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A Generalization of Archimedes’ Theorem
on the Area of a Parabolic Segment

Armen GRIGORYAN, Szymon IGNACIUK and Maciej PAROL

Abstract

Archimedes’ well known theorem on the area of a parabolic seg-
ment says that this area is 4/3 of the area of a certain inscribed tri-
angle. In this paper we generalize this theorem to the n-dimensional
euclidean space, n ≥ 3. It appears that the ratio of the volume of an n-
dimensional solid bounded by an (n− 1)-dimensional hyper-paraboloid
and an (n − 1)-dimensional hyperplane and the volume of a certain
inscribed cone (we analogously repeat Archimedes’ procedure) depends
only on the dimension of the euclidean space and it equals to 2n/(n+1).

Introduction

Let us recall Archimedes’ (287-212 BC) theorem on the area of a parabolic
segment. Let P be a parabola in the euclidean plane R2 and let AB be a
chord of P. Denote by C ′ the midpoint of AB. Consider the line ` which
passes through C ′ and is parallel to the symmetry line of P. Denote by C the
intersection of ` with the parabola P, see Figure 1.

The point C is often called the center of the arc AB of the parabola P.
Denote by S the parabolic segment bounded by the parabola P and the chord
AB. Archimedes’ famous result says that

Area(S) =
4

3
·Area(M ABC) . (0.1)
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Figure 1: Classic version of Archimedes’ theorem.

It is amazing that this relationship between the area of the parabolic segment
S and the area of the triangle M ABC does not depend on the shape of the
parabola P or the chord AB. Of course Archimedes’ proof does not involve
the integral calculus. In fact he gave two proofs of the above theorem. One of
them involves Eudoxus’ (408-355 BC) method of exhaustion and another one
is based on moving center of masses of certain arcs. For learning Archimedes’
original considerations we refer to [3, p. 251], see also [2].

In this paper we generalize Archimedes’ theorem to the n-dimensional eu-
clidean space Rn. Let us start with some notations. We denote by N the set
of all positive integers. Let n ∈ N, n ≥ 3. For a1, . . . , an−1 ∈ (0; +∞) we set

Pn−1 :=

{
(x1 . . . , xn) ∈ Rn : xn =

n−1∑
k=1

akx
2
k

}
. (0.2)

Notice that Pn−1 is an (n − 1)-dimensional elliptic hyper-paraboloid. For
b1, . . . , bn ∈ R we consider an (n− 1)-dimensional hyperplane Hn−1 given by

Hn−1 :=

{
(x1 . . . , xn) ∈ Rn : xn =

n−1∑
k=1

bkxk + bn

}
. (0.3)

Obviously, Hn−1 is not perpendicular to the hyperplane {(x1, . . . , xn−1, 0) :xi∈
R, i = 1, . . . , n− 1}. Notice that (x1, . . . , xn) ∈ Pn−1 ∩Hn−1 if and only if

xn =

n−1∑
k=1

akx
2
k =

n−1∑
k=1

bkxk + bn,
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which is equivalent to

(x1, . . . , xn) ∈ Hn−1 and

n−1∑
k=1

(
√
akxk −

bk
2
√
ak

)2

= bn +

n−1∑
k=1

b2k
4ak

.

This means that the intersection Pn−1 ∩Hn−1 contains more than one point
if and only if

bn +

n−1∑
k=1

b2k
4ak

> 0. (0.4)

Moreover, if the condition (0.4) is satisfied, then the number

R :=

√√√√bn +
n−1∑
k=1

b2k
4ak

(0.5)

is well defined and the set

En−2 := Pn−1 ∩Hn−1 =

{
(x1, . . . , xn) ∈ Hn−1 :

n−1∑
k=1

(xk − bk/(2ak))
2

(R/
√
ak)2

= 1

}
(0.6)

is an (n− 2)-dimensional ellipsoid. In what follows we assume that the condi-
tion (0.4) is satisfied. We denote by c the center of the ellipsoid En−2, i.e.

c =

(
b1

2a1
,
b2

2a2
, . . . ,

bn−1

2an−1
,

n−1∑
k=1

b2k
2ak

+ bn

)
,

and we denote by p(c) the intersection of the line

`1(c) :=

{(
b1

2a1
,
b2

2a2
, . . . ,

bn−1

2an−1
, t

)
: t ∈ R

}
with the hyper-paraboloid Pn−1. We get

p(c) = Pn−1 ∩ `1(c) =

(
b1

2a1
,
b2

2a2
, . . . ,

bn−1

2an−1
,

n−1∑
k=1

b2k
4ak

)
.

Finally we denote by Cn the convex hull of the union of the point p(c) and
the ellipsoid En−2, i.e.

Cn = conv (En−2 ∪ p(c)) := {λx+ (1− λ)y : λ ∈ [0; 1], x, y ∈ En−2 ∪ p(c)}.
(0.7)
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Figure 2: Three dimensional version of Archimedes’ theorem.

Notice that Cn is an n-dimensional cone with the vertex at p(c), see Figure 2
for the 3-dimensional case.

In what follows, we refer to Cn as a cone, for short. Comparing to the
2-dimensional case, the role of the parabolic segment plays the set

PSn :=

{
(x1 . . . , xn) ∈ Rn :

n−1∑
k=1

akx
2
k ≤ xn ≤

n−1∑
k=1

bkxk + bn

}
(0.8)

which is an n-dimensional solid body bounded by the hyper-paraboloid Pn−1

and the hyperplane Hn−1. The role of the triangle M ABC plays the cone Cn.
It appears that the ratio of the volume of the hyper-parabolic segment PSn
and the volume of the cone Cn depends only on the dimension of the euclidean
space, i.e. depends only on n. More precisely we prove the following result:

Voln(PSn) =
2n

n+ 1
·Voln(Cn).

In particular,

Vol3(PS3) =
3

2
·Vol3(C3).

Throughout this paper we write Voln(E) for the n-dimensional Lebesgue
measure of a Lebesgue measurable set E, although it would be sufficient to
operate on Jordan measurable sets and the Jordan measure.

1 Main results

We will compute multiple integrals by changing variables into spherical n-
dimensional coordinates, see [1]. Additionally we will scale along the axes and
translate appropriate transformation, in order to integrate comfortably over
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convex hulls of ellipsoids. The Jacobian (see [4, 234]) of such a transformation
is basically well-known, so a technical Lemma 1.2 is not new.

Let u and v be non-negative integers. In what follows we formally replace
the product

∏v
i=u by 1 if v < u, regardless what is the expression under

the product symbol. We denote by Nu,v the set of all integers k such that
u ≤ k ≤ v, if u ≤ v. We set Nu,v := ∅, if u > v.

Let m ∈ N, m ≥ 2, θ1, . . . , θm−1 ∈ R and θm := 0 (so cos(θm) = 1). Define
the matrix Mm : N1,m × N1,m → R by

Mm(p, q) :=



cos(θp)
p−1∏
j=1

sin(θj) , if p ∈ N1,m and q = 1,

cos(θp) cos(θq−1)
p−1∏
j=1

j 6=q−1

sin(θj), if p ∈ N2,m and q ∈ N2,p,

−
p∏
j=1

sin(θj) , if p ∈ N1,m−1 and q = p+ 1,

0 , if p ∈ N1,m−2 and q ∈ Np+2,m.

For the convenience of the Reader we give an array form of the matrix
Mm:


cos(θ1) − sin(θ1) 0 0 · · · 0

cos(θ2) sin(θ1) cos(θ2) cos(θ1) −
2∏
j=1

sin(θj) 0 · · · 0

.

.

.

.

.

.

.
.
.

.

.

.

cos(θm−2)
m−3∏
j=1

sin(θj) cos(θm−2) cos(θ1)
m−3∏
j=1
j 6=1

sin(θj)

.
.
.

.
.
. 0

cos(θm−1)
m−2∏
j=1

sin(θj) cos(θm−1) cos(θ1)
m−2∏
j=1
j 6=1

sin(θj)

.
.
. −

m−1∏
j=1

sin(θj)

m−1∏
j=1

sin(θj) cos(θ1)
m−1∏
j=1
j 6=1

sin(θj) · · · · · · cos(θm−1)
m−1∏
j=1

j 6=m−1

sin(θj)



Lemma 1.1. The determinant of Mm satisfies the following equality

det(Mm) =

m−2∏
k=1

sinm−k−1(θk) .
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Proof. Obviously, det(M2) = 1. Assume m ∈ N, m ≥ 3. Using Laplace’s
expansion along the mth column of the matrix Mn, we get

det(Mm) = (−1)2m−1

−m−1∏
j=1

sin(θj)

 sin(θm−1) det(Mm−1)

+ (−1)2m

cos(θm−1)

m−1∏
j=1

j 6=m−1

sin(θj)

 cos(θm−1) det(Mm−1)

=

m−2∏
j=1

sin(θj) det(Mm−1) .

By the mathematical induction, we get the desired formula.

Let α := (α1, . . . , αm) ∈ Rm, β := (β1, . . . , βm) ∈ Rm. For each k ∈ N1,m

we set

ϕ
(αk,βk)
k (r, θ1, θ2, . . . , θm−1) := αkr cos(θk)

k−1∏
j=1

sin(θj) + βk ,

where (r, θ1, θ2, . . . , θm−1) ∈ Rm. Recall that θm = 0, so cos(θm) = 1. We

define the mapping Φ
(α,β)
m : Rm → Rm by

Φ(α,β)
m :=

(
ϕ

(α1,β1)
1 , . . . , ϕ(αm,βm)

m

)
. (1.1)

So ϕ
(αk,βk)
k is the kth coordinate function of Φ

(α,β)
m . The vector α controls a

scaling along the axes while the vector β controls a translation. Of course, the

mapping Φ
(α,β)
m has continuous partial derivatives of all orders.

Lemma 1.2. The Jacobian J
Φ

(α,β)
m

of the mapping Φ
(α,β)
m : Rm → Rm satisfies

the equality

J
Φ

(α,β)
m

(r, θ1, θ2, . . . , θm−1) = rm−1

(
m∏
k=1

αk

)
m−2∏
k=1

sinm−k−1(θk),

for all (r, θ1, θ2, . . . , θm−1) ∈ Rm.
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Proof. For k ∈ N1,m we have

∂ϕ
(α,β)
k

∂r
(r, θ1, θ2, . . . , θm−1) = αk cos(θk)

k−1∏
j=1

sin(θj) ,

∂ϕ
(α,β)
k

∂θi
(r, θ1, θ2, . . . , θm−1)=



rαk cos(θk) cos(θi)
k−1∏
j=1

j 6=i

sin(θj), if i ∈ N1,k−1,

−rαk
k∏
j=1

sin(θj), if i = k,

0, if i ∈ Nk+1,m−1.

Thus, by Lemma 1.1, we get

J
Φ

(α,β)
m

(r, θ1, θ2, . . . , θm−1) = rm−1

(
m∏
k=1

αk

)
det(Mm)

= rm−1

(
m∏
k=1

αk

)
m−2∏
k=1

sinm−k−1(θk).

Remark 1.3. Set 1 := (1, . . . , 1) ∈ Rm and 0 := (0, . . . , 0) ∈ Rm. Then

the mapping Φ
(1,0)
m : Rm → Rm restricted to the set [0,+∞) × Rm−1 is a

transformation of the classical spherical m-dimensional coordinates onto the
Cartesian coordinates. In this case

J
Φ

(1,0)
m

(r, θ1, θ2, . . . , θm−1) = rm−1
m−2∏
k=1

sinm−k−1(θk),

for all (r, θ1, θ2, . . . , θm−1) ∈ Rm (compare this with the formula given in [1]).

Let r > 0. Notice, that the mapping Φ
(1,0)
m transforms in a non-injective

manner the closed m-orthotope [0; r]× [0;π]m−2 × [0; 2π] onto the closed ball
Bm(r) := {x ∈ Rm : ‖x‖ ≤ r} of the radius r (here ‖ ‖ means the euclidean

norm). However, the restriction of the mapping Φ
(1,0)
m to the openm-orthotope

Ωm(r) := (0, r)× (0;π)m−2 × (0; 2π) (1.2)

is a diffeomorphism. Moreover

Φ(1,0)
m (Ωm(r)) ⊂ Bm(r) and Volm

(
Φ(1,0)
m (Ωm(r))

)
= Volm (Bm(r)) .
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Theorem 1.4. Let a1, . . . , an−1 ∈ (0; +∞), b1, . . . , bn ∈ R, and let the condi-
tion (0.4) be satisfied. Then

Voln(PSn) =
2n

n+ 1
·Voln(Cn) ,

where Cn and PSn are defined in (0.7) and (0.8), respectively.

Proof. Let us define E∗n−1 := conv(En−2). Denote by Dn−1 the projection of
E∗n−1 onto the hyperplane {(x1, . . . , xn−1, 0) : xi ∈ R, i = 1, . . . , n − 1}. By
(0.6), we have

Dn−1 =

{
(x1, . . . , xn−1, 0) ∈ Rn :

n−1∑
k=1

[
√
ak ·

(
xk −

bk
2ak

)]2

≤ R2

}
,

where R is defined as in (0.5). Put m := n− 1,

α :=

(
1
√
a1
, . . . ,

1
√
an−1

)
and β :=

(
b1

2a1
, . . . ,

bn−1

2an−1

)
,

and consider the mapping Φ
(α,β)
n−1 : Rn−1 → Rn−1 defined by (1.1). The restric-

tion of Φ
(α,β)
n−1 to the open (n − 1)-orthotope Ωn−1(R), defined by (1.2), is a

diffeomorphism. Moreover,

Φ
(α,β)
n−1 (Ωn−1(R)) ⊂ Dn−1 and Voln−1

(
Φ

(α,β)
n−1 (Ωn−1(R))

)
= Voln−1(Dn−1).

Hence, by the transformation formula (see [4, 252]) and by Lemma 1.2, we get

Voln(PSn) =

n−1︷ ︸︸ ︷∫ ∫
· · ·
∫

Dn−1

(
R2 −

n−1∑
k=1

ak

(
xk −

bk
2ak

)2
)

dx1dx2 . . . dxn−1

=

n−1︷ ︸︸ ︷∫ ∫
· · ·
∫

Ωn−1(R)

(
R2 − r2

) ∣∣∣JΦ
(α,β)
n−1

(r, θ1, θ2, . . . , θn−1)
∣∣∣dθ1dθ2 . . . dθn−2dr

=

R∫
0

2π∫
0

π∫
0

. . .

π∫
0︸ ︷︷ ︸

n−3

(
R2 − r2

)∣∣∣∣∣rn−2

(
n−1∏
k=1

1
√
ak

)
n−3∏
k=1

sinn−k−2(θk)

∣∣∣∣∣dθ1dθ2 . . . dθn−2dr
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= 2n−1

R∫
0

π
2∫

0

. . .

π
2∫

0︸ ︷︷ ︸
n−2

(
R2rn−2 − rn

)(n−1∏
k=1

1
√
ak

)
n−3∏
k=1

sinn−k−2(θk)dθ1dθ2 . . . dθn−2dr

= 2n−1 ·
(
Rn+1

n− 1
− Rn+1

n+ 1

)
·

(
n−1∏
k=1

1
√
ak

)
· π

2
·
n−3∏
k=1

π
2∫

0

sinn−k−2(θk)dθk

=
2n−1πRn+1

n2 − 1
·

(
n−1∏
k=1

1
√
ak

)
·
n−3∏
k=1

√
πΓ
(
n−k−1

2

)
2Γ
(
n−k

2

)
=

4π
n−1
2 Rn+1

(n2 − 1)Γ
(
n−1

2

) n−1∏
k=1

1
√
ak

.

If n = 3 then

π∫
0

· · ·
π∫

0︸ ︷︷ ︸
n−3

just disappear and the result remains valid.

Now we determine Voln(Cn). Since Cn is an n-dimensional cone with base
E∗n−1 and vertex at p(c). Therefore

Voln(Cn) =
1

n
dist(p(c); Hn−1) ·Voln−1(E∗n−1) , (1.3)

where dist(p(c); Hn−1) denotes the euclidean distance between p(c) and Hn−1.
Since

(dist(p(c); Hn−1))
2

=

(
n−1∑
k=1

b2k
2ak
−
n−1∑
k=1

b2k
4ak

+ bn

)2

n−1∑
k=1

b2k + 1

,

so

dist(p(c); Hn−1) = R2

(
n−1∑
k=1

b2k + 1

)− 1
2

. (1.4)

Furthermore,

Voln−1(E∗n−1) =

n−1︷ ︸︸ ︷∫ ∫
· · ·
∫

Dn−1

√√√√n−1∑
k=1

b2k + 1 dx1dx2 . . . dxn−1 .
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Proceeding as above, we get

Voln−1(E∗n−1) =

= 2n−1

√√√√n−1∑
k=1

b2k + 1

R∫
0

π
2∫

0

· · ·

π
2∫

0︸ ︷︷ ︸
n−2

∣∣∣JΦ
(α,β)
n−1

(r, θ1, θ2, . . . , θn−1)
∣∣∣ dθ1dθ2 . . . dθn−2dr

= 2n−1

√√√√n−1∑
k=1

b2k + 1 · R
n−1

n− 1
·

(
n−1∏
k=1

1
√
ak

)
· π

2
·
n−3∏
k=1

π
2∫

0

sinn−k−2(θk)dθk

=
2π

n−1
2 Rn−1

(n− 1)Γ
(
n−1

2

)
√√√√n−1∑

k=1

b2k + 1
n−1∏
k=1

1
√
ak

.

Hence, by (1.3) and (1.4), we have

Voln(Cn) =
2π

n−1
2 Rn+1

n(n− 1)Γ
(
n−1

2

) n−1∏
k=1

1
√
ak

.

Finally, we get
Voln(PSn)

Voln(Cn)
=

2n

n+ 1
.

Corollary 1.5. In the 3-dimensional case (see Figure 2) the ratio of the
volume of the parabolic segment PS3 and the volume of the cone C3 is equal
to 3/2.
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