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Reducibility in Corsini hypergroups

Milica Kankaras

Abstract

In this paper, we study the reducibility property of special hyper-
groups, called Corsini hypergroups, named after the mathematician who
introduced them. The concept of reducibility was introduced by Jantos-
ciak, who noticed that it can happen that hyperproduct does not distin-
guish between a pair of elements. He defined a certain equivalences in
order to identify elements which play the same role with respect to the
hyperoperation. First we will determine specific conditions under which
the Corsini hypergroups are reduced. Next, we will present some prop-
erties of these hypergroups necessary for studying the fuzzy reducibility
property. The fuzzy reducibility will be considered with respect to the
grade fuzzy set µ̃, used for defining the fuzzy grade of a hypergroup.
Finally, we will study the reducibility and the fuzzy reducibility of the
direct product of Corsini hypergroups.

1 Introduction

In a classical algebraic structure (group, ring, field, etc) the result of the
synthesis, called operation, between two elements of the support set is an
element of the same support set. Extending this property in a ”hyper” way,
one can consider the synthesis of two elements having as result a subset of
the support set, so substituting the operation on a set with a hyperoperation.
This genial idea came to F. Marty in 1934, when he proved that the quotient
structure of a group by any arbitrary subgroup can be defined as a hypergroup.
This is a set H endowed with a hyperoperation, i.e. a function ◦ : H ×H →
P∗(H) defined from the Cartesian product H × H to the set of non-empty
subsets of H, having two properties:
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1. the associativity: for any x, y, z ∈ H, (x ◦ y) ◦ z = x ◦ (y ◦ z) and

2. the reproducibility: for any x ∈ H,x ◦H = H = H ◦ x.

Here, (x ◦ y) ◦ z must be read as
⋃

u∈x◦y
u ◦ z, and similarly x ◦ (y ◦ z) must be

read as
⋃

u∈y◦z
x ◦ u.

Since then, the theory of algebraic hypercompositional structures has been
developed from different perspectives, becoming today not only a very well
known branch of Modern Algebra, but also an important tool to solve problems
in other areas, as graph heory, probability, geometry, number theory, coding
theory, etc. For a collection of some applications obtained before 2003, we indi-
cate the book [7]. One of the most studied applications of hypergroups is that
one related with binary or n-ary relations ([3, 8, 9, 11, 12, 14, 16, 24]), that has
been then extended to graphs and hypergraphs ([2, 17, 23, 25]). This idea was
developed at the beginning by the Italian school, mainly by P. Corsini, who as-
sociated to an arbitrary hypergraph a particular commutative quasi-hypergoup
and founded necessary and sufficient conditions so that it is a hypergroup [2].
Corsini called this new structure a ”hypergraph-hypergroupoid”. In 2019 Al
Tahan and Davvaz [1] studied again this hypergroup, calling it ”Corsini hyper-
group”, finding its properties related to cyclicity, regular relations, complete
parts and direct products of hypergroups. It is also interesting to notice that
a particular type of this Corsini hypergroup was studied by G. Massouros [23]
for its applications in the Theory of Languages. More precisely, this is a B-
hypergoup, where the hyperoperation is defined as x ◦ y = {x, y} for any two
arbitrary elements. The B-hypergroup appears also in the study of fortified
join hypergroups [21] or breakable semihypergroups [18].

In this paper we will study the reducibility property of Corsini hyper-
groups. This concept was first defined by Jantosciak [19] in 1990, when he
noticed that in a hypergroup (and we can say that in any hypercompositional
structure) some elements play ”interchangeable roles” with respect to the hy-
peroperations. In particular, two arbitrary elements can belong to the same
hyperproducts of elements, or their hyperproducts with all elements in the
support set are the same. Mathematically speaking, two equivalence relations
can be defined on a hypergroup in order to describe these properties. They
have been introduced by Jantosciak [19], who called them inseparability and
operational equivalence. Combining both of them, Jantosciak defined also a
third equivalence, i.e. the essential indistinguishability. Moreover, he called
a hypergroup to be reduced if the equivalence class of each element in the
hypergroup is a singleton with respect to the last equivalence relation. This
property was studied in deep by Cristea ([9, 10, 11, 14]) for hypergroups as-
sociated to binary or n-ary relations and extended also to the fuzzy case [10].
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Recently, Kankaras and Cristea [20] have investigated the (fuzzy) reducibility
of complete hypergroups, i.p.s hypergroups and a particular non-complete 1−
hypergroups. The fuzzy reducibility was considered with respect to the grade
fuzzy set µ̃, introduced by Corsini [5] and studied by Corsini and Cristea for
the definition of the fuzzy grade of a hypergroup [6]. For an element u in
hypergroup, grade fuzzy set µ̃(u) is the average value of the reciprocals of the
sizes of all hyperproducts which contain the element u. Fuzzy grade of the
hypergroup represents the length of the sequence of join spaces and fuzzy sets
associated with the given hypergroup.

Motivated by the above mentioned studies, in this note we aim to study
the reducibility and the fuzzy reducibility property of Corsini hypergroups.
First, we will recall some definitions and properties related with Corsini hy-
pergroups, then we will establish conditions under which these hypergroups
are reduced or fuzzy reduced. Finally, we will focus on the study of the prod-
uct of Corsini hypergroups and its reducibility. Conclusions and new ideas for
further research are covered by the last section.

2 Preliminaries

In this section we briefly recall the main definitions concerning the reducibility
and the fuzzy reducibility of hypergroups, as well as the concept of Corsini
hypergroup. For more details and a solid background of the theory of algebraic
hypergroups the readers can consult the monographs [4, 7, 15].

Definition 2.1. [19] Two elements x, y in a hypergroup (H, ◦) are called:

1. operationally equivalent or by short o-equivalent, and write x ∼o y, if
x ◦ a = y ◦ a, and a ◦ x = a ◦ y, for any a ∈ H;

2. inseparable or by short i-equivalent, and write x ∼i y, if, for all a, b ∈ H,
x ∈ a ◦ b⇐⇒ y ∈ a ◦ b;

3. essentially indistinguishable or by short e-equivalent, and write x ∼e y,
if they are operationally equivalent and inseparable.

Definition 2.2. [19] A hypergroup is called reduced if the equivalence class
of each element with respect to the essentially indistinguishable relation is a
singleton.

If now we consider a fuzzy set µ : H −→ [0, 1] defined on a hypergroup
H, then we can extend the reducibility property to the fuzzy case. As in
the classical aproach, first we define three equivalences relations that keep the
same model as the inseparability and operationally equivalence.
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Definition 2.3. [20] In a crisp hypergroup (H, ◦) endowed with a fuzzy set
µ, for two arbitrary elements x, y ∈ H, we say that:

1. x and y are fuzzy operationally equivalent and write x ∼fo y if, for any
a ∈ H, µ(x ◦ a) = µ(y ◦ a) and µ(a ◦ x) = µ(a ◦ y);

2. x and y are fuzzy inseparable and write x ∼fi y if µ(x) ∈ µ(a ◦ b) ⇐⇒
µ(y) ∈ µ(a ◦ b), for a, b ∈ H;

3. x and y are fuzzy essentially indistinguishable and write x ∼fe y, if they
are fuzzy operationally equivalent and fuzzy inseparable.

Definition 2.4. [20] The crisp hypergroup (H, ◦) is a fuzzy reduced hyper-
group if the equivalence class of each element in H with respect to the fuzzy
essentially indistinguishable relation is a singleton, i.e for all x ∈ H, x̂fe = {x}.

As it was already explained in [20], the fuzzy reducibility depends on the
considered fuzzy set, so it can change when we consider different fuzzy sets.
For any hypergroupoid (H, ◦), the grade fuzzy set µ̃ is defined as follows:

µ̃(u) =
A(u)

q(u)
,

where A(u) =
∑

(x,y)∈Q(u)

1
|x◦y| , Q(u) = {(x, y) ∈ H2 : u ∈ x ◦ y}, q(u) = |Q(u)|.

For Q(u) = ∅, by default we take µ̃(u) = 0.
In the first studies concerning the relationship between hypergroups and

hypergraphs, Corsini defined the following hypergroupoid.

Definition 2.5. [2] On a non empty set H, define the hyperoperation ◦ as
follows. For all (x, y) ∈ H2,

1. x ◦ y = x ◦ x ∪ y ◦ y,

2. x ∈ x ◦ x,

3. y ∈ x ◦ x ⇐⇒ x ∈ y ◦ y.

Theorem 2.6. [2] A hypergrupoid (H, ◦) satisfying the conditions in Defini-
tion 2.5 is a hypergroup if and only if also the following condition is valid:

∀(a, c) ∈ H2 c ◦ c ◦ c \ c ◦ c ⊆ a ◦ a ◦ a.

This hypergroup was studied also in [1], where the authors named it
”Corsini hypergroup” and investigated also its properties connected with the
Cartesian product. Here we recall one result, that we will need in our research.
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Theorem 2.7. [1] Let (H, ◦1) and (H, ◦2) be two Corsini hypergroups. Then
the direct product of hypergroups (H ×H, ◦1 × ◦2) is a Corsini hypergroup if
and only if (H, ◦1) or (H, ◦2) (or both) is a total hypergroup.

Note that, for two given hypergroups defined on the same support set H,
the hyperoperation

⊗
= ◦1 × ◦2 is defined as (x1, x2)

⊗
(y1, y2) = (x1 ◦1

y1, x2 ◦2 y2), x1, x2, y1, y2 ∈ H. The structure (H ×H,
⊗

) is called the direct
product of hypergroups.

We end this preliminary section with one particular type of Corsini hy-
pergroup, studied for its important properties in the theory of automata and
languages [22], and called B-hypergroup by G. Massouros, after the binary re-
sult that the hyperoperation gives. It was also investigated in connection with
fortified join spaces [21] or breakable semihypergroups [18].

Definition 2.8. [22] Let H be any non-empty set. For any (x, y) ∈ H2, define
? as follows

x ? y = {x, y}.

Then the hypergroup (H, ?) is called a B-hypergroup.

Proposition 2.9. [1] Any B-hypergroup (H, ?) is a Corsini hypergroup.

3 The reducibility in Corsini hypergroups

In this section we determine necessary and sufficient condition for the Corsini
hypergroup to be reduced. Secondly, we prove that any B-hypergroup is always
reduced. Also, we give an example of a reduced hypergroup which is not a
B-hypergroup.

Proposition 3.1. Let (H, ◦) be a Corsini hypergroup. If there exist some
different elements x, y in H such that x ◦x = y ◦ y, then the hypergroup (H, ◦)
is not reduced.

Proof. Let x, y be arbitrary elements in H such that x 6= y and x ◦ x = y ◦ y.
It is easy to see that x ◦ a = y ◦ a, for any a ∈ H, since x ◦ a = x ◦ x ∪ a ◦ a =
y ◦ y ∪ a ◦ a = y ◦ a. Using the commutativity, we obtain that a ◦ x = a ◦ y, for
any a ∈ H. Hence, x ∼o y. Let x ∈ c◦d, with x, c, d ∈ H. Then x ∈ c◦c∪d◦d,
which implies that x ∈ c ◦ c or x ∈ d ◦ d. Since (H, ◦) is a Corsini hypergroup,
the previous implication gives c ∈ x ◦ x or d ∈ x ◦ x and c ∈ y ◦ y or d ∈ y ◦ y.
Using the same property, we conclude that y ∈ c ◦ d. Similarly, one proves the
converse implication. Therefore, x ∼i y. Hence, the hypergroup (H, ◦) is not
reduced.

As a consequence of Proposition 3.1, we obtain the following results.
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Proposition 3.2. A Corsini hypergroup (H, ◦) with at least two different
elements is reduced if and only if x ◦ x 6= y ◦ y, for all x, y ∈ H.

Proof. The contraposition of Proposition 3.1 directly gives the first direction.
Suppose now that x ◦ x 6= y ◦ y, for all x, y ∈ H. Take two arbitrary elements
x 6= y from H. We will prove that x ◦ a = y ◦ a, for all a ∈ H, just in case
when x = y. Assume that x ◦ a = y ◦ a, for all a ∈ H. From here, we have
x ◦ x = y ◦ x, which gives x ◦ x = y ◦ y ∪ x ◦ x. The last equality is possible
only if y ◦ y ⊆ x ◦x. Similarly, since x ◦ y = y ◦ y, it follows the other inclusion
x ◦ x ⊆ y ◦ y. Therefore, x ◦ a = y ◦ a is equivalent with x ◦ x = y ◦ y, which
contradicts the hypothesis. Hence, two arbitrary elements x and y, x 6= y are
not operationally equivalent, thus x̂e = {x} for all x ∈ H, meaning that H is
a reduced hypergroup.

Proposition 3.3. Any B-hypergroup is reduced.

Proof. This immediately follows from Proposition 3.2, since in a B-hypergroup
there is x ◦ x = {x}, for all elements x.

In the following example we present a reduced Corsini hypergroup, which
is not a B-hypergroup.

Example 3.4. On the set H = {a, b, c} define the hyperoperation ” ◦ ” by the
following table:

◦ a b c
a H H H
b H a, b H
c H H a, c

Since all the rows in the table are different, it follows that x̂o = {x} for any
x ∈ H, which clearly implies the reducibility of the hypergroup.

4 Fuzzy reducibility in Corsini hypergroups

The aim of this section is to prove that a Corsini hypergroup (H, ◦) is not
fuzzy reduced with respect to the grade fuzzy set µ̃. For doing this, first we
present some properties regarding the hyperproducts xi ◦ xi, with xi ∈ H.
For a finite hypergroup H with n elements, we will denote its cardinality

by |H| = n. Recall also that, for any u ∈ H, µ̃(u) = A(u)
q(u) , where A(u) =∑

(x,y)∈Q(u)

1
|x◦y| , Q(u) = {(x, y) ∈ H2 : u ∈ x ◦ y}, q(u) = |Q(u)|.

Proposition 4.1. Let (H, ◦) be a Corsini hypergroup with n elements. If an
element xi appears in exactly k hyperproducts xj ◦ xj , j = 1, 2, . . . , n, then
q(xi) = 2nk − k2.
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Proof. Let xi be an arbitrary element from H = {x1, x2, x3, . . . , xn} which
appears in k hyperproducts xj ◦ xj , for some j = 1, . . . , n. By the definition
of the hyperoperation of a Corsini hypergroup, it follows that xi appears in
every hyperproduct xj ◦ xk, with k ∈ {1, . . . , n}. For one fixed k, because the
commutativity, xi appears in n + n − 1 hyperproducts. The sum of all such
cases is:

(2n− 1) + (2n− 1)− 2 · 1 + (2n− 1)− 2 · 2 + . . .+ (2n− 1)− 2 · (k − 1) =

(2n− 1) · k − 2(1 + 2 + . . .+ k) = (2n− 1) · k − (k − 1)k = 2nk − k2.

Proposition 4.2. The sum of all cardinalities of xi ◦ xi, xi ∈ H when |H| is
odd (even) is an odd (even) number.

Proof. Let |H| = n be an even number. If |xi ◦ xi| = 1, for every xi ∈ H,
then

∑n
i |xi ◦ xi| = 1 · n = n which is an even number. Let add k elements

to a hyperproduct xi ◦ xi, k ≤ n − 1. In that case, by the property 3 of the
definition of the hyperoperation ” ◦ ”, we have to add the element xi to k−
hyperproducts xj◦xj . All together, we add k+k = 2k elements, which is again
an even number. Continuing this process, so adding an arbitrary number of
elements to any hyperproduct xi◦xi, we always get an even number. Summing
arbitrary even numbers, we obtain at the end an even number. The proof is
analogous in the case when n is an odd number.

Proposition 4.3. Let (H, ◦) be a Corsini hypergroupoid of cardinality n. The
number of all possible different sums of the cardinalities of the hyperproducts

xi ◦ xi, xi ∈ H, is n2−n
2 + 1.

Proof. The proof will be performed using the mathematical induction. For
hypergroups of cardinality 2, the property is easily satisfied, because if H
contains two elements, we have exactly two possibilities. The hyperproducts
x ◦x are singleton, or equal to H. In the first case the sum of the cardinalities
of xi ◦ xi is 2, while in the second case the sum is 4. Thus, the number of

the different sums is 2, i.e. 22−2
2 + 1. Assume that for |H| = n the number

of the different sums is equal to n2−n
2 + 1. Let us prove that the claim is

valid for |H| = n + 1. In this case we have to analyse only the hyperproduct

xn+1◦xn+1. If xn+1◦xn+1 = {xn+1}, then we have n2−n
2 +1 possible sums, i.e.

the number of sums is the same as in the inductive case. The other cases are:
xn+1◦xn+1 = {xn+1, xi}, xn+1◦xn+1 = {xn+1, xi, xj}, . . . , xn+1◦xn+1 = H. It

gives n sums more, which is finally n2−n
2 + 1 +n, i.e. number of possible sums

when |H| = n+ 1 is equal to (n+1)2−(n+1)
2 + 1, which proves the proposition.



Reducibility in Corsini hypergroups 100

Remark 4.4. Let (H, ◦) be a Corsini hypergroup of cardinality n. There are

at least n2−n
2 +1 Corsini hypergroups of order n up to isomorphism. Since the

hyperproducts x ◦ x, x ∈ H completely determine the hypergroup, it folows

that n2−n
2 + 1 different sums define at least as many different hypergroups.

One sum can form more different tables, and in case when n ≥ 3 the number
of hypergroups is greater.

Proposition 4.5. Let (H, ◦) be a Corsini hypergroup of cardinality n. If
an element xi appears in k hyperproducts xj ◦ xj , and if we assume that the
cardinalities of those sets are, respectively m1,m2, . . . ,mk, then

µ̃(xi) =

1
m1

+ 1
m2

+ . . .+ 1
mk

+ 2 ·
∑
i 6=j

i=1,...,k

1

|xi ◦ xj |

2nk − k2

Proof. According to definition of the fuzzy grade set µ̃ and Proposition 4.1,
the result is clearly satisfied.

Remark 4.6. If two elements of a Corsini hypergroup have the same number
of appearances in some hyperproducts xj ◦ xj , and the cardinalities of those
hyperproducts are the same for both elements, based on Proposition 4.5, then
their values under the grade fuzzy set µ̃ are the same. Hereinafter, we will say
that elements with this property are in the same formation.

Proposition 4.7. In any Corsini hypergroup (H, ◦) , the fuzzy operational
equivalence implies the fuzzy inseparability.

Proof. Let x, y ∈ H be two arbitrary elements in H such that x ∼fo y, i.e.
µ̃(x ◦ a) = µ̃(y ◦ a), for ∀a ∈ H. It means that:

µ̃(x ◦ x ∪ a ◦ a) = µ̃(y ◦ y ∪ a ◦ a)

⇐⇒
µ̃(x ◦ x) ∪ µ̃(a ◦ a) = µ̃(y ◦ y) ∪ µ̃(a ◦ a).

Since this equality is satisfied for every set µ̃(a ◦ a), a ∈ H, it follows that
µ̃(x◦x) = µ̃(y◦y) and contains both µ̃(x) and µ̃(y) by property 3. of Definition
2.5. If µ̃(x) = µ̃(y), then clearly x ∼fi y. Let us consider now the case when
µ̃(x) 6= µ̃(y). Suppose that µ̃(x) ∈ µ̃(c ◦ d) = µ̃(c ◦ c) ∪ µ̃(d ◦ d). Let us take
µ̃(x) ∈ µ̃(c ◦ c). It follows that, for some z ∈ c ◦ c, µ̃(x) = µ̃(z). The equality
µ̃(x ◦ x) = µ̃(y ◦ y) means that {µ̃(l) | l ∈ x ◦ x} = {µ̃(k) | k ∈ y ◦ y},
i.e. for every l ∈ x ◦ x there exists k ∈ y ◦ y such that µ̃(l) = µ̃(k). Now,
since µ̃(x) = µ̃(z) ∈ µ̃(x ◦ x), µ̃(x) ∈ µ̃(x ◦ x), and µ̃(x ◦ x) = µ̃(y ◦ y), we
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conclude that µ̃(z) ∈ µ̃(y◦y). Thus there exists l ∈ y◦y such that µ̃(z) = µ̃(l).
But µ̃(z) ∈ µ̃(c ◦ c), so µ̃(l) ∈ µ̃(c ◦ c), with l ∈ y ◦ y, which finally gives
µ̃(y) ∈ µ̃(c ◦ c). The converse implication can be proved taking µ̃(y) ∈ µ̃(c ◦ c)
and proving that µ̃(x) ∈ µ̃(c ◦ c). This shows that µ̃(x) and µ̃(y) appear in the
same µ̃(c◦c). Finally, according to the definition of µ̃(x◦y), it is easy to prove
that the previous equivalence implies the fuzzy inseparability.

Proposition 4.8. Let (H, ◦) be a Corsini hypergroup of cardinality n. If x
is an element such that x ◦ x is a singleton, i.e. x ◦ x = {x}, then µ̃(x) =

1+2·
∑
a 6=x

1

|x ◦ a|
2n−1 , with a ∈ H.

Proof. Using Proposition 4.1 we easily get that q(x) = 2n−1. Since x appears
in every product x ◦ a, a ∈ H, and the commutativity holds, then A(x) =

1 + 2 ·
∑
a6=x

1

|x ◦ a|
, which clearly gives the formula.

Based on this result, we can state sufficient conditions such that two ele-
ments in a Corsini hypergroup are fuzzy essentially indistinguishable.

Proposition 4.9. If there exist two elements x, y in a Corsini hypergroup
(H, ◦) such that x ◦ x = x and y ◦ y = y, then x ∼fe y.

Proof. Using Proposition 4.8 this obviously holds, because µ̃(x) = µ̃(y).

Proposition 4.10. If there exist two elements x, y in Corsini hypergroup
(H, ◦) such that x ◦ x = y ◦ y = H, then x ∼fe y.

Proof. Since x ◦ x = H, based on condition 3 of Definition 2.5 it follows that
x appears in all hyperproducts z ◦ z, with z ∈ H, and similarly holds for y.
So x and y are in the same formation. According to Proposition 4.5, we have
µ̃(x) = µ̃(y), so x and y are fuzzy inseparable. Besides, µ(x ◦ a) = µ(y ◦ a) =
µ({x | x ∈ H}), which implies the fuzzy operational equivalence. Therefore,
x ∼fe y.

Theorem 4.11. Any B-hypergroup is not fuzzy reduced with respect to the
grade fuzzy set µ̃.

Proof. Regarding to the definition of a B-hypergroup, we have |x ◦ x| = 1
and |x ◦ a| = 2 for every x 6= a, so A(x) = 1 + 2 · (n − 1) · 1

2 = n. Using
Proposition 4.1, we know that q(x) = 2n − 1, which clearly gives that, for
any x ∈ H, µ̃(x) = n

2n−1 . Hence, two arbitrary elements in a B-hypergroup are
fuzzy inseparable. Besides, µ̃(x◦a) = µ̃(y◦a), for any a ∈ H since µ̃(x) = µ̃(y)
for two arbitrary elements fromH, and µ̃(x◦a) = µ̃({x, a}) = {µ̃(x), µ̃(a)}.
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Proposition 4.12. Let (H, ◦) be a Corsini hypergroup with |H| ≥ 2. There
always exist two elements x, y ∈ H such that µ̃(x ◦ x) = µ̃(y ◦ y).

Proof. We will split the proof in some cases. Using Propositions 4.9 and 4.10
we can eliminate the cases when there exist x, y ∈ H such that x ◦ x and y ◦ y
are singleton or equal to H. It remains then to consider other three cases.

1. There exists x ∈ H such that x ◦ x = H.

2. There exists x ∈ H such that x ◦ x = x,

3. The hypergroup doesn’t contain any element x such that x ◦ x is equal
to x or H.

Case 1. Without losing the generality, assume that H = {x1, x2, . . . , xn}
and xn ◦xn = H. This means that any xi ∈ H belongs to xn ◦xn, that implies
xn ∈ xi ◦ xi, for any i = 1, 2, . . . , n.
Subcase 1.1. If xi ◦ xi = {xi, xn}, i = 1, 2, . . . , n − 1 and xn ◦ xn = H, then
by Proposition 4.5, we know that µ̃(xi) is the same, for all i = 1, 2, . . . , n− 1.
This also implies that µ̃(x1 ◦ x1) = µ̃(x2 ◦ x2) = . . . = µ̃(xn−1 ◦ xn−1), which
concludes the result.
Subcase 1.2. Extending the previous subcase, that can be considered as a
”base case”, we can analyze now the situation when we add another element
xk, k 6= n 6= i, to the hyperproduct xi ◦ xi. This leads to have xk ◦ xk =
xi ◦xi = {xk, xi, xn}, which clearly gives µ̃(xi ◦xi) = µ̃(xk ◦xk), which proves
the proposition. Continuing the process, we can extend now this subcase into
two ways:

• by adding another element to a hyperproduct x ◦ x, with x ∈ H \
{xi, xk, xn} and again we obtain the conclusion of the result, or

• by adding a different element xl to one of the hyperproducts xi ◦ xi
or xk ◦ xk. Suppose that we add it to xi ◦ xi. Thus we get xi ◦ xi =
{xi, xk, xl, xn}, xl ◦xl = {xl, xi, xn}, xk ◦xk = {xk, xi, xn}, meaning that
xl and xk are in the same formations, so µ̃(xk) = µ̃(xl) and thereby
µ̃(xk ◦ xk) = µ̃(xl ◦ xl).

Continuing this process by the above described procedure, we will always get
two distinct elements such that µ̃(x ◦ x)=µ̃(y ◦ y). The process is finite, since
we stop when we get two hyperproducts x ◦ x = H.

Case 2. There exists xi ∈ H such that xi ◦ xi = xi. First, the ”base
case” is when all the other hyperproducts x◦x, with x ∈ H \{xi}, contain two
elements. This is possible only if the cardinality of H is odd. If the cardinality
of H is an even number, the ”base case” is when one hyperproduct xj ◦ xj ,
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with j 6= i, has three elements, and all the other hyperproducts x ◦ x have
exactly two elements. The value µ̃(xi) of all elements xi such that |xi ◦xi| = 2
is the same. Repeating the same procedure as in Case 1, we will always obtain
two elements x and y which satisfy the result.

Case 3. There doesn’t exist xi such that xi ◦xi = H nor xi ◦xi = xi. The
”base cases” are exactly the same as in the second case and they depend on
the parity of the cardinality of H. For example, in the case when cardinality
is an even number, we can set hyperproducts as: x1 ◦ x1 = x2 ◦ x2 = {x1, x2},
x3◦x3 = x4◦x4 = {x3, x4}, . . . , xn−1◦xn−1 = xn◦xn = {xn−1, xn}. The values
of all µ̃(xi) are the same for all i ∈ {1, 2, . . . , n}, so µ̃(xi ◦xi) are also the same
for i ∈ {1, 2, . . . , n}. In the case when the cardinality is an odd number, we
can form hyperproducts xi ◦xi as in the previous case for i = 2, . . . , n−1, but
take x1 ◦ x1 = {x1, x2, xn}, xn ◦ xn = {xn, x1}. This case reduces to the first
case, too. Using already mentioned procedure of constructing other Corsini
hypergroups, we will always get two elements x, y such that µ̃(x◦x) = µ̃(y◦y).

It is worth noticing that the procedure described above permits us to con-
struct all finite Corsini hypergroups.

Theorem 4.13. Any Corsini hypergroup is not fuzzy reduced with respect to
the grade fuzzy set µ̃.

Proof. According to Proposition 4.12 we can always find two elements x and
y such that µ̃(x ◦x) = µ̃(y ◦ y). This implies the fuzzy operational equivalence
of these two elements. From here, according to Proposition 4.7, we conclude
that they are also fuzzy inseparable. Hence, in any Corsini hypergroup there
always exist two elements in the same equivalence class with respect to the
fuzzy essential indistinguishability, which gives that the hypergroup is not
fuzzy reduced, with respect to the grade fuzzy set µ̃.

Remark 4.14. Do to a manner of construction of Corsini hypergroups, showed
in the Proposition 4.12, it is easy to conclude that the infinite Corsini hyper-
group is also not fuzzy reduced with respect to the µ̃.

Example 4.15. On the set H = {1, 2, 3, . . . , n} let define the hyperoperation
◦ρ by x ◦ρ y = x ◦ρ x ∪ y ◦ρ y, where x ◦ρ x = {z | xρz} and the relation ρ is
defined as xρy ⇐⇒ x ≤ y. Then (H, ◦ρ) is fuzzy reduced with respect to the
grade fuzzy set µ̃.

Indeed, note that i ◦ n = {1, 2, 3, . . . ,max{i, n}}. Since 1 is the smallest
element in the set H, then 1◦i = i◦1 = {1, 2, . . . , i}, for any i ∈ H. Here, 1 ap-
pears in any hyperproduct, so q(1) = n2, and the cardinalities of the sets where
1 appears are: 1, 2, . . . , n, respectively. Similarly, 2 ◦ i = i ◦ 2 = {1, 2, 3, . . . , i},
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and q(2) = n2 − 1, because 2 doesn’t appear only in the hyperproduct 1 ◦ 1.
The element 2 appears in the sets of cardinalities 2, 3, 4, . . . , n−1 respectively.
For an arbitrary element k, we can conclude that it doesn’t appear in hyper-
products j ◦ i and i◦j where i, j ≤ k. Cardinalities of the sets where k appears
are k, k + 1, . . . n, because k appear in every i ◦ j, where i or j are greater
than or equal to k. The set of cardinality n where k appears is every set i ◦n,
for any i ≤ n. Using the commutativity we conclude that we have a 2n − 1
such sets. Similarly, the set of cardinality n − 1 where k appears is every set
i ◦ (n− 1), i ≤ n− 1 and the number of them is 2(n− 1) + 1. Continuing the
procedure, we get that the set of cardinality k where k appears is i ◦ k, i ≤ k
and the number of them is (2k − 1). Calculating A(k), we get that k appears
in (2k− 1) + (2(k+ 1)− 1) + . . .+ (2n− 1) hyperproducts, which finally gives:

µ̃(k) =
1
k · (k + k − 1) + 1

k+1 (k + 1 + k − 1− 1) + . . .+ 1
n (n+ n− 1)

(2k − 1) + (2k + 1) + (2k + 3) + ...+ (2n− 1)
.

By summing and arranging members we get µ̃(k) =
2(n−k+1)−( 1

k+ 1
k+1+...+

1
n )

(n+k−1)(n−k+1) .

By simple calculations it can be proved that µ̃(k + 1) ≤ µ̃(k), hence k and
k+ 1 are not fuzzy essentially indistinguishable. From the previous inequality
we have µ̃(1) ≥ µ̃(2) ≥ . . . ≥ µ̃(n) so the equivalence class of any element in H
is a singleton. Hence, (H, ◦) is fuzzy reduced with respect to the grade fuzzy
set µ̃.

Remark 4.16. Notice that the previous hypergroup is not a Corsini one, but
it satisfies the first two conditions of Definition 2.5.

5 Reducibility of the direct product of Corsini hyper-
groups

We start this section by stating one known result about the reducibility of
the product of hypergroups. After that, we study the fuzzy reducibility of
the product of two non-fuzzy reduced hypergroups, that will be used for the
examination of the fuzzy reducibility of the direct product of Corsini hyper-
groups.

Theorem 5.1 ([12]). The hypergroup (H × H,
⊗

) is reduced if and only if
the hypergroups (H, ◦1) and (H, ◦2) are reduced.

Proposition 5.2 ([13]). If µ̃1 and µ̃2 are the grade fuzzy sets of H1 and H2,
and µ̃ is the grade fuzzy set of the direct product H1 × H2 then µ̃(x, y) =
µ̃1(x) · µ̃2(y), x, y ∈ H.
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Proposition 5.3. Let (H, ◦1) and (H, ◦2) be non-fuzzy reduced hypergroups
constructed on the support set H with at least two elements. Then the direct
product (H ×H, ◦1×◦2) is a non-fuzzy reduced hypergroup with respect to the
grade fuzzy set µ̃.

Proof. For two elements a and b, we know that µ(a ◦ b) = {µ(x) | x ∈ a ◦ b}.
Since (H, ◦1) is not fuzzy reduced, assume that x1, x2 are two elements such
that x1 ∼f.e x2, i.e. µ̃1(x1 ◦1 a) = µ̃1(x2 ◦1 a), for all a ∈ H. Also, µ̃1(x1)
and µ̃1(x2) appear in the same µ̃1(a ◦ b), a, b ∈ H. Similarly, since (H, ◦2) is
not fuzzy reduced, let y1 and y2 be elements in H such that they are fuzzy
essential indistinguishable. Our goal is to prove that the ordered pairs (x1, y1)
and (x2, y2) are fuzzy essential indistinguishable. Since (x1, y1)◦1 × ◦2(a, b) =
(x1◦1a, y1◦2b), it follows that µ̃((x1, y1)◦1 × ◦2(a, b)) = {µ̃1(x)·µ̃2(y)|x ∈ x1◦1
a, y ∈ y1 ◦2 b}. Denote the last set with A and the set µ((x2, y2)◦1 × ◦2(a, b))
with B. Since x1 ∼f.o x2, we have {µ̃1(x) | x ∈ x1 ◦1a} = {µ̃1(y) : y ∈ x2 ◦1a},
and y1 ∼f.o y2 implies {µ̃2(x) | x ∈ y1 ◦2 b} = {µ̃2(y) | y ∈ y2 ◦2 b}, meaning
that A = B. This proves the fuzzy operational equivalence of the corresponding
elements. For the proof of the fuzzy inseparability, let a, c be elements from
H such that µ̃1(x1) ∈ µ̃1(a ◦1 c). From here, due to the fuzzy inseparability
in (H, ◦1), µ̃1(x2) belongs to the same set. On the other side, let b, d be
elements from H such that µ̃2(y1) ∈ µ̃2(b ◦2 d), from where we conclude that
µ̃2(y2) ∈ µ̃(b ◦2 d). Using the last two implications, we get:

µ̃1(x1) · µ̃2(y1) ∈ {µ̃1(x) · µ̃2(y) : x ∈ a ◦1 c, y ∈ b ◦2 d} =

{µ̃(x, y) : x ∈ a ◦1 c, y ∈ b ◦2 d} = µ̃(a ◦1 c, b ◦2 d)

This means that µ̃(x1, y1) ∈ µ̃(a◦1 c, b◦2d). The above mentioned implications
show that µ̃(x2, y2) belongs to the same set. Similarly, one proves the converse
implication. Hence, (x1, y1) and (x2, y2) are fuzzy inseparable and therefore,
(H, ◦1) and (H, ◦2) are not fuzzy reduced.

Proposition 5.4. The direct product of B-hypergoups is reduced.

Proof. Since any B-hypergroup is reduced, this is a direct corollary of Theorem
5.1.

The converse of Proposition 5.3 doesn’t hold, as we can see in Examples
5.5 and 5.6.

Example 5.5. Let (H, ◦1) and (H, ◦2) be hypergroups, where the hyperopera-
tions ” ◦1 ” and ” ◦2 ” are defined by the following tables.
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◦1 a b c d
a a a a, b, c a, b, d
b a a a, b, c a, b, d
c a, b, c a, b, c a, b, c c, d
d a, b, d a, b, d c, d a, b, d

◦2 a b c d
a b b a, b, c a, b, d
b b b a, b, c a, b, d
c a, b, c a, b, c a, b, c c, d
d a, b, d a, b, d c, d a, b, d

Here, we will consider fuzzy reducibility with respect to the grade fuzzy
set µ̃.

By easy calculations, we get: µ̃1(a) = 11
21 , µ̃1(b) = 1

3 , µ̃1(c) = 8
21 , µ̃1(d) =

8
21 . We can notice that the only rows which are the same are those correspond-
ing to a and b. This implies a ∼o b, which easily gives a ∼fo b, but here, µ̃(a)
belongs to µ̃(a◦a), while µ̃(b) does not belong to it, so a �fi b. Hence, a �fe b.
It is easy to see that except a and b all other pairs of elements are not fuzzy
operational equivalent, which, together with a �fe b implies that x̂fe = {x},
for all x ∈ H. Hence, (H, ◦1) is fuzzy reduced.

Regarding (H, ◦2), due to the isomorphism of hypergroups, we get the same
values of the elements under the fuzzy grade µ̃2. At the same way as for the
previous hypergroup, we can conclude that (H, ◦2) is fuzzy reduced.

Here, (a, a) ∼f.o (b, b), because µ̃((a, a)◦1 × ◦2(m,n)) = {µ̃1(x)·µ̃2(y) | x ∈
a ◦1 m, y ∈ a ◦2 n} = {µ̃1(x) · µ̃2(y) | µ̃1(x) ∈ { 1121 ,

1
3 ,

8
21}, µ̃2(y) ∈ { 13 ,

11
21 ,

8
21}},

where m,n ∈ { a, b, c, d}. This set is equal to µ̃((b, b)◦1 × ◦2(m,n)).
Further more, µ̃(a, a) = µ̃1(a) · µ̃2(a) = 11

21 ·
1
3 = µ̃(b, b), which ensures

that (a, a) ∼f.i (b, b). Hence, we got non-fuzzy reduced hypergroup as a direct
product of two fuzzy reduced hypergroups.

Example 5.6. Let (H, ◦1) and (H, ◦2) be hypergroups, where the hyperopera-
tions ” ◦1 ” and ” ◦2 ” are defined by the following tables:

◦1 a b c
a a, b a, b H
b a, b a, b H
c H H c

◦2 a b c
a a a H
b a a H
c H H H

Easy calculations of the fuzzy grade sets µ̃1 and µ̃2 show that the first
hypergroup (H, ◦1) is not fuzzy reduced, while (H, ◦2) is fuzzy reduced with
respect to the grade fuzzy set µ̃. As in the previous example, it can be shown
that (b, a) ∼f.e (a, a), which proves the non-fuzzy reducibility of (H ×H, ◦1×
◦2).

Proposition 5.7. The direct product of two Corsini hypergroups is non-fuzzy
reduced with respect to the grade fuzzy set µ̃.
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Proof. Since an arbitrary Corsini hypergroup is not fuzzy reduced according
to Theorem 4.13, using Proposition 5.3 it follows that the direct product of
two Corsini hypergroups is not fuzzy reduced.

Corollary 5.8. The direct product of a Corsini hypergroup and a total hyper-
group is non-fuzzy reduced with respect to the grade fuzzy set µ̃.

Proof. This is a direct consequence of Theorem 2.7.

6 Conclusions and Open Problems

In this paper, we have investigated different types of Corsini hypergroups with
the aim to study their reducibility and fuzzy reducibility with respect to the
grade fuzzy set µ̃. In the second part of the paper, we have presented some
conditions which give the reducibility and fuzzy reducibility of the direct prod-
uct of hypergroups of Corsini hypergroups. In a future work we will extend
our study to the reducibility and fuzzy reducibility of the direct product of ar-
bitrary hypergroups. Besides, it would be interesting to construct hyperrings
composed of Corsini’s hypergroups and study their reducibility.
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