynomial
over GF(q)[T] of degree s. Since GF(¢**) has only one automorphism of
degree 2 over GF(q), then this automorphism is 1 and the fized field of
this automorphism is GF(¢°) = {h(c) : h(T) € GF(¢)[T], deg(h) < s}

(3 FHE‘H £ = H & H is a matriz over GF(¢®).

The following result will be useful later; claims are treated in Corollary 1
and Lemma 2 of [4].

Lemma 2. Let (R,m,GF(q)) be a finite local ring, f € R[T] a monic basic
irreducible, K an ideal of R and 0= {01,...,0;} a minimal R-generating set
for K. Let g = (p1,...,p), ¥ = (v1,...,11) € (R[T])}, where 5 is in (rre)-
form, the leader coefficient of each p; is a unit, n > mazx{deg(p;) : 1 < i <1}
and (v1 + (f),...,vi+ () = (pr + ()., o0+ (£)){,, ). There are uy, uz
non negative integers such that:
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(1) ((p161 + p2O2 + ...+ p101)*)" = p161 + p2bla + ... + pi0;;
(2) T (p161 + ...+ pi0)* = 1101 + ...+ 10, mod (mK,f);
(3) p191 + ...+ plel = Tu2 (1/191 + ...+ Ulel)* mod (mK,f*)

Lemma 3. Let (R,m,GF(q)), £, deg(f) = s, T, T, x, & = {oa,...,ay},
B={b1,.--,6x}, 8, J€F, () =k+1, wherek € {1,...,x — 1}, H; =
(aij), HT = (b)), M)l = Wij)s (Hj‘)Z‘nf) = (Wij), as in Observation
1. Let n an integer with n > deg(f), (B = R[T]/(f),mB,GF(¢%)), (B* =
R[T]/{t*), mB*, GF(¢°)) the separable extensions of R determined by { and {*,
respectively. We have the following:

(1) Let m € {1,...,k} and w € {1,...,x — k}, the following relations hold in
the ring B:

(VaiBr+ .. v ) (bpar + ... 4+ b5 o) =0,
(aziBr+ -+ o B (Hzhan + -+ piggyon )" = 0.
(2) The following relation holds in the ring B*:
((al:By + ...+ aqlr;'(ﬁx)*, (@B agiﬂx)*> + anng (m)B* =

<V}Tfﬁ1 +...+ u}r;ﬁx, ceey Vg‘fﬁl +...+ Z/E;BX> + anng (m)B*.
(3) Let ¢ € R[T] such that ¢+ (f) € J = (HJ)gs, then there exist hy,... hy €
R[T] such that:
¢ =hi (v B+ .+V1T;ﬂx)+. by (v B+ .—‘rl/E;ﬂX) mod (anng(m), f*).
In particular ¢* + (t*) € ((HJ)?7L7f*))gs, in the ring B*.

Proof: Observe that T is a unit of the rings B and B*.
(1) By (3) of Lemma 2, there are non negative integer uy,us such that the
following relations hold in B:
(a) al3B + ... + aps By = T (V5B + ... + Va3 By)* mod manng (m?)B =
anng (m)B,
(b) blsay + ...+ bos o = T2 (pisjon 4 ...+ [, @y )* mod m?B,
From (4c) of Observation 1 and (a) and (b) we have

0=(apifr+ ... +anBy) oo+ ...+ b 0y ) =
T" (Vgiﬁl + ...+ l/;]‘I.‘;ﬁX)*(bj;SlOél + ...+ bgsxax) =
T (a7i B+ -+ A B) (a1 + o+ pan )™
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(2) From (2) of Lemma 2, there are units of the ring B*, o1, ..., 0%, such that

(aqlrfﬂl +... 4+ ajlr;ﬁx)* = al(l/}rfﬂl +...+ V}T;ﬁx) mod (anng(m), "),

(agiﬁl +...+ ag';(,é’x)* = O’k(VE‘fﬁl +...+ Z/E;BX) mod (anng(m), {*),

the assertion follows.
(3) There are ¢1, ..., ¢, € R[T] such that

¢=oi(ar;fi+... —I—avlﬂ‘;ﬁx) +otorlagi Bt +a£;ﬂx) mod (anng(m), f),
then there are vq,...,v; non negative integers such that

T (ayi B+ ..+ a8y ) + o+ SET (i + .o+ a4y By)”

= ¢>‘1(0'1T”1 (V}Tfﬂl 4+ ...+ Z/lv]r;ﬁx) 4+ ...+ (l)ZO'kTU’C (ngﬁl + ...+ l/g;ﬁx)
= ¢* mod (anng(m),f*).

Lemma 4. Let (R,m,GF(q)), f, B, B*, T, T, x, & = {a1,...,0,}, g =
{B1,...,Bx} and n as in Lemma 3. Let & as in Observation 1, I € & with
EB(I) = k+€R(m2)7 ke {17'-'7)( - 1}7 Hy = (Cij)7 HIL = (dij)7 (HI)?n,f*) =
(ij) and (Hf)?‘nf) = (ei;). We have the following:

(1) Let m € {1,...,k} and w € {1,...,x — k}, the following relations hold in
the ring B:

(Grion+ .+ cm o) (doy B+ ... +di By) =0,

(crion + .+ (€ B+ .+ ey )" =0,
(2) The following relation holds in the ring B*:

((cliag + ...+ cjlr;ax)*, cey (cgial + ...+ cgiax)ﬂ +m?B* =

Ts Ts Ts T,
(Srion + .o gpan, . i + o+ gkonX> +m2B*.

(3) Let ¢ € R[T] such that ¢ + (f) € T = (Hy)5" + m?B, then there exist
hy,...,hy € R[T] such that

¢ =hi(sron + ... —|—§}T;ax) +... —|—hk(§gfa1 +... +§g;ax) mod (m?, f*).

In particular ¢* + (f*) € ((Hi)g, f*))gj +m?B*, in the ring B*.
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Proof: Observe that T is a unit of the rings B and B*.
(1) By (3) of Lemma 2, there are non negative integer uy, ug such that
(a) clan + ...+ crsay =T (cFsay + ...+ Gry )" mod m?B,
(b) dey B+ ...+ d% By = T2 (e B1 + ... + €%, By)* mod manng(m?)B =
anng (m)B.
From (7) of Observation 1 and (a) and (b) we have

0= (cEial +...+ cE;aX)(dgsl& + ...+ dTwSXﬂX) =

T (Grion + ...+ smpay) (Ao B+ -+ d By) =
wg Ty Ts Ts Ts *
T (cpion + .. ey ) (€81 + -+ ey By) ™

the assertion follows.
(2) From (2) of Lemma 2, there are units of the ring B*, o1, ..., 0k, such that

(ciiar+ ...+ cqlr;ax)* =oi(sion +...+ q}r;ozx) mod (m?, f*)

(hion 4 ...+ c}g;ax)* = ok +...+ cg;ax) mod (m?, f*)

the assertion follows.
(3) There are ¢q, ..., ¢, € R[T] such that

b=di(cijon + ...+ cqlr;ax) +...+ qbk(cgjal +...+ cg';(ax) mod (m? f),
then there are vq,...,v; non negative integers such that

HIT (clion + ... + cqlr;ax)* o BT (g cg;ax)*
= ¢l TV (G50 + ...+ gir;ax) o GroR T (G 4 g&ax)
= ¢* mod (m? f*).

2.3 The family 33

The family of finite local Frobenius non-chain rings of length 5 whose maximal
ideal has nilpotency index 4 is denoted by 2. Recently, the rings in the family
T2 and the lattice of ideals of a separable extension of a ring in this family
were determined in [5] and for completeness we recall the results here.

Theorem 1. Let (R,m,GF(p?)) € T3, then R is isomorphic to one of the
following rings:
If p is odd
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(4) char(R) = p® and {0,1,(,...,C2" =2} is the Teichmiiller set of the Galois
ring GR(p?,d).
(@) m* = (p) = (y*) and m® = (y°) = (x*).
(1) GR(p2,d)[X,Y]/<Y2 w4 X2 - Y37XY>7
(2) GR(p*,d)[X, Y]/(CY? — p,X? — Y3 XY),
(9) GR(p?,d)[X, Y]/(Y? — p,X? - (Y?,XY),
(4) GR(p?, d)[X, Y]/{CY? — p, X? = (Y?,XY).
(b) m* = (y%), m* = (p) = (y%) = (x?) and 3[p? - 1.
() GR(p*, d)[X, Y]/(Y? — p,X? = Y3, XY),
(6) GR(p*,d)[X, Y]/(CY® — p,X? - Y?,XY),
(7) GR(pZad)[X7Y]/< 2Y3 - D X2 - Y37XY>7
(8) GR(p*, d)[X, Y]/(Y? — p,X* — (Y?,XY),
(9) GR(p27d)[X7Y]/<<Y3 - b X2 - <Y37XY>;
(10) GR(p*, d)[X, Y]/((?Y? — p, X* — (Y7, XY).
(¢) m* = (y%), m* = (p) = (y*) = (x?) and 3 Jp? — 1.
(11) GR(pQ,d)[X, Y]/<Y3 —p, X2 -Y3 ,XY),
(12) GR(?, d)[X, Y)/(Y® = p, X2 = CY?, XY).
(i) char(R)=p
(@) m* = (y?) and m® = (y*) = (x).
(13) GF(pH)[X,Y]/(X2% - Y3, XY).

(iii) char(R) = p* and {0,1,C,...,CP" =2} is the Teichmiiller set of the Galois
ring GR(p*, d).

(a) pg m?, m =<p>andm3=<p3>=<x2>v
(14) GR(p*, d)[X]/(X* — p?, pX),
(15) GR(p*, d)[X]/(X? — ¢p?, pX).

(iv) char(R) = p® and {0,1,¢, ..., (pd*Q} is the Teichmiiller set of the Galois
ring GR(p3, d).

(a) pgm?, m? = (x?), m3 = <p2> = (x*) and 3 fp? — 1.
(16) GR(p*,d)[X]/(p* — X3, pX).

(b) pgm? m> = (x?), m® = (p?) = (x*) and 3]p? — 1,
(17) GR(p*, d)[X]/{p* — X?, pX),

(18) GR(p?, d)[X]/(p* — (X3, pX),

(19) GR(p Sad)[XW > — X3, pX).

Ifp=2
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(4) char(R) = 2% and {0,1,,...,¢2" =2} is the Teichmiiller set of the Galois
ring GR(22, d).

(@) m* = (2) = (y*) and m® = (x?) = (y°).
(20) GR(22,d)[X, Y]/(Y? — 2,X2 — Y3 XY).
(b) m* = (%), m* = (2) = (x?) = (y*) and 327 1.
(21) GR(2*,d)[X, Y]/(Y® - 2,X? - Y3 XY),
(22) GR(2%,d)[X, Y]/(CY? —2,X? — Y3, XY),
(2 )GR( )[ Y]/(CPY? - 2,X? - Y3, XY).
(¢) m* = (y%), m* = (2) = (x*) = (y°) and 3 J2¢ — 1.
(24) GR(22 d)[X Y]/(Y3 —2,X2 — Y3, XY).

(@) char(R) =2

(a) m?* = (y?) and m® = (x*) = (y°).
(25) GF(24)[X, Y]/(X2 — Y3,XY).

(7ii) char(R) = 2.

(a) m? = (22), m3 = (23) = (x?) and 2 ¢ m?.
(26) GR(2,d)[X]/ (X2 — 28, 2X).

(iv) char(R) = 23 and {0,1,¢, ..., CQd_Q} is the Teichmiiller set of the Galois
ring GR(23,d).

(a) 2¢m? m? = (x?), m3 = (22) = (x3) and 3 J2¢ — 1.
(27) GR(23,d)[X]/(2? — X3, 2X).

(b) 2¢m?, m? = (x2), m® = (22) = (x*) and 327 — 1.
(28) GR(23,d)[X]/(2? — X3, 2X),
(29) GR(2*, d)[X]/ (22 — (X*,2X),
(30) GR(2?,d)[X]/(2* — ¢?X?, 2X).

For the remainder of the manuscript the following notation will be used.
Let (R,m,GF(q)) € ¥, T and T, be as above, & = {ay, a2} a minimal R-
generating set for m, f € R[T] a monic basic irreducible polynomial of degree
s and (B = R[T]/{f), mB, GF(¢®)) the separable extension of R determined by
f.

(1) A fixed minimal R-generating set {a, a2} of m will be considered.
If the ring R is one of the rings (1) — (13) or (20) — (25) mentioned in
Theorem 1, a; = x and as =y.
If the ring R is one of the rings (14), (15) mentioned in Theorem 1,
a1 =x and ag = p.
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3)

If the ring R is one of the rings (16) — (19) mentioned in Theorem 1,
a1 =p and as = x.

If the ring R is one of the rings (27) — (30) mentioned in Theorem 1,
a; =2 and ag = x.

If the ring R is the ring (26) mentioned in Theorem 1, a; = x and
Qg = 2.

When we take a minimal R-generating set for m we understand that
{a1, a5} is the ordered minimal R-generating set for m.

Since anng(m?) = (a1, a3), {a1,a3} will be the fixed minimal R-gene-
rating set for anng (m?).

When we take a minimal R-generating set for anng(m?) we understand
that {£1, 82} is the ordered minimal R-generating set for anng (m?).

We write @ for {ay,as} and 3 for {ay,a3}.

Lemma 5. Let (R,m,GF(q)) € T3, T and Ts be as above, & = {1, aa}
a minimal R-generating set for m, f € R[T] a monic basic irreducible poly-
nomial of degree s, (B = R[T]/(f),mB, GF(¢*)) the separable extension of R
determined by f, then:

(1)
(2)

(9)

The ideals of length 0,1,4,5 of B are (0), m3, m, B, respectively.

Ideals of length 2 of B are between anng(m?)B and m3B. These ideals
are:

m? = (a2)B, (a1 + )\11T5a§>B7 ooy {og + )\gssa%)B, i € GF(¢%).
Ideals of length 3 of B are between mB and m?B. These ideals are:

(o1,03)B, (a2)B, (a1 + A" a2)B, ..., (a1 +Ani_ a2)B, \; € GF(¢*)\{0}.

Observation 3. With the notation as in Lemma 5. Observe the following:

anng(mB) = m®B = (a3)B = (a?)B.

mB = (a1, a2)B and anng (m?)B = (a1, a2)B are the only non principal
ideals of B.

The ideals (0, 1)25 = (a9)B, (17)\1')?; = (o +)\2-rsa2)B, i € GF(q)\{0},
contain m?B.

The ideal anng (m?)B = (ay,a3)B = (1,0)5* +m?B is simply denoted by
(1,05
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(5) From (1) of Observation 1 and relation ¢g(I) 4+ ¢g(anng(I)) = ¢5(B),
where 1 is an ideal of B, the annihilator ideal over the ideals of B of
length 2 and 3 induces the permutations:

()7 ()72 =[] {(0,1),(1,A) : A € GF(g")}
—{(0,1),(1,A) : A; € GF(¢*)}
@ @ =00 f annp(dg7) = 05,
@ @' =T if anng (@) = v

Lemma 6. Let (R,m,GF(q)) € 2 be any of the rings (1), (2), (5) — (7),
(11), (13), (14), (16), (17), (20) — (28) in Theorem 1. Let f, deg(f) = s,
(B,mB,GF(¢*)), T, T, & = {a1,a2} and B = {a1,a3} be as above. Then
(L,0)* =(0,1), (0,1)* =(1,0), (LA™ = (LX), A, e €T, Mdo =1

Proof: Assertions follow from the following relations: a% = ag’, asay = 0,

(0,1)% = B, (1,0)25 = a;B, (0, 1)25 = m?B, (1,0)3* = anng(m?B) and
(LAl)ES(LAz)gS = ((1+ MA2)ad).

Lemma 7. Let (R,m,GF(q)) € 2 be any of the rings (3), (4), (8)—(10), (12),
(15), (18), (29) in Theorem 1. Let f, deg(f) = s, (B = R[T]/(f),mB, GF(¢*)),
T, Ty, & = {a1,az} and B = {ag,a3} be as above. Then
(1,0)l1 = (O7 1), (0, 1)l1 = (1,0), (1,/\1)L1 = (1,/\2)7 A, A2 €T, ;\1;\2 = —5.

Proof: Assertions follow from relations a? = ¢a3 and (1, A\)%* (1, )\g)gs =
(¢4 A1A2)ad), and the same kind of arguments as in the proof of Lemma 6.
Lemma 8. Let (R,m,GF(q)) € 2 be any of the rings (19), (30) in Theorem
1. Let f, deg(f) = s, (B = R[T]/(f), mB,GF(¢")), T, Ts, & = {a1,02} and
B = {ai,a3} be as above. Then o B

(1,02 =(0,1), (0,1)* = (1,0), (1L, A)™ = (1,h), A, Ao €T, MAg = —(2

Proof: Assertions follow from relations of = ¢%a3 and (1, ;)5 (1, )\g)g‘“ =

((¢? + M1 A2)a3), and the same kind of arguments as in the proof of Lemma 6.

3 Duals of constacyclic codes over rings in §i

Let R be a ring and v be a unit of R. A 7-constacyclic code over R is a
submodule of R" invariant under the permutation o, : R — R" given by
(agy...yan-1) = (Yan—1,a9,...,a,—2). These codes can be thought as ideals
in the ring R[T]/(T™—~) via the y-polynomial representation of R", r, : R" —
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R[T]/(T"™ —+) given by (ag, ..., an_1) + ag+arT+...+a, 1T+ (T" —~).
The dual of a linear code C over R of length n is defined as C+ = {a@ €
R":d-b= 0, Vv b e C}, where - is the usual scalar product on R"™. Let
=20 @l + (T —5), g = Y5y BT + (T" = 9) in R[T]/(T" - 5),
then fg* = 0 in R[T]/(T™ — ~) if and only if (by,...,b,—1) is orthogonal to
(ag,...,an—1) and all of its vy-constacyclic shifts, if and only if (ag,...,an—1)
is orthogonal to (bg,...,b,_1) and all of its v~ -constacyclic shifts.

For the rest of this manuscript we write 27— a;T? for the corresponding
coset 37" a; T + (T™ — ) in the ring R[T]/(T™ —~), n will be the length of
codes, (n,p) = 1, so that, T™ —~ is a product of unique monic basic irreducible
pairwise coprime polynomials in R[T].

The following is the result on the structure of y-constacyclic codes over a
ring in 3, given in [5].
Theorem 2. Let (R,m,GF(q)) € 3, v a unit of R, @ = {a1, a2}, B =
{ag,03}, T and Ty as above and f1,...,f, the unique monic basic irreducible
pairwise coprime polynomials such that T" — v = f; ---f,., s; = deg(f;). Let C
a y-constacyclic code of length n over R. Then

(1) There exists a unique partition of [1,r], Uy, Uy, Usg, Us, Uy, Us.

(2) Foreachi € {2,3} and each u € U;, there is a unique v,, € {(0,1), (1, A) :
A € GF(¢®+)} such that the corresponding ideal, in R[T]/(T™ — =), of C
18

(m® IT fuom [T o I for Fo)5 s ()™ Fu - w € Usyw € Us)

and
‘C| — q5 ZuEUs Su+4ZueU4 5u+32ueu3 sut2 EuEUQ Sur""zueul Su

The next result gives the structure of the dual of a constacyclic code over
a ring of the family 3. Recall that if C is a linear code of length n over a
finite Frobenius ring R, then |C||Ct| = |R|", see [15].

Theorem 3. Let (R> m, GF(Q)) € gé; ez a = {011,042}, B = {0(1,06%}, T; Ts»

f1,..., £, si = deg(f;), C as in Theorem 2 and
(1) Uo, Uy, Uy, Us, Uy, Uy the unique partition of {1,...,r} associated to C,

(2) {V. : u € Uy UUz} the vectors such that the corresponding ideal, in
R[T]/(T" =), of C s
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w? I fum [T fo, I for (vu)g%?u, (Vu)a Tt u € Ug,w € Us).
ueU; ueUy u€eUs

Then
(1) £9*,...,f2* are the unique polynomials such that T™ — =1 = fp* ... fo*,
(2) The unique partition of {1,...,1r}, Vo, V1, Va, V3, V4, Vs, associated to the
~~1 constacyclic code CtisVyg=Us, V1 =Uy, Vo =Us, V3 =Uy, Vy =TUy,
Vs = Uy,
(3) Foru e Vg, the unique element in {(0,1), (1, A)} over GF(¢°*) associated
to Ct ds v~ 1(¥} in, gy, L1 is taken on the ring R[T]/(tu),
(4) Forw € V3, the unique element in {(0,1), (1, \)} over GF(¢°*) associated
to Ct is y=1(V5 )iy L2 is taken on the ring R[T]/(fy),

(5) The ideal in R[T]/(T™ —~y~1), associated to the y~*-constacyclic code C*
—_— . 'JTS . o
H for,m H £5* H £, (V1T ), )5
u€Uy ueU; u€Ug

T /- * Ts P
(’Y_l(V,jjz)(n f*))~ “ fs* LU € U27U} c U3> =

3 H fu* m H fu ’ H fu ’ )(nfw*))T *ﬂ;?

u€Uy u€Uy u€Ug

(T ) ty)a™ fur € Ugyw € Uy) =

m’ H fu, m H w H fu (7T (V) o

ueU; welUs  welp
()t )a  fu s u € Uz, w € U3)
and
|CL| — q5 ZUEUO 5u+4 EueUl S“'+3 ZueUz Su+2 Z:u€U3 5“+ZuEU4 s“'.
Proof: The relation M| = |GF(q)|**™) implies |R| = ¢°, see Section 2.

First, we prove the relation on |C*|. By Theorem 2 and since n = EueUO Syt
D uet; Su D uct, Su T D ueus Sut Dueu, Su T Dyeu, Sus then

5n
|CJ-| -1 _ 5ZuEUO su+4 Zueul sut3 ZueUz S“+22’LLEU3 SU"'ZueU4 Su

IC\

The equality about the ideals is easy to prove. Let D the y~!-constacyclic
code given by

3 H fo* m H fo*’ H fo*’ —1 )z(n,f;))gsw*f:?)\*7

ueUy ueUy ueUg
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Ts o 7
('}/_1( QJL_Q)(nf*)) “ fg* U € UQ,UJ S U3>

Since deg(fy*) = deg(fy), using Theorem 2, the number of elements of D
is ‘Dl _ q5 Ducuy Sutd ey, Sut3 ey, Sut2 X ycu, SutXucu, Su — |Cl| From
(1) of Lemma 3, (1) of Lemma 4 and relations: m* = (0), (f*)* = f, when f is a
polynomial with nonzero constant coefficient, f;f; = 0, in the ring R[T]/(T"™ —
7), for i # j, we have D C C* and the assertion follows.

Let R = GF(p?)[X,Y]/(X? — Y3,XY), be the ring of cases (13) or (25)
in Theorem 1. Every element of R can be uniquely written as ag + ai1x +
azy + azy? + asy?, where a; € GF(p?), a = {x,y}, 8 = {x,y?}, m® = (y?),
anng(m?) = (x,y?), m® = (y3) and T = GF(p?) is a set of representatives for
the residue field of R.

Example 1. Let R = GF(2)[X,Y]/(X? - Y3, XY), & = {x,y}, B = {x,y?} be
as above and v be a unit of R. By Hensel’s Lemma, T'® —~ = ffofaf,f5, where
=T 4T+, H=T"+T4+1, 5 =T+ T3+ T2+ T+1, f, = T>+T+1,
fs=T+1€GFQ)T], then 1* =2, 2* =1, 3* =3, 4* =4, 5* = 5.

If Uy = {1}, Uy = {2}, Uy = {3}, Us = {4}, Uy = {5}, U5 = 0, let
V3= (1,1 + T+ T3) over GF(21) = R[T]/(f3), V4 = (1,1 + T) over GF(2?) =
R[T]/({ts). The associated code is:

3Hfu,mH “’Hf"’ “B u,( )gSwAw:ueUg,wGU?,):

u€Uy u€Uy u€Us

(v* a5, yfs, (x4 (1 T+ T%)y[fs, [x + (14 T)ylfa) =
<y3f1f3f4f5, Xf1f2f3f47 yf1f2f3f4, [X+ (1 + T+T3) 2]f1f2f4f5, [X—|— (1 —|—T) ]f1f2f3f5>.

By Lemma 6 and because (1 +T + T3)~t =T + T2 + T3, in R[T]/{f3), (1 +
T)~! =T, in R[T)/(fs), we have V32 = (1, T + T? + T3), ¥} i = (1,T). Then

~~ 1(\7’§-)(15f) (1,14T), v~ (fo)(15 gy = (1,14 T) and the dual code, C*,
18:
H H H YT (15f*)) v fr
ueUy ueUy u€Ug
Ts o 2
(7_1( T )(15 f*)) wr :; S UQ,’U} S U3> =

(v, xf, yh, B, [x 4 (1+ T)y?)fa, [+ (14 T)ylfs) = (*fifafsts,
xfofsfafs, yhafsfafs, fifsfafs, [x + (14 T)y*fifafsfs, [x + (1 4+ T)ylfifafafs).
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4 Self-dual constacyclic codes over rings in §;

The code C is called self-dual if C = Ct. In this Section the algebraic charac-
terization of self-dual y-constacyclic codes over rings in the family F3 is given,
when v =y~ 1.

Let (R,m,GF(q)) be a finite local ring, fi,...,f. the unique monic basic
irreducible pairwise coprime polynomials such that T" — v = f;---f., u €
{L,...,r} and U C {1,...,7r}. Recall that, U* is the set of indexes of the
polynomials which are associates of the polynomials in {f, : v € U}, u* denotes
the index of the polynomial which is associate of f,, (u*)* = u, f« = £2*,
[.cufy” = [luecu fur = I1,cu~ fu and there are 71, ro non negative integers
such that fo;_1 is associate of fa;, 1 < ¢ < ry, and f5,, 4, is self-reciprocal
polynomial, 1 < i < ro. U is called self-reciprocal if U* = U and special if
unu* =9.

Theorem 4. Let (vaa GF(Q)) € Sé, v, a = {0417042}, B = {alaa%}7 T; Ts;
f1,..., L., s; = deg(f;), C as in Theorem 2, 1, ro as above and

(1) Uo, Uy, Usq,Us, Uy, Us the unique partition of {1,...,r}, associated to C,
(2) {Vu : u € Uy U U3} the vectors such that the corresponding ideal, in
R[T]/(T" =), of C is

T+ 17T+ TT o+ /o \Ted o \To, ™
(m? H f,,m H f,, H f,, <V“)B “fu, (V)5 fu 2 u € Ug,w € Us).
ueUy u€Uy u€Us

The following conditions are equivalent:

(1) C is self-dual code;

w*

(2) Uf = Us_y, fori € {0,...,5}, ¥, W(VJ‘I)Z‘n’fu), for uw € Uy and

o =l
Vo =Y(V?){nt,) Jor w € Us.

(3) Uf C Us_y, fori € {0,...,5}, ¥, = v(vjs)zn,fu), for uw € Uy and
Vi = (V02 s, ) Jor w € Us.

Proof: (2) < (3) is easy to prove.
(1) & (2) From uniqueness in Theorem 2, by Theorem 3 and since {Uf, U7,
Uz, U3, Uz, Ut} is a partition of {1,...,7},
C=Cts

T - 7T - 1T . - \Ts, 7 - \Ts, 7
(® I twm [] £ [ fu (V) 5" Fus ()™ o w € Uz, w € Us) =
ueUy u€Uy u€Us
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3 Ts,, & /—/=1 Ts, ¢ .
H fuvm H U H fu7 w* (nf )) fw’(IY(Vu*Q)z< )& fu .
ueU} ueUT ueUg

u e Us,w e Us),

Aad Ul = UZ? U5 = US? U2 = U§7 <(‘7u)gm/f\u HUAS U2> = <(W(VL )(n fu)) suf
e Ug) and ((Fu)5Fu w € Us) = (T(Fe2 ), i fu - u € UB),
< U; =Ujg, Us = UG, Uy = U, for each u € Uy there is € € Us, for each
w € Us there is € € Uy such that ((¥, )g“f:) = ((W(Vél)fn,fs*))gsf*f;:) and

o \Tow &\ jrym .
(F) T ) = ()7 e T,
< U; = Uj, Us = U, Uy = Uj, for each u € Uy there is ¢ € Us, for
each w € Us there is € € Uy such that f, oy Ty = fe, u = " 5w = €,

Vo = W(V#)E‘nf and v,, = 7(V5 )(n f0)’ by Lemma 5.
For the next result recall that if ¥ = 1, the binomial T™ — v always has
a basic irreducible self reciprocal factor in R[T| and if ¥ = —1, the binomial

T™ — v might not have a basic irreducible self reciprocal factor in R[T].

Corollary 1. With the notation as in Theorem 4, if C is a self-dual code there
is not u € {1,...,r} such that £, is self reciprocal.
In particular if ¥ = 1 there is not any self dual vy-constacyclic code over R.

Proof: Since U; = U}, Us = Uj; and Uy = U3, then each U; is special and
the assertion follows.

In the following lines some examples are given illustrating the above results.

Example 2. Let (R,m,GF(2%)) € §% and v a unit of R. From Corollary 1,
there is not any self dual vy-constacyclic code over R.

Example 3. Let R = GF(3)[X, Y]/(X? — Y3,XY) be the ring of case (13) in
Theorem 1, & = {x,y}, B = {x,¥?} as above and v = 2. By Hensel’s Lemma,
T4 —2=T*+ 1= fify, where f; = T2 + 2T + 2, fo = T2+ T + 2 € R[T]. We
have 1* = 2.

Let Uy = Uy = Uy =Us =0, Ups = {1}, U3 = {2}, vy = (1,1 + T) over
GF(2?) = R[T/(f1), ¥i* = (1,1 +T), by Lemma 6, %2 = 2(¥{?)},,) =
(1,24 T), over GF(2%) = R[T]/(fa).

Then the y-constacyclic code

L T
3 H fu;mH wy H fua Vu Ié fua(vw)&&wfw 2UEU2,U)EU3>:
u€eUy u€Uy u€Us

(x+ 1+ Ty, [x + 2+ Tylfa) = (x+ (1 + T)y?]fo, [x + (2 + T)ylfy)
1s self-dual.
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5 Reversible constacyclic codes over rings in 1

A linear code C of length n over the ring R is reversible if it is invariant
under the reversible permutation v : R — R"™ given by (ag,a1,.-.,0n_1) —
(an-1,-.-,a1,ap). In this Section the algebraic characterization of reversible
y-constacyclic codes over rings in the family F# is given, when v =y~ 1.

The following result will be useful; claim (2) was treated in [4].

Lemma 9. Let R be a finite ring, v a unit of R, t, 0 and ry the reversible per-
mutation, the ~v-constacyclic permutation and the y-polynomial representation
of R™, respectively, then:

(1) vool ! (yd) = 0, 0t(d), for all @ € R™.

(2) yf* =ryocttlovor 1(f), forf=ag+...+ a1 T"" " € R[T]/(T" —7)
with deg(f) = k.

Proof: (1) Let @ = (ag,a1,...,an—1), then

too,ot(d) =trooy(an—1,...,a1,a0) = v(yag, Gn-1,...,a1) =

(ala <oy An—1, ’Yao) = 02_1(7(a07 ag, .. - 7an71)) = 02_1(7(6))
Observation 4. Under the notation as in Lemma 9, let C be a y-constacyclic
code.

(1) From relation (1) of Lemma 9, o(¢(C)) = toa? ™' (yC) = toa? *(C) =
t(C) and t(C) is a y-constacyclic code.

(2) Let @ € R™, relation 07(d@) = vd and (2) of Lemma 9, imply o7~*~1 o

M (ry(@))*] = (@), where k = deg(r,(d@)). This relation means that
the reversible permutation of a@ can be obtained from the - constacyclic
permutation and the reciprocal operation of r~(@). This implies that the

ideal corresponding to t(C) is the ideal generated by {f* : f € r,(C)}.

For the next result recall that if 01, ...,0k, hy,...,hy € R[T] and the leader
coefficient of each d; is a unit, then (61hy + ...+ dghg)* = T“65hi + ... +
T**§;hy, for some uq, . .., u, non negative integers, see Section 2. This implies
if ¢ € (61,...,0%) then ©* € (67,...,65).

Lemma 10. Let (R,m,GF(q)) € 52, v, @ = {a1, s}, B = {ag,03}, T, T,

f1,..., 1., s; = deg(f;), C as in Theorem 2, v the reversible permutation on R™
and

(1) Uo, Uy, Usq,Us, Uy, Uy the unique partition of {1,...,r}, associated to C,
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(2) {Vu : u € Uy UUs} the vectors such that the corresponding ideal, in
R[T]/(T" =), of C is

T - . 1T - \Ts, 7 - \Ts, 7
* I fwm ] £ [ fo (V) 5" fus (V)5 fu  w € Up, w € Us).
ueU, ueUy u€eUs

Then

(1) Vo = U, Vi = Ut, Vo = U3, Vs = U3, V4 = Uz, Vs = Uz is the
unique partition of {1,...,r}, associated to v(C),

(2) {7Euw) () Y0 ) gy 2w € Vo = Us,w € Vg = Ui} are the unique
vectors such that the corresponding ideal, in R[T]/{T™ — ), of t(C) is

TT ¢ o TT ¢ TT ¢ rmre v ATewd mrm ax Tay &~

(m? H fy, m H fu, H fu, (’V(VU*)(n,fu))[; “fuy TV ) (ng))a T
u€U7 u€U} u€UZ

u € U, w e U).

Proof: Let D the ~-constacyclic code given by
— % — % % L T, . ~ L T, .~

<m3 H fu »m H fu ’ H fu 7((Vu)(n,f,,j))3u f;:’((vw)(mffu))&w f?f}
u€U; u€Uy u€Us

uGUg,wEU;;):

(o TT e [T o TT e GO Vi) " B

ueUs wel;  weU:
T yryx 72~
(ﬁ(vw*)?mf;*))& (v fr.rue U;, w e U§> =
T - 17 - T - ~( Tsu ™ (=(2 Tsow ¢
<m3 H fu, m H fu, H fu7('y(vu*)>(kn’fu))5 fuv(ly(vw*)z(n,fw))@ fo
ueU; uel;  weU:

u € Uz, w € Uj).

By (2) and (3) of Lemma 3, (2) and (3) of Lemma 4, and Observation 4, the
corresponding ideal of t(C) is contained in D. Since deg(f;) = deg(f}), using
Theorem 2, the number of elements in D and in C is the same. The assertion
follows.

Theorem 5. Let (Rﬂ'(} GF(Q)) € S’é: v, a = {Oq,CQ}, B = {a17a§}7 T; Tsa
f1,....f. and s; = deg(f;), C as in Theorem 2 and

(1) U, Uy, Usq,Us, Uy, Uy the unique partition of {1,...,r}, associated to C,
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(2) {Vu : u € Uy UUs} the vectors such that the corresponding ideal, in
R[T]/(T" =), of C is

T - . 1T - \Ts, 7 - \Ts, 7
* I fwm ] £ [ fo (V) 5" fus (V)5 fu  w € Up, w € Us).
ueU, ueUy u€eUs

The following conditions are equivalent:
(1) C is a reversible code;

(2) Ui is self-reciprocal, for i € {1,...,5}, and Vo = §(Vur){, 1.y, Jor u €
Uy U Ug;

(8) U; is self-reciprocal, for i € {0,...,5}, and v,, = W(V’u*)’(kn,fu), foru €
Us U Us.

Proof: (1) < (2) C is reversible <
U; = Uj, Uy = U}, Us = Ug, for each u € Uy there exists € € U3, for each

—

w € Us there exists e € U3 such that <(vu)gﬂuf;> = <(7(vg*);n,fe))g%f§> and

<(\7w)£3”f;> = <(7(\?€*)2‘n fe))g*f:% by Lemma 10, uniqueness in Theorem 2
and because U§, U, Us, U%, Ui, U is a partition of {1,...,7},

< U =U7, Uy = U}, Us = Ug, for each u € Uj there exists € € U3, for each
w € Uj there exists € € U} such that ((\‘/’u)g“f;> = (V) (e *))gss* f.+) and

= \Tsy (3 \* Tapu 7>

(Vw)g ™ fw) = <(7(VE)(n7fe*))& fer),

& Uy, Uy, Us, Uy, Us are self-reciprocal, for each u € Us there exists € € U,
such that f, = £2* and v,, = W(\'I’E)?nf ) for each w € Uj there exists € € Us

such that f,, = £ and v, =5(Ve){

n,fex)?

& Uy, Uy, Us, Uy, Us are self-reciprocal, for each u € Uy, ¥, = W(Vu*)zn £)

by Lemma 5,

and for each w € Uz, ¥, = W(Vw*)zn t0)’
& Uy, Us, Us, Uy, Us are self-reciprocal and for each v € Uy U Ug, V,, =

*

(¥ )
(2) & (3) It is easy to check.

Example 4. Let R = GF(2)[X,Y]/(X? — Y3, XY), v, & = {x,y}, f1, fa, f3,
fa, f5 as in Example 1, theny =1, 1" =2, 2*=1,3" =3, 4* =4, 5* =5.
Let U1 = {4}, U2 = {1,2}, U3 = {3}, U4 = {5}, Uo = U5 = (D, \71 =
(1,T), over GF(2*) = GF(2)[T]/(f1), ¥2 = YV (15,0, = (1,T3 4+ T?), over
GF(2)[T]/(f2).

Since T2 +T? € GF(2)[T]/(f3) is a root of the irreducible polynomial T% + T +
1 € GF(2)[T] then ¥3 = (1, T3 + T? 4+ 1) over GF(2)[T]/(f3) has the property



SELF DUAL, REVERSIBLE AND COMPLEMENTARY DUALS
CONSTACYCLIC CODES OVER FINITE LOCAL FROBENIUS NON-CHAIN
RINGS OF LENGTH 5 AND NILPOTENCY INDEX 4 47

Vs = 7(\7’3)2‘157&), by Observation 2. Hence the y-constacyclic code:

C=(m® [] tom [] . ] fo (v*u)gsv?u, (V)5 Fu : u € Ug,w € Ug) =
ueUy u€Uy ueUs
(f1, mfs, [x + TyJfy, [x + (T3 + T)ylfy, [x + (T% + T2 + 1)ylfs) =
(frfofsts, mbyfofsfy, [x + Tylfofsfafs, [x + (T° + T2)ylfif3fsfs,
[x + (T% + T2 + 1)y]fifofafs)

s reversible.

6  Constacyclic codes with Complementary Duals over
rings in §;

A linear code with complementary dual is defined to be a linear code C whose
dual code satisfies CNC+ = (0). In this Section the algebraic characterization

of complementary dual y-constacyclic codes over rings in the family §3 is given,

when v =y~ 1.

Theorem 6. Let (R,m,GF(q)) € 33, v, & = {a1, as}, 8= {aq,a3}, T, T,

f1,... 1§, si = deg(f;), C as in Theorem 2 and
(1) Up, Uy, Usq,Us, Uy, Uy the unique partition of {1,...,r}, associated to C,
(2) {V. : u € Uy U U3} the vectors such that the corresponding ideal, in
R[T]/(T" =), of C s

7+ 1T 2 171 o+ o To? o \To
(m® TT fuom JT fus T fur (Fu) 5By (F)a™ b s u € Uzyw € Us).
ueU; ueUy u€eUs

The following conditions are equivalent:
(1) Cis a Complementary dual code;
(2) Uy and Us are self-reciprocal and U; = 0, fori € {1,2,3,4};
(8) Us s self-reciprocal and U; = 0, for i € {1,2,3,4}.

In this case C = ( ﬁ\fu> and C+ = ( ﬁ\fu)
u€Us u€Ug
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Proof: First recall the following facts: The intersection of two non zero
1deals of R is not zero; if U = {uy,...,ux} C {1,7}, the ideal generated by

HuEUf in R[T]/(T™ —~) is identified with (0) ®R[T]/(f, )@ (0)&...® 0) @
R[T]/(f,,) @ (0); the rings R[T]/(f;) are Frobenius, i € {1,...,7}.
Now, from Theorem 3,

m’ H fu,m H w H fu (VT ) )57

ueUj} ueU7y ueUg

(’Y(HJ_ )(nf )) f UEU2,’LU€U3>

Then CN Ct = (0)

& [UpuUjuU3UU5UU;] N [U;UU,UU3U U, UUs] =0
< UsuUTUUsUUsUU; ={1,...,7}\ U C Uy

< Ug = Uy, U =U; =Uj = U =0, because |U§| = |Up|

< Up and Us are self-reciprocal and U = Uj = U5 = Uj =0
& Us is self-reciprocal and Uj = Uj = U} = U} = 0.

Example 5. Let R = GF(2)[X,Y]/(X2-Y3 XY), v, & = {x,y}, f1, fo, f3, f4,
fs as in Example 1, then 1* =2, 2* =1, 3* =3, 4* =4, 5* =5 and the self-
reciprocal subsets of {1,2,3,4,5} are {1,2}, {1,2,3}, {1,2,3,4}, {1,2,3,4,5},
{1,2,4}, {1,2,4,5}, {1,2,5}, {3}, {3,4}, {3,4,5} {4}, {4,5}, {5} and 0.
The Complementary ~y-constacyclic code over R of length 15 and their duals
are the following:

(1) C = (fify) = (f3f4fs) and its dual is CL = (f5f,65) = (f1f);
(2) C= (@) (f4f5) and its dual is C+ = <f4f5> (f11af3);
(9) C = (f1Ef35) = (f5) and its dual is CL = (f5) = (fifaf38s);
(4) C = (fiEf36485) = (1) and its dual is C+ = (0);

(5) C = (fifofy) = (f3£5) and its dual is C+ = (Bfs) = (f1faf);
(6) C = (fifofafs) = (£3) and its dual is C+ = (5) = (fifafufs);

(7) C= <f1f2f5> == <f3f4> and its dual is CJ' f3f4> == <f1f2 5);

)
)
)
(8) C = (f3) = (fifofyfs) and its dual is C+ = (fiEf4fs) = (f3);
)
)

(9) C= <Eﬁ> = (f1faf5) and its dual is C+ = f1f2f5> (f3f4);

)

(Fsfs
(
(
(
(
(fif2

(10) C = (@> = (fify) and its dual is C+ = (f;f;) = (f3f4f5);
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(11) C = (f)) = (fifofsfs) and its dual is CL = (f1fafsfs) = (£1);

(12) C = (ff5) = (f1faf) and its dual is C = (f1faf3) = (f4fs);

(19) C = (£) = (fifofsts) and its dual is CL = (£1E2f38)) = (£5);

(14) C = (0) and its dual is C+ = (1).
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