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A Mean Ergodic Theorem for Affine
Nonexpansive Mappings in Nonpositive

Curvature Metric Spaces

Hadi Khatibzadeh and Hadi Pouladi

Abstract

In this paper, we consider the orbits of an affine nonexpansive map-
ping in Hadamard (nonpositive curvature metric) spaces and prove an
ergodic theorem for the inductive mean, which extends the von Neu-
mann linear ergodic theorem. The main result shows that the sequence
given by the inductive means of iterations of an affine nonexpansive
mapping with a nonempty fixed point set converges strongly to a fixed
point of the mapping. A Tauberian theorem is also proved in order to
ensure convergence of the iterations.

1 Introduction

The first mean ergodic theorem for linear nonexpansive mappings was studied
by von Neumann [17] in Hilbert spaces. Birkhoff [4] extended this theorem to
Banach spaces which asserts that for a linear nonexpansive mapping T on a
uniformly convex Banach space B, 1

n

∑n−1
k=0 T

kx converges strongly to a fixed
point of T . The main aim of this paper is to extend this theorem to nonpositive
curved geodesic metric spaces. Therefore, we first briefly present definitions
and other preliminaries of nonpositive curvature metric spaces.

Let (X, d) be a metric space, a geodesic segment (or geodesic) between
two points x, y ∈ X, is the image of an isometry mapping γ : [0, d(x, y)] −→
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X, with γ(0) = x, γ(d(x, y)) = y and d
(
γ(t), γ(t′)

)
= |t − t′| for all t, t′ ∈

[0, d(x, y)]. A metric space (X, d) is said to be a geodesic metric space if every
two points of X are jointed by a geodesic and it is said to be uniquely geodesic
if between any two points there is exactly one geodesic that for two arbitrary
points x, y is denoted by [x, y].
A uniquely geodesic metric space (X, d) is a CAT (0) space (or nonpositive
curvature metric space) if the function d2 is strongly convex, i.e., for every
three points x0, x1, y ∈ X and all 0 6 t 6 1,

d2(y, xt) 6 (1− t)d2(y, x0) + td2(y, x1)− t(1− t)d2(x0, x1), (1.1)

where xt = (1 − t)x0 ⊕ tx1 is the unique point in the segment [x0, x1] such
that d(x0, xt) = td(x0, x1) and d(x1, xt) = (1 − t)d(x0, x1). A CAT (0) space
is uniquely geodesic. A complete CAT (0) space is called a Hadamard space.
From now we denote Hadamard spaces by H . We collect some other metric
properties of Hadamard spaces in the following lemma.

Lemma 1.1. (see [13, Proposition 8.1.2],[6, p. 983]) Let (X, d) be a CAT (0)
space. Then for all x, y, z ∈ X and t, s ∈ [0, 1]; we have:

i. d
(
(1− t)x⊕ ty, z

)
6 (1− t)d(x, z) + td(y, z).

ii. d
(
(1− t)x⊕ ty, (1− s)x⊕ sy

)
= |t− s|d(x, y).

iii. d
(
(1− t)z ⊕ tx, (1− t)z ⊕ ty

)
6 td(x, y).

In order to simplify computations, for a, b, c, d in a CAT (0) space (X, d),

we denote 1
2

(
d2(a, d) + d2(b, c) − d2(a, c) − d2(b, d)

)
by 〈

→
ab,
→
cd〉 or 〈ab, cd〉. It

is easy to see that:

Lemma 1.2. Let (X, d) be a CAT (0) space and a, b, c, d, e ∈ X. Then

i. 〈ab, ab〉 = d2(a, b).

ii. 〈ab, cd〉 = −〈ab, dc〉 = −〈ba, cd〉.

iii. 〈ab, cd〉 = 〈ae, cd〉+ 〈eb, cd〉.

Lemma 1.3. (see [8, Lemma 2.3]). Let (X, d) be a CAT (0) space and x, y, z ∈
X. Then for each λ ∈ [0, 1] we have:

d2(λx⊕ (1− λ)y, z) 6 λ2d2(x, z) + (1− λ)2d2(y, z) + 2λ(1− λ)〈xz, yz〉.

In Hadamard spaces every nonempty closed convex subset S is Chebyshev
i.e., PSx = {s ∈ S : d(x, S) = d(x, s)} is singleton, where
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d(x, S) := infs∈S d(x, s)[3]. Thus the metric projection on a nonempty closed
convex subset S is the following map:

P : H −→ S
x7→PSx

,

where PSx is the nearest point of S to x for all x ∈ H . A well-known fact
implies that:

d2(x, PSx) + d2(PSx, y) 6 d2(x, y), ∀y ∈ S (1.2)

(see [3, Theorem 2.1.12]). For more facts about Hadamard spaces, we refer
the reader to [3, 5].

Let (X, d) be a metric space. A mapping T : X −→ X is called nonexpan-
sive if d(Tx, Ty) 6 d(x, y) for all x, y ∈ X. F (T ) = {x ∈ X : Tx = x}, the
set of all fixed points of the mapping T , is closed and convex [9]. T is said to
be asymptotically regular at x ∈ X if d(Tnx, Tn+1x) −→ 0, and in general a
sequence {xn} in a metric space (X, d) is said to be asymptotically regular if
d(xn, xn+1) −→ 0.

A mapping T : H −→H is said to be affine if

T
(
(1− t)x⊕ ty

)
= (1− t)Tx⊕ tTy, t ∈ [0, 1] and x, y ∈H . (1.3)

In fact, T maps the segment joining x, y into the segment joining Tx, Ty, i.e.,
a geodesic affine mapping T maps the points of geodesic γx,y(t) joining x, y
into the points of geodesic γTx,Ty(t) with preserving the distance from the
endpoints of the segments.
It is easy to see that a continuous mapping T : H −→ H is affine if it
preserves midpoints of line segments, i.e.,

T
(1

2
x⊕ 1

2
y
)

=
1

2
Tx⊕ 1

2
Ty x, y ∈H . (1.4)

For extension of ergodic theorems in Hadamard spaces, we need the notion
of mean in these spaces. Let T : H →H be an affine nonexpansive mapping.
Consider the orbit {Tnp|n = 0, 1, 2, . . .} for any p ∈ H . There are at least
two different ways to define a mean for an orbit in Hadamard spaces that both
of them are extensions of the linear mean in linear spaces. We first state them
for a general sequence as follows.

Definition 1.4. (Inductive mean) For each k > 0, we define the inductive
mean as defined in [16] for n point xk, xk+1, · · · , xk+n−1 of the sequence {xn}
in H , by induction on n as follows.

Sk1 := xk and Skn :=
1

n
xk+n−1 ⊕

n− 1

n
Skn−1. (1.5)
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If k = 0, the mean of x0, . . . , xn−1 denoted by Sn is defined by

Sn :=
1

n
xn−1 ⊕

n− 1

n
Sn−1. (1.6)

The following figure shows the computation of the inductive mean for five
points x0, x1, · · · , x4

and for every n > 5, we can continue this process. Also if T is affine, for the
orbit {Tnx|n = 0, 1, 2, · · · } for some x ∈ H , we denote the mean of n points
xk = T kx, · · · , xk+n−1 = T k+n−1x by Sknx which is defined as

Sknx :=
1

n
xk+n−1 ⊕

n− 1

n
Skn−1x. (1.7)

If k = 0, the mean of n points x0, · · · , xn−1 is inductively defined by

Snx :=
1

n
xn−1 ⊕

n− 1

n
Sn−1x. (1.8)

It is obvious that, since T is affine, for each k > 1, we have:

Sknx = T kSnx.

Remark 1.1. By induction and using Lemma 1.1, for each z ∈ H and each
k > 0, for the mean Skn defined in (1.5), we derive:

d(Skn, z) 6
1

n

n−1∑
i=0

d(xk+i, z).
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Definition 1.5. (Karcher mean) Given a finite number of points x0, . . . , xn−1
in a Hadamard space, we define the functions

Fn(x) =
1

n

n−1∑
i=0

d2(xi, x),

and for k > 1,

Fkn(x) =
1

n

n−1∑
i=0

d2(xk+i, x).

By [3, Proposition 2.2.17] these functions have unique minimizers. For Fn(x)
the unique minimizer is denoted by σn(x0, . . . , xn−1) (or briefly σn) and is
called the Karcher mean of x0, . . . , xn−1 [7]. Also for the function Fkn(x) the
unique minimizer is denoted by σkn(xk, . . . , xk+n−1) (or briefly σkn), which is
the Karcher mean of xk, . . . , xk+n−1.

For the orbit {Tnp}, σn(p) and σkn(p), are defined respectively as the unique
minimizers of the functions

F[p]n(x) =
1

n

n−1∑
i=0

d2(T ip, x),

and

F[p]kn(x) =
1

n

n−1∑
i=0

d2(T k+ip, x).

Another approach for extension of von Neumann’s mean ergodic theorem
from Hilbert to Hadamard spaces has been presented by Liimatainen in [11].
He proved the following result for the Karcher mean. In this result affinity
of the nonexpansive mapping is replaced with distance convexity (defined in
blew), which is exactly equivalent to affinity in linear spaces for the linear
mean. The distance convexity is defined in [11] as follows.

Definition 1.6. A mapping T : H −→H is called distance convex if for all
n ∈ N and q ∈H the mapping d2

(
σn(·), q

)
: H −→ R+ is convex.

Liimatainen among other results in [11, Theorem 2.1] proved the following
nice result.

Theorem 1.7. Let H be a Hadamard space and T : H −→ H be a non-
expansive distance convex mapping. Then for any p ∈ H whose orbit is
bounded and any q ∈ H such that Tq = q and q ∈ co{p, Tp, T 2p, · · · }, we
have σn(p) −→

n
q.
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In this paper, we prove a mean ergodic theorem for the inductive mean,
which has two advantages. First of all the inductive mean is much easier
to compute than the Karcher mean. Therefore, this approach may be used
easily for approximation of fixed points. The second one is to use a more
natural assumption (affinity of the mapping) instead of distance convexity,
which seems difficult to check.

2 A Mean Ergodic Theorem

In this section, we prove convergence of the inductive mean Snx defined by
(1.8) for the orbit of an affine nonexpansive mapping T at x. This result
generalizes von Neumann’s mean ergodic theorem to Hadamard spaces. We
first state some lemmas.

Lemma 2.1. (see [2, Lemma 2.3] ). Suppose that

sn+1 6 (1− αn)sn + αntn + un, ∀n ∈ N

where {sn} is a sequence of nonnegative real numbers, {αn} a sequence of
real numbers in [0, 1] with

∑∞
n=1 αn = ∞, {un} a sequence of nonnegative

real numbers with
∑∞
n=1 un < ∞ and {tn} a sequence of real numbers with

lim sup
n→∞

tn 6 0. Then lim
n→∞

sn = 0.

The following lemma was proved in [14, Lemma 2] for Hilbert space. Kaka-
vandi stated it in [1, Proposition 4.1] for an amenable semigroup of nonexpan-
sive mappings in Hadamard space. We recall the proof of this lemma in the
discrete case in Hadamard space.

Lemma 2.2. Let H be a Hadamard space, T : H ←−H be a nonexpansive
mapping that F (T ) is nonempty and P be the metric projection from H onto
F (T ). Then for any x ∈ H , {PTnx} converges strongly to an element p of
F (T ).

Proof. It is well known that for a nonexpansive mapping T in a Hadamard
space, F (T ) is closed and convex. By the definition of metric projection, we
have:

d(PTnx, Tnx) 6 d(PTn−1x, Tnx)

= d(TPTn−1x, Tnx)

6 d(PTn−1x, Tn−1x).
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This implies that {d(PTnx, Tnx)} is nonincreasing. Let m,n ∈ N with m > n.
Putting Tmx and PTnx in (1.2), we obtain:

d2(PTmx, PTnx) 6 d2(Tmx, PTnx)− d2(PTmx, Tmx)

6 d2(Tnx, PTnx)− d2(PTmx, Tmx).

Since {d(PTnx, Tnx)} is nonincreasing, so {PTnx} is a Cauchy sequence.
Since F (T ) is closed, {PTnx} converges strongly to an element p of F (T ).

Lemma 2.3. Let H be a Hadamard space and T : H −→ H be an affine
nonexpansive mapping with a nonempty fixed point set F (T ). Then for {Sknx}
defined by (1.7), and each k > 1, we have:

i. The sequence {Sknx} is bounded.

ii. d(Skn+1x, S
k
nx) −→ 0 as n→ +∞.

iii. d(Sknx, TS
k
nx) −→ 0 as n→ +∞.

Proof. (i). Since F (T ) 6= ∅, if p ∈ F (T ) by Remark 1.1 and nonexpansiveness
of T , we see that:

d(Sknx, p) 6
1

n

n−1∑
i=0

d(T k+ix, p)

6 d(x, p),

thus {Sknx} is bounded.
(ii). By Lemma 1.1, Part (i) and this assumption that T is nonexpansive and
affine, we have:

d(Skn+1x, S
k
nx) = d

( 1

n+ 1
T k+nx⊕ n

n+ 1
Sknx, S

k
nx
)

=
1

n+ 1
d(T k+nx, Sknx)

6
1

n+ 1
d(T k+nx, p) +

1

n+ 1
d(p, Sknx)→ 0,

therefore,
d(Skn+1x, S

k
nx) −→ 0.

(iii). To show that d(Sknx, TS
k
nx) → 0, by Lemma 1.1, convexity of the dis-

tance, Part (i) of this lemma, also since T is affine, we have:

d(Skn+1x, TS
k
nx) = d

( 1

n+ 1
T k+nx⊕ n

n+ 1
Sknx,

1

n
T k+nx⊕ n− 1

n
TSkn−1x

)
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6 d
( 1

n+ 1
T k+nx⊕ n

n+ 1
Sknx,

1

n+ 1
T k+nx⊕ n

n+ 1
TSkn−1x

)
+d
( 1

n+ 1
T k+nx⊕ n

n+ 1
TSkn−1x,

1

n
T k+nx⊕ n− 1

n
TSkn−1x

)
6

n

n+ 1
d(Sknx, TS

k
n−1x) + | 1

n+ 1
− 1

n
|d(T k+nx, TSkn−1x)

= (1− 1

n+ 1
)d(Sknx, TS

k
n−1x)

+
1

n+ 1

( 1

n
d(T k+nx, TSkn−1x)

)
,

Thereupon by Lemma 2.1, we have d(Skn+1x, TS
k
nx) → 0. On the other hand

by Part (ii) and since

d(Sknx, TS
k
nx) 6 d(Sknx, S

k
n+1x) + d(Skn+1x, TS

k
nx),

we obtain:
d(Sknx, TS

k
nx)→ 0. (2.1)

Lemma 2.4. (see [15, Lemma 2.1, Lemma 2.2]). Let C be a closed and convex
subset of a Hadamard space H , T : C −→ C be a nonexpansive mapping with
F (T ) 6= ∅ and u ∈ C. For each t ∈ (0, 1), set zt = tu ⊕ (1 − t)Tzt. Then zt
converges to the unique fixed point of T as t → 0, which is the nearest point
of F (T ) to u.

The following lemma is a consequence of [8, Lemma 2.5].

Lemma 2.5. Let H be a Hadamard space and T : H −→H be a nonexpan-
sive mapping. If {xn} is a bounded sequence in C such that d(xn, Txn)→ 0,
then

lim sup
n
〈uz, xnz〉 6 0,

where u ∈H and z is the nearest point of F (T ) to u.

We rewrite this lemma by replacing u with Tnx and prove it.

Lemma 2.6. Let H be a Hadamard space and T : H −→ H be a nonex-
pansive mapping with a nonempty fixed point set F (T ). If {xn} is a bounded
sequence in C such that d(xn, Txn)→ 0, then

lim sup
n
〈Tnxp, xnp〉 6 0,

where x ∈H and p = lim
n
PTnx by Lemma 2.2.
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Proof. For each t ∈ (0, 1) and n ∈ N, there exists a point zt such that
zt = tTnx ⊕ (1 − t)Tzt. By Lemma 2.4, zt converges strongly to PTnx as
t→ 0 and remains bounded, since F (T ) 6= ∅. In fact, for p ∈ F (T ), we have:

d(zt, p) = d(tTnx⊕ (1− t)Tzt, p)
6 td(Tnx, p) + (1− t)d(Tzt, p)

6 td(x, p) + (1− t)d(zt, p),

hence,
d(zt, p) 6 d(x, p).

By Lemmas 1.2 and 1.3, for each t ∈ (0, 1) and all n ∈ N, we have:

d2(zt, xn) = d2(tTnx⊕ (1− t)Tzt, xn)

6 t2d2(Tnx, xn) + (1− t)2d2(Tzt, xn) + 2t(1− t)〈Tnxxn, T ztxn〉
= t2d2(Tnx, xn) + (1− t)2d2(Tzt, xn) + 2t(1− t)〈TnxTzt, T ztxn〉

+2t(1− t)〈Tztxn, T ztxn〉

= t2d2(Tnx, xn) +
(

(1− t)2 + 2t(1− t)
)
d2(Tzt, xn)

+2t(1− t)〈TnxTzt, T ztxn〉

6 t2d2(Tnx, xn) + (1− t2)
(
d(Tzt, Txn) + d(Txn, xn)

)2
+2t(1− t)〈TnxTzt, T ztxn〉

= t2d2(Tnx, xn) + (1− t2)d2(Tzt, Txn) + (1− t2)d2(Txn, xn)

+2(1− t2)d(Tzt, Txn)d(Txn, xn) + 2t(1− t)〈TnxTzt, T ztxn〉
6 t2d2(Tnx, xn) + (1− t2)d2(zt, xn) + (1− t2)d2(Txn, xn)

+2(1− t2)d(zt, xn)d(Txn, xn) + 2t(1− t)〈TnxTzt, T ztxn〉,

which by Lemma 1.2 implies

2t(1− t)〈TnxTzt, xnTzt〉 6 t2d2(Tnx, xn) + (1− t2)d2(Txn, xn)

+ 2(1− t2)d(zt, xn)d(Txn, xn).

Hence, by boundedness of {xn} and d(xn, Txn) → 0, for each t ∈ (0, 1) we
obtain:

lim sup
n
〈TnxTzt, xnTzt〉 6

t

2(1− t)
lim sup

n
d2(Tnx, xn). (2.2)

On the other hand, by Lemma 2.4, zt converges to PTnx, as t → 0. So
continuity of d and T as well as boundedness of {xn} imply

〈TnxTzt, xnTzt〉 −→
t→0
〈TnxPTnx, xnPTnx〉, uniformly with respect to n.
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Therefore, for any ε > 0, there exists δ > 0 such that:

〈TnxPTnx, xnPTnx〉 6 ε+ 〈TnxTzt, xnTzt〉, (2.3)

for all 0 6 t 6 δ and all n ∈ N. Since by Lemma 2.2, p = lim
n
PTnx, by (2.2),

(2.3) and triangle inequality, we have:

2 lim sup
n
〈Tnxp, xnp〉 = lim sup

n

(
d2(Tnx, p) + d2(xn, p)− d2(Tnx, xn)

)
6 lim sup

n

(
d2(Tnx, PTnx) + d2(PTnx, p)

+2d(Tnx, PTnx)d(PTnx, p)

+d2(xn, PT
nx) + d2(PTnx, p)

+2d(xn, PT
nx)d(PTnx, p)− d2(Tnx, xn)

)
6 lim sup

n

(
d2(Tnx, PTnx) + d2(xn, PT

nx)− d2(Tnx, xn)
)

= lim sup
n
〈TnxPTnx, xnPTnx〉

6 ε+ lim sup
n
〈TnxTzt, xnTzt〉

6 ε+
t

2(1− t)
lim sup

n
d2(Tnx, xn).

Letting t→ 0, we get:

lim sup
n
〈Tnxp, xnp〉 6

ε

2
.

Since ε is arbitrary, we deduce:

lim sup
n
〈Tnxp, xnp〉 6 0,

and this completes the proof.

Now we can prove the main result.

Theorem 2.7. Let H be a Hadamard space and T : H −→H be an affine
nonexpansive mapping with a nonempty fixed point set F (T ). Then {Snx}
defined by (1.8) converges to p ∈ F (T ), where p = lim

n
PTnx by Lemma 2.2.

Proof. For p = lim
n
PTnx, we get:

d2(Sn+1x, p) = d2(
1

n+ 1
Tnx⊕ n

n+ 1
Snx, p)
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6 (
1

n+ 1
)2d2(Tnx, p) + (

n

n+ 1
)2d2(Snx, p)

+ 2
1

n+ 1

n

n+ 1
〈Tnxp, Snxp〉

6
n

n+ 1
d2(Snx, p) +

1

n+ 1

( 1

n+ 1
d2(Tnx, p) +

2n

n+ 1
〈Tnxp, Snxp〉

)
.

By Lemmas 2.1, 2.3 and 2.6, we have that Snx converges strongly to p.

Remark 2.1. It is easily seen that the Mazur-Ulam theorem holds in Hadamard
spaces, i.e., every surjective self-isometry in a Hadamard space is affine. For
every x, y ∈ H , 1

2T (x) ⊕ 1
2T (y) is the midpoint of the segment [T (x), T (y)].

Since T is surjective, there exists some z ∈H such that T (z) = 1
2T (x)⊕ 1

2T (y).
We have:

d
(
T (x), T (z)

)
= d
(
T (y), T (z)

)
=

1

2
d(Tx, Ty).

Since T is distance preserving, we get

d(x, z) = d(y, z) =
1

2
d(x, y).

Therefore, z is the midpoint of x and y. Hence,

T (
1

2
x⊕ 1

2
y) =

1

2
T (x)⊕ 1

2
T (y).

Since an isometry mapping is also continuous, then T is affine. Consequently,
any surjective self-isometry in a Hadamard space is a nonexpansive affine
mapping and therefore it satisfies the assumptions of Theorem 2.7.

3 From Ergodic Convergence to Convergence

For a sequence {xn} in a linear space, 1
n

∑n−1
i=0 xi is called the Cesaro mean

and 1
n

∑n−1
i=0 xk+i is called the Vallee-Poussin mean. Lorentz [12] introduced

almost convergence of real-valued sequences in terms of uniform convergence
of the Vallee-Poussin means with respect to k. The sequence {xn} is almost
convergent to s if the Vallee-Poussin mean of {xn} is convergent to s uniformly
in k. He showed the following relation between three kinds of convergence for
a real sequence:
i.e., convergence of the sequence {xn} implies the almost convergence of the
sequence and the almost convergence implies convergence of the Cesaro mean
of the sequence. For the reverse directions, we need some sufficient conditions,
which are called the Tauberian conditions. Kuo [10] extended these results
from real sequences to vector sequences in Banach spaces. In the next theorem
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we show that in Hadamard spaces, the almost convergence (with respect to the
inductive mean) together with the asymptotic regularity implies convergence
of the sequence. Although the proof is true for every geodesic metric space
whose distance is geodesically convex, we state it in Hadamard spaces.

Theorem 3.1. Let {xn} be a sequence in a Hadamard space (H , d). Then
{xn} converges to y if and only if Skn defined by (1.5) converges to y uni-
formly in k > 0 (or the sequence {xn}, is almost convergent to y) and {xn} is
asymptotically regular.

Proof. Necessity. If {xn} converges strongly to y, for an arbitrary ε > 0,
there is a positive integer i0 such that:

d(xn, y) <
ε

4
∀n > i0. (3.1)

Choose m > i0 sufficiently large such that

d(x0, y) + · · ·+ d(xm−1, y)

m
=

1

m

m−1∑
i=0

d(xi, y) 6
ε

2
. (3.2)

Because if

i0−1∑
i=0

d(xi, y) := I, since by (3.1)

1

m

m−1∑
i=0

d(xi, y) 6
1

m

i0−1∑
i=0

d(xi, y) +
m− i0
m

ε

4
6

1

m
I +

ε

4
,

by choosing m > max{i0, 4Iε }, we get (3.2). For all k > 0 there are two cases,
k < i0 and k > i0. If k > i0, it is clear that

d(SkN , y) 6
1

N

N−1∑
i=0

d(xk+i, y) 6
ε

4
< ε.

If k < i0, since i0 < m, by (3.1) and (3.2), for all N > m, we have:

d(SkN , y) 6
1

N

N−1∑
i=0

d(xk+i, y)
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6
1

N

k+N−1∑
i=0

d(xi, y)

=
m

N

m−1∑
i=0

d(xi, y)

m
+

1

N

k+N−1∑
i=m

d(xi, y)

6
ε

2
+
ε

4
< ε.

Thus for each ε > 0 there is a positive integer m such that

d(SkN , y) < ε ∀N > m,∀k > 0.

This shows that Skn converges to y uniformly in k > 0. Clearly convergence of
{xn} implies the asymptotic regularity.
Sufficiency. Let Skn converge to y uniformly in k > 0 and {xn} be asymptot-
ically regular. By Lemma 1.1, we have:

d(xk, y) 6 d(xk, S
k
n) + d(Skn, y)

6
1

n

n−1∑
i=1

d(xk, xk+i) + d(Skn, y)

=
1

n

{
d(xk, xk+n−1) + d(xk, xk+n−2) + · · ·+ d(xk, xk+1)

}
+ d(Skn, y)

6
1

n

{( k+n−2∑
i=k

d(xi, xi+1)

)
+ · · ·+

( k+1∑
i=k

d(xi, xi+1)

)
+ d(xk, xk+1)

}
+d(Skn, y)

6
1

n
sup
i>k

d(xi, xi+1)
(
(n− 1) + · · ·+ 2 + 1

)
+ d(Skn, y)

=
1

n

(n− 1)n

2
sup
i>k

d(xi, xi+1) + d(Skn, y)

=
n− 1

2
sup
i>k

d(xi, xi+1) + d(Skn, y).

Taking limsup when k →∞, by asymptotic regularity of {xn}, we get

lim sup
k→∞

d(xk, y) 6 lim sup
k→∞

d(Skn, y) 6 sup
k>1

d(Skn, y).

Now letting n→∞. Since Skn is uniformly convergent to y, the recent inequal-
ity completes the proof.
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Corollary 3.2. Let H be a Hadamard space, also T and p satisfy the as-
sumptions of Theorem 2.7. Then {Tnx} converges strongly to p if and only if
{Tnx} is asymptotically regular.

Proof. For {Sknx} defined as (1.7), since T is affine and p ∈ F (T ), we have:

d(Sknx, p) = d(T kSnx, p) 6 d(Snx, p).

This shows that for the orbits of an affine nonexpansive mapping in a Hadamard
space, the mean convergence is equivalent to the almost convergence. There-
fore, Theorem 3.1 completes the proof.
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