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Sums and products of intervals in ordered
semigroups

T. Glavosits and Zs. Karácsony

Abstract

We show a simple example for ordered semigroup S = S(+,6) that
S ⊆ R (R denotes the real line) and ]a, b[ + ]c, d[ = ]a + c, b + d[ for
all a, b, c, d ∈ S such that a < b and c < d, but the intervals are no
translation invariant, that is, the equation c+]a, b[ = ]c + a, c + b[ is not
always fulfilled for all elements a, b, c ∈ S such that a < b.

The multiplicative version of the above example is shown too.
The product of open intervals in the ordered ring of all integers

(denoted by Z) is also investigated. Let Ix := {1, 2, . . . , x} for all x ∈ Z+

and defined the function g : Z+ → Z+ by

g(x) := max {y ∈ Z+ | Iy ⊆ Ix · Ix}

for all x ∈ Z+. We give the function g implicitly using the famous
Theorem of Chebishev.

Finally, we formulate some questions concerning the above topics.

1 Introduction

It is well known from elementary real analysis [12], [2] that if a, b, c, d are real
numbers such that a < b and c < d, then

]a, b[ + ]c, d[ = ]a+ c, b+ d[ , (1)
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moreover, if 0 6 a < b and 0 6 c < d then

]a, b[ · ]c, d[ = ]ac, bd[ . (2)

We investigate the case when (1) or (2) remains valid in more general settings.
Our references for ordered algebraic structure are [4], [9], [10], [11], [13].

Now we give a short list of necessary concepts:
We say that X = X(6) is a partially ordered set or poset, if X is a set

and 6 is a relation on X such that it is reflexive, symmetric and transitive.
A poset X = X(6) is said to be linearly ordered or loset, if x 6 y or y 6 x

including the case x = y for all x, y ∈ X.
We say, that the poset X = X(6) is lattice ordered if every two elements

of X have a unique supremum (also called a least upper bound or join) and a
unique infimum (also called a greatest lower bound or meet).

Let X = X(∗) be a groupoid in the sense that X is a nonempty set and ∗
is a binary operation on X. Let A, B be sets and a ∈ X. Define the sets and
A ∗B and a ∗B by

A ∗B := {a ∗ b ∈ X|a ∈ A, b ∈ B} ,
a ∗B := {a} ∗B.

Let X = X(6) be a poset and a, b ∈ X such that a < b, that is, a 6 b, but
a 6= b, then the (open) interval with endpoints a and b is defined by

]a, b[ := {x ∈ X|a < x and x < b}.

An ordered semigroup S = S(+,6) is a semigroup together with a partial
ordering of its elements that is compatible with the group operations in the
sense that if x 6 y, then x+ z 6 y + z for all x, y, z ∈ S.

An ordered group G = G(+,6) is a group together with a partial ordering
of its elements that is compatible with the group operation.

Let X = X(+,6) be an ordered semigroup (group). We say that the open
intervals have translation invariant property if

c+ ]a, b[ = ]c+ a, c+ b[ (3)

for all a, b, c ∈ S such that a < b.
Let S = S(·,6) be an ordered semigroup. We say that the open intervals

have homothety invariant property if

c · ]a, b[ = ]ca, cb[ (4)

for all a, b, c ∈ X such that a < b.
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A poset X is said to be dense if ]x, y[ 6= ∅ for all x, y ∈ X with x < y.
Let Y be a poset and A ⊆ B ⊆ Y . The set A is said to be dense in the set

B if ]b1, b2[ ∩A 6= ∅ for all b1, b2 ∈ B such that b1 < b2.
Our paper is structured as follows:
In section 2 we give example for ordered semigroup S(+,6) where 6 is a

lattice order and the intervals of this semigroup are translation invariant and
thus the equation (1) is fulfilled.

In section 3 we investigate the product of open intervals of ordered ring of
integers denoted by Z using the famous number-theoretical theorem of Chebi-
shev.

In section 4 among the others we give examples for semigroups S(+,6)
that equation (1) is fulfilled without equation (3).

In section 5 we formulate conjectures and problems concerning structures
which are similar to the structures presented in the previous chapter.

2 Sums of intervals in ordered semigroup

Definition 2.1. Let S = S(+,6) be an ordered Abelian semigroup (6 is a
partial order). Consider the following properties:

1. S = S(+) is cancellative in the sense that x + z = y + z implies x = y
for all x, y, z ∈ S.

2. If x < y then there exists an element z ∈ S such that y = x + z for all
x, y, z ∈ S.

3. x 6= x+ y for all x, y ∈ S.

4. The strickly order < is co-directed in the sense that for all x, y ∈ S there
exists an element z ∈ S such that z < x and z < y.

Now we show that the intervals of the ordered semigroup S with properties
of Definitions 2.1 are translation invariant.

Theorem 2.2. Let S = S(+,6) be an ordered semigroup with properties of
Definitions 2.1. Let α, β, γ ∈ S such that α < β. Then

γ + ]α, β[ = ]γ + α, γ + β[ and γ + ]α, β] = ]γ + α, γ + β]

where ]x, y] := {z ∈ S|x < z and z 6 y} for all x, y ∈ S.

Proof. The proof is trivial.
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Theorem 2.3. Let S = S(+,6) be an ordered semigroup with properties of
Definition 2.1. Let a, b, c, d ∈ S such that a < b and c < d. Then

]a, b[+]c, d[=]a+ c, b+ d[.

Proof. It is easy to see that ]a, b[+ ]c, d[ ⊆ ]a+ c, b+ d[. One can easily obtain
the converse inclusion by the Theorem 2.2.

Example 2.4. Let X := Q2. Then X(+,6) is an ordered semigroup with the
partial order 6 and the operation + defined by

(x1, x2) 6 (y1, y2) :⇐⇒ x1 6 y1 and x2 6 y2,

(x1, x2) + (y1, y2) := (x1 + y1, x2 + y2)

for all (x1, x2), (y1, y2) ∈ X. Then the relation 6 is lattice order and X has
properties of Definition 2.1.

3 The products of open intervals in ordered group of
integers

It is well-known that the sum of nonempty open interval of the ring of all
integers (denoted by Z) is also an interval, but the endpoints of the sum are
not equal to the sum of endpoints. This fact is used in our paper [7] when we
investigate restricted Pexider additive functional equations in the cases when
the additivity is satisfied on a rectangular or on the union of two rectangles of
Z2.

It is also well-known that the product of nonempty open interval of the
ordered ring Z is not always an open interval. For example let

Ix := {1, 2, . . . , x} (x ∈ Z+).

Then I3 is an open interval of Z, but I3 · I3 = {1, 2, 3, 4, ∗, 6, ∗, ∗, 9} is not.
Define the function g : Z+ → Z+ by

g(x) := max {y ∈ Z+ | Iy ⊆ Ix · Ix} (x ∈ Z+).

It is easy to see that for example g(3) = 4. Now we give a table which contains
the value of x and g(x) for some small integer x.

x 1
�� ��2

�� ��3 4
�� ��5 6

�� ��7 8 9 10
�� ��11 12

�� ��13

g(x) 1
�� ��2

�� ��4 4
�� ��6 6

�� ��10 10 10 10
�� ��12 12

�� ��16

The above table suggests the following Theorem. The proof of this Theorem
is based on the the Bertrand’s postulate which states that there exists a prime
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number in the interval [n, 2n] for all n ∈ Z+. This postulate was proved for
the first time by P. L. Chebishev in 1850 and simplified later by P. Erdős in
1932 [3] due to M. El Bachraoui [1].

Theorem 3.1. The function g has the following properties:

1. the function g is increasing;

2. g(x− 1) < g(x) if and only if x is prime;

3. g(pn) = pn+1−1 where p1, p2, . . . is the increasing sequence of all prime
numbers.

Proof. Let us assume that there exist u, v ∈ Z+ such that pn 6 v < uv < pn+1.
Since v < uv, then u < 2. By the Theorem of Chebyshev v 6 pn+1 6 2v < uv
which is a contradiction. Thus we have that if x ∈ Z+ such that pn < x <
pn+1, then there exist u, v ∈ Z+ such that u, v 6 pn and x = uv.

4 Additional examples

In this section we only investigate linearly ordered semigroups. For this we
give some notations.

Define the set K1 by

K1 :=
{
a+ b

√
2 | a ∈ Q+, b ∈ Q+

}
.

Then K1 = K1(+,6) and K1 = K1(·,6) are ordered semigroups where +, ·
and 6 are the usual addition, multiplication and order in the real line.

Define the set Q(
√

2) by

Q(
√

2) :=
{
a+ b

√
2 | a ∈ Q, b ∈ Q

}
.

Then Q(
√

2) = Q(
√

2)(+, ·,6) is an ordered field where the operation +, · and
the order 6 is the usual field operation and order in the real line R.

Let p1, p2, . . . , pn be pairwise different prim numbers. Define the set Xn

by:
Xn := {x1, x2, . . . x2n}

where x1 = 1, x2 =
√
p1, . . . , xn+1 =

√
pn, xn+2 =

√
p1p2, . . . , x2n =√

p1 . . . pn. Then we can construct two sets from the set Xn by:

Kn :=

{
2n∑
i=1

aixi | ai ∈ Q+, xi ∈ Xn (i = 1, . . . , 2n)

}
,

Qn :=

{
2n∑
i=1

aixi | ai ∈ Q, xi ∈ Xn (i = 1, . . . , 2n)

}
.
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In both of the above cases +, · and 6 are the usual addition, multiplication and
order in the real line respectively. It is easy to see that Kn = Kn(+, ·,6) is an
ordered dense semiring and Qn = Qn(+, ·,6) is an ordered field, consequently
all of equations (3), (1), (4) and (2) are fulfilled in Qn [8]. It is also easy to see
that Qn = Q(

√
p1, . . . ,

√
pn) is an ordered field (Q(

√
p1, . . . ,

√
pn) denotes the

smallest subfield of the real line that contains both elements
√
p1, . . . ,

√
pn

and all elements of the field Q) [5].
For numerical examples we use constants which are defined by:

α := 0.5 + 0.5
√

2 = 1.2071 . . . ,

γ := 2 +
√

2 = 3.4142 . . . ,

β := 0.5 +
√

2 = 1.9142 . . . ,

δ := 1 + 2
√

2 = 3.8284 . . . .
(5)

Thus we obtain that α+ γ = 4.6213 . . . , β+ δ = 5.7426 . . . , α · γ = 4.1213 . . . ,
β · δ = 7.3284 . . . .

Proposition 4.1. Let a, b, c, d ∈ K1 such that a < b and c < d. Then

]a, b[ + ]c, d[ = ]a+ c, b+ d[ .

Proof. The inclusion ]a, b[+]c, d[⊆]a+ c, b+ d[ is clear. For the converse inclu-
sion let

x0 := u+ v
√

2 ∈ ]a+ c, b+ d[ .

We find elements x∗, y∗ ∈ K1 such that

x∗ = x+ y
√

2 ∈ ]a, b[ , y∗ = x0 − x∗ ∈ ]c, d[ .

Now we list the necessary and sufficient conditions for x∗ ∈]a, b[ and y∗ ∈
]c, d[:

1. a < x∗ which is equivalent to the inequality e1(x) < y where

e1(x) = − 1√
2
x+A1 and A1 =

a√
2

;

2. x∗ < b which is equivalent to the inequality y < e2(x) where

e2(x) = − 1√
2
x+A2 and A2 =

b√
2

;

3. c < y∗ which is equivalent to the inequality y < e3(x) where

e3(x) = − 1√
2
x+A3 and A3 =

x0 − c√
2

;
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4. y∗ < d which is equivalent to the inequality e4(x) < y where

e4(x) = − 1√
2
x+A4 and A4 =

x0 − d√
2

.

Now we list the necessary and sufficient conditions of x∗ ∈ K1 and y∗ ∈ K1:

(5) u− x > 0 which is equivalent to the inequality x < u;

(6) v − y > 0 which is equivalent to the inequality y < v.

Define the domains D1 and D2 by

D1 :=
{

(x, y) ∈ Q2
+ | e1(x) < y, y < e2(x), y < e3(x), e4(x) < y

}
,

D2 :=
{

(x, y) ∈ Q2
+ | x < u and y < v

}
.

D1 is the set of all rational points of the first quadrant which points are
contained by two strips. These strips are determined by the pairs of parallel
lines e1, e2 and e4, e3 respectively.

The intersection of these two strips is not empty if and only if ]A1, A2[ ∩
]A4, A3[ 6= ∅ (as open intervals of the real line) which is equal to A1 < A3 and
A4 < A2. These last two inequalities are fulfilled.

Since e1(u) < v, e4(u) = v and Q2 is dense in R2 thus D1 ∩D2 6= ∅. Chose
a point P = P (x, y) ∈ D1 ∩D2 arbitrarily, and define the numbers x∗, y∗ by

x∗ := x+ y
√

2 and y∗ := (u− x) + (v − y)
√

2.

Then x∗ ∈ ]a, b[ and y∗ ∈ ]c, d[ whence we obtain that ]a+ c, b+ d[ ⊆ ]a, b[ +
]c, d[ indeed.

Example 4.2. Define the numbers α, β, γ, δ by (5). Let

x0 := 4.8 + 0.1
√

2 = 4.9414 · · · ∈ ]α+ γ, β + δ[ .

We show that there exist constants x∗ ∈ ]α, β[ and y∗ ∈ ]γ, δ[ such that
x0 = x∗ + y∗. Preserving the notations of Proporition 4.1. we obtain that

A1 = 0.8535 . . . , A2 = 1.3535 . . . , A3 = 1.0798 . . . , A4 = 0.7870 . . . .
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Figure 1: Sums of intervals

Consider the Figure 1 ∗:
It is easy to see that the choice of P := (1.25, 0.05) is convenient. Thus we
obtain that

x∗ = 1.25 + 0.05
√

2 ∈ ]α, β[ ,

y∗ = 3.55 + 0.05
√

2 ∈ ]γ, δ[

with x∗ + y∗ = x0.

Proposition 4.3. Let a, b, c, d ∈ K1 such that a < b and c < d. Then

]a, b[ · ]c, d[ = ]ac, bd[ .

Proof. The inclusion ]a, b[ · ]c, d[ ⊆ ]ac, bd[ is clear. For the converse inclusion
let

x0 := u+ v
√

2 ∈ ]ac, bd[ .

We find elements x∗, y∗ ∈ K1 such that

x∗ = x+ y
√

2 ∈ ]a, b[ , y∗ =
x0
x∗
∈ ]c, d[ .

Now we list the necessary and sufficient conditions for x∗ ∈]a, b[ and y∗ ∈]c, d[.

1. a < x∗ which is equivalent to the inequality e1(x) < y where

e1(x) = − 1√
2
x+A1 and A1 =

a√
2

;

∗The Figure 1 was made with the program GeoGebra
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2. x∗ < b which is equivalent to the inequality y < e2(x) where

e2(x) = − 1√
2
x+A2 and A2 =

b√
2

;

3. c < y∗ which is equivalent to the inequality y < e3(x) where

e3(x) = − 1√
2
x+A3 and A3 =

x0√
2c

;

4. y∗ < d which is equivalent to the inequality e4(x) < y where

e4(x) = − 1√
2
x+A4 and A4 =

x0√
2d
.

Now we list the necessary and sufficient conditions for x∗ ∈ K1 and y∗ ∈ K1:
Since

4x− 2vy

x2 − 2y2
> 0, and

−uy + vx

x2 − 2y2
> 0, (6)

thus (6) is fulfilled if and only if, y < µx or νx < y where the constants µ,
ν ∈ R+ are defined by

µ := min

{
1√
2
,

2

v
,
v

u

}
, ν := max

{
1√
2
,

2

v
,
v

u

}
. (7)

Define the domains D1, D2 by

D1 :=
{

(x, y) ∈ Q2
+ | e1(x) < y, y < e2(x), y < e3(x), e4(x) < y

}
,

D2 :=
{

(x, y) ∈ Q2
+ | y < µx or νx < y

}
.

Since Q2 is dense in R2 thus we obtain that D1 ∩ D2 6= ∅. Choose a point
P = P (x, y) ∈ (D1 ∩D2) arbitrarily and define the numbers x∗ and y∗ by

x∗ := x+
√

2y and y∗ :=
x0
x∗
.

Thus x∗ ∈ ]a, b[ and y∗ ∈]c, d[ whence we obtain that ]ac, bd[ ⊆ ]a, c[ · ]b, c[
indeed.

Example 4.4. Define the numbers α, β, γ, δ by (5). Let

y0 := 4 + 0.1
√

2 = 4.1414 · · · ∈ ]αγ, βδ[ .

We show that there exist constants x∗ ∈ ]α, β[ and y∗ ∈ ]γ, δ[ such that
y0 = x∗y∗. Preserving the notations of Proporition 4.3. we obtain that

A1 = 0.8535 . . . , A2 = 1.3535 . . . , A3 = 0.8577 . . . , A4 = 0.7649 . . . ,

moreover, µ = 0.025, ν = 20.
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Consider the following figures †:

Figure 2: Products of intervals Figure 3: Magnification of Figure 2

The Figure 2 and Figure 3 were taken at ten times magnification for better
illustration. The lines e1, e2, e3, e4 are defined by

e1 = −0.71x+ 8.54,

e2 = −0.71x+ 13.54,

e3 = −0.71x+ 8.58,

e4 = −0.71x+ 7.65.

The lines e5, e6 are determined by (7) and defined by

e5 = 0.03x, e6 = 20x.

It is easy to see that the point P := (0.015, 0.845) is convenient. (The point
Q is also convenient.) Thus we obtain that

x∗ = 0.015 + 0.845
√

2 = 1.21 · · · ∈ ]α, β[ ,

y∗ =
0.109 + 3.3785

√
2

1.427825
= 3.4226 · · · ∈ ]γ, δ[

with x∗y∗ = y0.

Theorem 4.5. Let a, b, c d ∈ Kn such that a < b and c < d. Then

]a, b[ + ]c, d[ = ]a+ c, b+ d[ ,

]a, b[ · ]c, d[ = ]ac, bd[ .

Proof. The proof is easy by induction using Proposition 4.1. and Proposition
4.3.

†The Figure 2 and Figure 3 were made with the program GeoGebra
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Summarising the above Propositions and Theorem concerning the struc-
ture K1 (or Kn) we can infer, that:

K1 has no property (2) of Definition 2.1. For example α < β but β − α =
0.5
√

2 /∈ K1.
Equality (1) is fulfilled but equality (3) is not. For example let x0 = 4.8 +

0.1
√

2 = 4.9414 . . . . Then x0 ∈ ]α+ γ, α+ δ[ but x0 − α = 4.3− 0.4
√

2 /∈ K1

Equality (2) is fulfilled but equality (4) is not. For example let y0 =
4 + 0.1

√
2 = 4.1412 then y0 ∈ ]αγ, αδ[ but y0

α = −7.6 + 7.8
√

2 /∈ K1.

5 Results and Problems

The example of Kn and Qn motivates the problems bellow.

Problem 5.1. How to characterise the semirings that satisfy equalities (1) and
(2) but do not satisfy equalities (3) and (4)?

The first author of this article has proven the following Theorem in [6]:

Theorem Let G(+,6) be an Archimedean ordered dense Abelian group,
Y (+) be a group, x0, y0 ∈ G, ε ∈ G+, moreover, let

f : ]x0 + y0 − 2ε, x0 + y0 + 2ε[→ Y,

g : ]x0 − ε, x0 + ε[→ Y,

h : ]y0 − ε, y0 + ε[→ Y

be functions such that

f(x+ y) = g(x) + h(y) (x ∈ ]x0 − ε, x0 + ε[ , y ∈ ]y0 − ε, y0 + ε[),

then there exists an additive function a : G→ Y and exist constants c, d ∈ Y
such that

f(w) = a(w) + c+ d (w ∈ ]x0 + y0 − 2ε, x0 + y0 + 2ε[),

g(u) = a(u) + c (u ∈ ]x0 − ε, x0 + ε[),

h(v) = a(v) + d (w ∈ ]y0 − ε, y0 + ε[).

The proof is based on the equalities (1) and (3).

Problem 5.2. Can a theorem analogous to the above one be proved in that
case when the role of group G is taken over by a semigroup S in which equality
(1) is satisfied but equality (3) is not?

Conjecture 5.3. If S = S(+,6) is a dense ordered semigroup, then (1) is
satified, that is

]a, b[ + ]a, d[ = ]a+ c, b+ d[

for all a, b, c, d ∈ S such that a < b, c < d .
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