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Varma Quantile Entropy Order

Sorina-Cezarina Sfetcu

Abstract
We give a stochastic order for Varma residual entropy and study
several properties of it, like closure, reversed closure and preservation of
this order in some stochastic models.

1 Introduction and Preliminaries

We consider a nonnegative random variable X, which represents a living

thing or the lifetime of a device, having absolutely continuous cumulative

distribution function Fx, survival function Fx i F 'x and probability

density function fx. Shannon entropy of X is given via
Hyx = —Ez (log fx(Z)),

where "log” designate the natural logarithm function and Z is a nonnegative
random variable identically distributed like X.

The concept of Shannon entropy has multiple generalizations (Tsallis en-
tropy, Rényi entropy, Varma entropy etc.) being useful in many technological
areas like Physics, Communication Theory, Probability, Statistics, Economics
ete. (see [1], [12], [24], [38]). More exactly, there are specific areas where the
entropies are used: the income distribution (see [26], [31]), non-coding human
DNA (see [22]), earthquakes (see [5]), stock exchanges (see [14]), biostatistics
(see [6], [13], [35]), model selection (see [33], [34]) statistical mechanics (see
[27], [29], [37]) internet (see [2]) etc.

In this paper we will work with Varma entropy, notion introduced in [39],
being now very actual (see [3], [15], [17], [18], [23], [25], [28], [36]). Let o, B € R
such that 8 > 1 and f — 1 < a < 8. We define Varma entropy of X via
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1 = 5 dow (B2 ((x(2)7772) ).
We denote by 1|4 the characteristic (indicator) function of the set A.
In [9] and [11], the notion of (Shannon) residual entropy was introduced as
a dynamic measure of uncertainty. More exactly, for an absolutely continuous
nonnegative random variable X, the residual life of X is X; = [X —t | X > {]
and the residual entropy of X at time ¢ is

- - 1 o Ix(Z)
Hx(t) = Hx, = —Ez <Fx(t) o <FX(t)

In other words, the residual entropy of X measures the uncertainty of the
residual life of X;. Some interesting results concerning the residual entropy
can be found in [7], [8], [10], [16], [19], [20], [40] and in many other papers.

We define Varma residual entropy via

a+p-2
Héfg(t) = 3%@ log (Ez (Fxl(t) (?}fi;) > 1|[Z>t]> for any ¢t > 0.

It is clearly that H} 5(0) = HZ 4.

We consider the quantile function

) 1[Z>t]> for any t > 0.

Qx(u) ¥ Fl(u) = inf{x € [0,00) | Fyx(z) > u} for any u € [0, 1].

In some cases the quantile function F'y ! is called the right-continuous in-
verse function of Fx (or, in short, of X).

We have Fx(Qx(u)) = u. Differentiating both sides of this equality with
respect to u, we get Fi (Qx(u))Qx(u) = 1. Denote gx(u) = Q'x(u) for any
u € [0,1]. Hence gx(u) fx(Qx(uw)) =1 for any u € [0, 1].

In [32] was introduced a quantile version of Shannon residual entropy and in
[20] and [40] this idea was generalized for Rényi residual entropy. We continue
this work for Varma residual entropy, defining

\Ilgfﬂ(u) = Hé(,ﬁ(QX(u)) for any w € [0, 1].

We have
1 1 fx(Z2)\*T°?
HY 5(Qx(u) = 5 o8 (HEZ (( - Hizsoxwy | | =
1 1 a+pB—1
U
Gl | Bv (1_<;> ax(U)ucv<r | | =
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08—«
a+p-2
e (M )

We use the following lemma.

1 (gx(U))* ™7
——log (EU <(l_u)a+ﬁ_11|[u<U<1] =

Lemma 1.1. (see [20]) Let f : [0,1] x [0,00) — R with the property that
Ev (f(u,U)1|ju<v<1)) = 0 for any u € [0,1] and g : [0,00) — [0,00) be an
increasing function. Then

Ey (f(u, U)Q(U)1|[u<U<1]) >0,

provided the expectations exist.

2 Results

Let X and Y be two nonnegative absolutely continuous random variables
with distribution functions Fy, respectively Fy, survival functions Fyx, re-
spectively F'y and density functions fx, respectively fy.

From now on, Z will be a nonnegative absolutely continuous random vari-
able identically distributed like another random variables which appear in
formulas: X, Xi.,, X,,., etc. (not necessarily identically distributed like Y,
Y1, Yo etc.).

Definition 2.1. We say that X is smaller than Y in the Varma quantile
entropy order (and denote X <yqg Y) if H(fﬁ(QX(u)) < ngﬁ(Qy(u)) for
any u € [0, 1].

The next theorem is very useful in this paper.

Theorem 2.2. a) The following assertions are equivalent:
1. X <ygrY.

a+p—2 fx(2) 2—(a+p)
2.Ez ((fX(Z)) + l(fY(Fyl(FX(Z)))> — 1| 1iz5q | =0 for

any t > 0.
b) The following assertions are equivalent:
1. Y <ygr X.

2 (ath)
2.E, ((fX(Z))&JrBZ l( fX(Z)(g)))) _ 1] 1|[Z>t]> <0 for

fy (Fy ' (Fx
any t > 0.
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Proof. We will prove only a), the proof of b) being similar.
We have X <ygg Y if and only if

Eo (fx(@x (0))* 7 Ucvay) < Bo (@ (0) P jcyay)) for
any u € [0,1]

(see Definition 2.1).
Considering U = Fx(Z) in the above inequality we have the equivalences
(for any u € [0,1]):

X <vorY ©Ez ((fX(Z))OZHF2 1|[z>F;1(u)]) <
Bz (A @ (Fx (2D 1 e por ) &
Ez ((fX(Z))CH’Bf2 1\[z>F;1(u)]) <
Ez ((f (57 (Fx (2)) " Uimrpry) ©

whp-2 Ix(z) e
“ <(fX(Z))+ [(MF;I(FX(z)))) B Rt

Putting F'y 1(u) = t in the preceding equivalences we get the conclusion.
O

Definition 2.3. (see [30]) We say that:
1. X is smaller than Y in the dispersive order (and write X <g;5p Y) if

Fi'(0) — Fx'(y) < Fy ' (0) — Fy'(y) forany 0 <y < § < 1,
which is equivalent to
fx(@) > fy (Fy}(Fx(x))) for any @ > 0.

2. X is smaller than Y in the convex transform order (and write X <.Y)
if the function

[0,00) 2 2 — Fy '(Fx(z)) is convex,
which is equivalent to the fact that the function

fx(z)
fy (FyH (Fx (x)))
Theorem 2.4. We assume that X <gisp Y.
a) Ifa+ <2, then X <ygr Y.
b) Ifa+p3>2, thenY SVQE X.

[0,00) > —

is nonnegative increasing.
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Proof. We will prove only a), the proof of b) being similar.
If X <gisp Y then fx(z) > fy(Fy'(Fx(z))) for any z > 0. We apply
Theorem 2.2. [

Theorem 2.5. We assume that X <.Y and fx(0) > fy(0) > 0.
a) Ifa+ <2, then X <ygr Y.
b) Ifa+3>2, thenY SVQE X.

Proof. We will prove only a), the proof of b) being similar.
If X <.Y then the function

[0,00) 52 — J_c)f (z) is nonnegative increasing,
fy (Fy " (Fx(2)))
hence
Jj)f(x) > fx(0) >,
fy (Fy (Fx(2))) — fr(0)
The conclusion follows from Theorem 2.2. O

We consider Xi,...,X,, and Yi,...,Y, independent and identically dis-
tributed (i.i.d.) copies of X, respectively of ¥ and

X1.n = min{ Xy, ..., X, }, X = max{Xy, ..., Xpn},
Yl:n = IIliIl{Yl, ...7Yn}, Yn:n = maX{Yl, 7Yn}

We use the same notations as above for distribution functions, survival
functions and density functions, namely F,. , Fx,.., fx,.. etc.

Theorem 2.6. Assuming that X <yqr Y, we have X,., <vor Ynn.

Proof. If X <yqEr Y, then, according to Theorem 2.2,

2—(a+B)
Ez ((fX(Z))O‘JrBQ [(fy( ((12(2)))) 1] 1|[Z>t]> > 0 for any

t>0.
We remark that fx,. (z) =n(Fx(z))"" 1 fx(z).
Hence
S0 () _ fx (x) .
o (Fy ! (Fx,., (2)  fy(Fy ' (Fx(2)))

n:n
Because the function

[0,00) 5 2 — (n(Fx (m))"‘l)a+5_l is nonnegative increasing,
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it follows by Lemma 1.1 that

f 2) 2—(a+p)
Ez | (fx,..(2))*"77 Y — 1| Uizsg | 20
Fran () (Fx,..,(2))) e
for any t > 0.
Applying Theorem 2.2 we conclude that X,., <vor Yn:n- O]

With a similar technique like in Theorem 2.6 we get
Theorem 2.7. Assuming that Xi., <vgr Yim, we have X <ygr Y.

Let X1, X5,... and Y1,Y5,... be sequences of independent and identically
distributed copies of X, respectively of Y. Let N be a positive integer random
variable having the probability mass function py(n) = P(N =n), n =1,2, ...
We assume that N is independent of X/s and Y;s. We consider

Xl:N = min{Xl, ~-~7XN}7 XN:N = 1’I18JX{)(17 ...,XN}
and
Yl:N = min{Yl, ceey YN}, YN:N = maX{Yl, ceey YN}

The following two theorems are extensions of Theorems 2.6 and 2.7 from
a finite number n to a random variable N. We will prove only Theorem 2.9.

Theorem 2.8. Assuming that X <yogr Y, we have Xn.nv <vor Yn.N-
Theorem 2.9. Assuming that X1.n <vor Y1.n, we have X <yqgp Y.
Proof. If X1.x <vgg Yi.n, then

fXI:N (Z)

2—(a+p)
- =1 1izsqg | =
Frin (B (Fx, <Z>>>> =
0 for any ¢ > 0.

Ez | (fx,n(2)°177? (

It can be easily seen that

Fxn (@) = fx(@) Y n (Fx(@)" " pu(n)

n=1

and

n (Fy(a:))rh1 pn(n),

NE

fY1;N (x) = fY(-f)

n=1
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where py(n) = P(N =n), n=1,2,... is the probability mass function of N.
Also we remark that

Fy, (Fx, (@) = By (Fx(2)).

Hence

fxin (@) _ x ()

Frin(Fyl, (Fxon (@) fy(Fy ' (Fx(2)))

Because the function

1-(at8)
[0,00) 32 — (Z n(Fx (x))"_le(n)> is nonnegative increasing,

n=1

it follows by Lemma 1.1 that

s x(2) 2—(a+p)
E ((fX(Z)) * [<fY(FY1(FX(Z)))> !
t>0.

1|[Z>t]> > 0 for any

IV

Applying Theorem 2.2 we conclude that X <yqg Y. O

Let 6 > 0. We consider X (#) and Y (6) two nonnegative absolutely contin-
uous random variables with survival functions (Fx)? and (Fy)? respectively.

Theorem 2.10. a) If 0 > 1 and X <yqr Y, then X(0) <vor Y ().
b) IfO <0<1and X(G) SVQE Y(Q), then X ngE Y.

Proof. For X (f) and Y (), we denote the distribution functions by Fx ), re-
spectively Fy (g, the right continuous inverse functions by F'y (19), respectively

F;(le) and the density functions, by fx (), respectively fy (o).
For any « > 0 we have

Ix@(r) =10 (FX(ﬂf))e_l fx (@),

Fy (g (Fx(o)(2)) = Fy't (Fx (@),

1

fr o) (FQ(le) (FX<9>($>)) =0(Fx(2))""" fy (Fy* (Fx(2))).

Hence

Fxo) (@) _ fx(@) (2.1)

fr o) (F;(le) (FX(o)(l"))) fy (Fi;l (FX(m)))

According to Theorem 2.2 we have X (0) <ygg Y (9) if and only if
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£ [ (o (Z))a+5—2 ( Ix6)(2) )2(a+6) ) s
) Iy (Fy oy (Fx(0)(2))) )=

0 for any t >0

and X <ygg Y if and only if

2—(at+p)
Ez ((fX(Z))O‘+B2 [(fy(Ff}f((]fX(Z))) — 1] 1|[Z>t]> > 0 for any
Y
t

According to (2.1) we have

s 2) 2—(a+B)
E Z a+pB—2 X(0) —1]1 —
z ((fx(e)( ) {(fy(e)(Fy<le>(Fx(9)(Z)))) |[Z>ﬂ>

2—(a+p)
nl -1 at+B-1 o — f (Z)
Ez ((0 (Fx () ) (fx(2))*t072 |:<fy(F;)1((FX(Z)))> - 1:| 1|[Z>t])

for any t > 0.

a) We assume that 0 < 6 <1 and X <yggr Y. Hence the function

[0,00) 32 — (9 (Fx (gc))(771)0£+f}71 is nonnegative increasing
and
B A 2—(a+B)
Ez ((fX(Z)) +B-2 [(fy(pg)l(((pi(z)))) _ 1] 1|[z>t]> > 0 for any
t>0.

We apply Lemma 1.1 and conclude that X (0) <ygg Y (0).
b) We assume that > 1 and X (0) <ygg Y (6). Hence the function

— o—1\1—(a+5) L. .
[0,00) 32 — (9 (Fx(z)) ) is nonnegative increasing

and

2—(a+p)
fx0)(Z)
1 -1 1|[Z>t] >
fy ) (Fy () (Fx(0)(2)))
0 for any t > 0.

Ez (fX(G)(Z))a+ﬂ_2 (

We apply again Lemma 1.1 and obtain the conclusion. O



VARMA QUANTILE ENTROPY ORDER 257

In the sequel we consider a proportional hazard model. For any ¢ > 0 let
X(6) and Y () be two nonnegative absolutely continuous random variables
with distribution functions (Fx)? and (Fy)?.

Theorem 2.11. a) If 0 > 1 and X <yqr Y, then X(0) <vor Y ().
b) If0 <0 <1 and X(0) <vgr Y(0), then X <ygr Y.

Proof. The proof is similar with the proof of Theorem 2.10. O

In [21] it was studied the following proportional odds model. Let # > 0 and
X and Y be two nonnegative absolutely continuous random variables having
the survival functions Fx, respectively F'y and density functions fx, respec-
tively fy. The proportional odds random variables X, and Y}, are defined by
the survival functions

— . QFX (ac)

Fx, @) = o x )
respectively

pr (ZE) QFY (I)

T (1—-0)Fy ()

Theorem 2.12. a) If 0 > 1 and X <yqr Y, then X, <vgr Y,.
b) IfO <0<1and Xp SVQE ifp, then X SVQE Y.
0
Proof. For any 6 > 0let h:[0,1] = R, h(u) = ﬁ

We have:

a) If § > 1, then h is increasing concave on [0, 1].

b) If 0 < 6 < 1, then h is increasing convex on [0, 1].
We remark that

Fx,(x) = h(Fx())

and
pr (LE) =h (Fy(x))
Hence
fx, (@) = h (Fx(z)) fx(2)
and

fy, (@) =1 (Fy(x)) fy(z).

One can prove that F;pl (Fx,(z)) = Fy" (Fx(2)).
We obtain that
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fx, () B Ix(z)

o (B (P ) v (R (o)

Hence

Fx (2) 2—(a+pB)
a+pB—2 Xp _
Fz ((f x,(Z) {(fyp( <FXP(Z)>>) ) 1] ”[M) -

2—(a+B)
- atp-1 atB-2 fX—(Z) -
Ez ((h (Fx(2))) (fx(2)) <fy( LF x(Z)))> 1} 1|[Z>t]>

for any t > 0.

According to Theorem 2.2 we have X <y g Y if and only if

2—(atB)
Ey ((fX(Z))a+B—2 Kfy( ((FZX(Z)) ) _ 1] 1|[z>t]> > 0 for any

)
t>0

and X, <yqp Y, if and only if

(Fx,(2)) fx,(Z) 2_(a+ﬂ)_1 1 ~ 0 for
2N Iy, (Fy 1 (Fx, (2))) =] =

anyt > 0.
a) If X <yopY and 6 > 1, then

2—(a+B)
Ez ((fX(Z))aJrB—Z [(fy( ((FZX(Z)) ) — 1‘| 1|[Z>t]> > 0 for any

)
t>0

and the function
[0,00) 5 & — (W (FX($>))Q+I371 is nonnegative increasing,

hence, by Theorem 2.2, we get X, <ygg Y.
b) If Xp SVQE Y;,, and 0 < 0 < 1, then

(fx,(2))*T? fx,(2) 2701%71 1] > 0 for
M Fr, (Y. (Fx, (2))) )=

anytz()

and the function
1

(W (Fx(@)))*"

[0,00) 22 — is nonnegative increasing,
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hence, again by Theorem 2.2, we get X <yqr Y. O

In the sequel we are concerned with the preservation of the Varma quantile
entropy order in the record values model.

We consider {X; | i« > 1} a sequence of independent and identically dis-
tributed random variables from the random variable X with survival function
Fx and density function fx. The nth record times are the random variables
T¥ defined via T1* =1 and T, ; = min{j > T,¥ | X; > Xpx}, n > 1.

d
We denote Xpx 2] RX and call them the nth record values. For more
informations about record values we recommend [4].
Concerning RX we have, for any = > 0:

A (@) fx (@)

and

Py (@) = Fx(a) 3 X0

where T',, is the survival function of a Gamma random variable with the shape
parameter n and the scale parameter 1 and Ax(z) = —log Fx () is the cu-
mulative failure rate function of X.

Taking {Y; | ¢ > 1} a sequence of independent and identically distributed
random variables from the random variable Y, we have similar formulas for
RY.

Theorem 2.13. Let m,n € N def {1,2,...}.

a) If X <yor Y, then RX <vyqor RY for anyn € N.

b) If RX <vor RY, then R <yor RY for anyn >m > 1.
Proof. a) We assume that X <ygg Y. Then

a+pB— fX(Z) 2(eth)
B (22 | (5 1| 1lzay ) 0 for any
( Py (Fy (Fx(2)) .
t

> 0.

We remark that
frx () fx (@) |
fry (Fab (Fay(@)) v (5T (Fx (@)

Using the preceding equalities, we have
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atp2 Irx (2) e -
b <(fR5(Z)) [(fRyFRg(anf(z)))) o e ) =

1 a1 ath-t atB—2 x(2) et
Ez ((F(TL)AX (Z)> (fx(2)) |:(fy(F;1(FX(Z)))) — 1| lzsy | for

any t > 0.

Because the function

1
L'(n)
we obtain by Lemma 1.1 that

a+B—1
0,00) 2 — ( A}_l(:p)) is nonnegative increasing,

frx(2) e
1 -1 1|[Z>t] >0 for
fry (Fpy (Frx(2)))

any t > 0,

Ez (fRff (Z))a+5_2 (

i.e. RnX SVQE Rx
b) Let n >m > 1. If RX <voE RY  then

frx(Z) o)
1 -1 1|[Z>t] ZOfOI"
Frey (Fr (Frx (2)))
any t > 0.

Ez | (fax(2)*7°

m

Using previous formulas we get
frx (x) _ frx () fx ()
Ty, (Fip (Frx(@))  fry (Ff (Fry (@) S (57 (Fx(@)

m

and

(Ax ()"

Hence

atp—2 Frx (2 et
Ez (ng(Z)) P U liz>e | =

Py (Fry (Fpx (2)))

o) atp-1 atho2 F i (2) 2= (ath)
E Ax(Z)" ™™ z _m —1|1
Z (Fm) Ax(2) ) (g @) Foy (F4 (P x (2)) 17>
R R, R

n

for any t > 0.

Because the function

I(m)

a+pB—1
[0,00) 22 — < (Ax(m))nm> is nonnegative increasing

I'(n)
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and
2—(a+8)
a+pB— fRX(Z)
E A m ~1]1 >0 f
2| Uns®) (fR;<FRg (Fry (@) e | =0
any t > 0,

using Lemma 1.1, we obtain that

2—(a+B)
a+B—2 fRff(Z)
&2 | Unx () (fR;f,(F,;g(FRg(Z)))) 1| Mz | = O fer

any t > 0,
i.e. RnX SVQE Rr}; O

Conclusions

The notion of quantile entropy was intensively studied in the last years,
mainly for the multiple applications in Physics.

In this paper, we studied closure and reversed closure properties of the
Varma quantile entropy order under several reliability transformations. Also
we proved the preservation of the Varma quantile entropy order in several
stochastic models, like proportional hazard rate model, proportional reversed
hazard rate model, proportional odds model and record values model.

We intend to continue this work, considering another reliability transfor-
mations and another stochastic models.
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