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Univalence Criteria for some General Integral
Operators

Camelia Bărbatu and Daniel Breaz

Abstract

The main object of this paper is to extend the univalent condition
for two general integral operators. A number of known univalent condi-
tion would follow upon specializing the parameters involved in our main
results.

1 Introduction and preliminaries

Let A denote the class of the functions of the form

f(z) = z +

∞∑
n=2

anz
n

which are analytic in the open unit disk

U = {z ∈ C :| z |< 1}

and satisfy the following usual normalization conditions:

f(0) = f
′
(0)− 1 = 0,

C being the set of complex numbers.
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We denote by S the subclass of A consisting of functions f ∈ A, which are
univalent in U.

In this paper, we obtain new univalence conditions for the general integral
operators Mn and Cn.

We consider the integral operator:

Mn(z) =

{
δ

∫ z

0

tδ−1
n∏
i=1

[(
fi(t)

t

)αi−1
(gi
′(t))

βi

(
gi(t))

t

)γi]
dt

} 1
δ

, (1)

where fi, gi are analytic in U, and αi, βi, γi ∈ C for all i = 1, n, n ∈ N \ {0},
δ ∈ C, with Reδ > 0.

Remark 1.1. The integral operator Mn defined by (1), introduced by Bărbatu
and Breaz in the paper [1], is a general integral operator of Pfaltzgraff, Kim-
Merkes and Ovesea types which extends also the other operators as follows:

i) For n = 1, δ = 1, α1 − 1 = α1 and β1 = γ1 = 0 we obtain the integral
operator which was studied by Kim-Merkes [6]

Fα(z) =

∫ z

0

(
f(t)

t

)α
dt.

ii) For n = 1, δ = 1 and α1 − 1 = γ1 = 0 we obtain the integral operator
which was studied by Pfaltzgraff [18]

Gα(z) =

∫ z

0

(f ′(t))
α

dt.

iii) For αi − 1 = αi and βi = γi = 0 we obtain the integral operator which
was defined and studied by D. Breaz and N. Breaz [4]

Dn(z) =

[
δ

∫ z

0

tδ−1
n∏
i=1

(
fi(t)

t

)αi
dt

] 1
δ

,

this integral operator is a generalization of the integral operator introduced by
Pascu and Pescar [12].

iv) For αi − 1 = γi = 0 we obtain the integral operator which was defined
and studied by D. Breaz, S. Owa and N. Breaz [5]

In(z) =

[
δ

∫ z

0

tδ−1
n∏
i=1

[f ′i(t)]
αi dt

] 1
δ

,

this integral operator is a generalization of the integral operator introduced by
Pescar and Owa in [16] .
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v) For αi − 1 = αi and γi = 0 we obtain the integral operator which was
defined and studied by Frasin [7]

Fn(z) =

[
δ

∫ z

0

tδ−1
n∏
i=1

(
fi(t)

t

)αi (
fi
′(t)
)βi

dt

] 1
δ

,

this integral operator is a generalization of the integral operator introduced by
Ovesea in [11].

vi) For αi − 1 = αi and γi = 0 we obtain the integral operator which was
studied by Ularu in [21]

In(z) =

[
δ

∫ z

0

tδ−1
n∏
i=1

(
fi(t)

t

)αi
(gi
′(t))

βi dt

] 1
δ

.

Thus, the integral operator Mn, introduced here by the formula (1), can
be considered as an extension and a generalization of these operators above
mentioned.

Now we consider the integral operator:

Cn(z) =

{
δ

∫ z

0

tδ−1
n∏
i=1

[(
fi(t)

t
egi(t)

)αi−1 (
hi
′(t)
)βi (hi(t))

t

)γi]
dt

} 1
δ

,

(2)
where fi, gi, hi are analytic in U and δ, αi, βi, γi are complex numbers for all
i = 1, n, n ∈ N \ {0}, δ ∈ C, with Reδ > 0..

This general integral operator was introduced by Bărbatu and Breaz in the
paper [2], is a general integral operator of Pfaltzgraff, Kim-Merkes and Ovesea
types which extends also the other operators as follows:

Remark 1.2. i) For n = 1, δ = 1 and α1 − 1 = β1 = 0 we obtain the integral
operator which was studied by Kim-Merkes [6]

Fα(z) =

∫ z

0

(
f(t)

t

)α
dt.

ii) For n = 1, δ = 1 and α1 − 1 = γ1 = 0 we obtain the integral operator
which was studied by Pfaltzgraff [18]

Gα(z) =

∫ z

0

(f ′(t))
α

dt.
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iii) For αi − 1 = βi = 0 we obtain the integral operator which was defined
and studied by D. Breaz and N. Breaz [4]

Dn(z) =

[
δ

∫ z

0

tδ−1
n∏
i=1

(
fi(t)

t

)αi
dt

] 1
δ

,

this integral operator is a generalization of the integral operator introduced by
Pascu and Pescar [12].

iv) For αi − 1 = γi = 0 we obtain the integral operator which was defined
and studied by D. Breaz, Owa and N. Breaz [5]

In(z) =

[
δ

∫ z

0

tδ−1
n∏
i=1

[f ′i(t)]
αi dt

] 1
δ

,

this integral operator is a generalization of the integral operator introduced by
Pescar and Owa in [16] .

v) For αi − 1 = 0 we obtain the integral operator which was defined and
studied by Frasin [7]

Fn(z) =

[
δ

∫ z

0

tδ−1
n∏
i=1

(
fi(t)

t

)αi (
fi
′(t)
)βi

dt

] 1
δ

,

this integral operator is a generalization of the integral operator introduced by
Ovesea in [11].

vi) For n = 1, δ = β and αi − 1 = αi and βi = γi = 0 we obtain the
integral operator which was defined and studied by Stanciu in [20]

H1(z) =

[
β

∫ z

0

tβ−1
(
f(t)

t
eg(t)

)α
dt

] 1
β

.

Thus, the integral operator Cn, introduced here by the formula (2), can
be considered as an extension and a generalization of these operators above
mentioned.

The following univalent conditions was derived by Pescar.

Theorem 1.3. (Pescar [14]) Let γ be complex number, Reγ > 0 and c a
complex number, |c| ≤ 1, c 6= −1, and f ∈ A, f(z) = z + a2z

2 + .... If

|c| |z|
2Reγ

+
1− |z|2Reγ

Reγ

∣∣∣∣zf ′′(z))f ′(z)

∣∣∣∣ ≤ 1,
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for all z ∈ U, then the integral operator

Fγ(z) =

(
γ

∫ z

0

tγ−1f ′(t)dt

) 1
γ

,

is regular and univalent in S.

Theorem 1.4. (Pescar [14]) Let γ be complex number, Reγ > 0 and c a
complex number, |c| ≤ 1, c 6= −1, and f ∈ A. If

|c| |z|
2Reγ

+
1− |z|2Reγ

Reγ

∣∣∣∣zf ′′(z))f ′(z)

∣∣∣∣ ≤ 1,

for all z ∈ U, then for any complex γ with Reγ ≥ Reδ, the integral operator

Fγ(z) =

(
γ

∫ z

0

tγ−1f ′(t)dt

) 1
γ

,

is in the class S.

In [22], it is defined the class S(p), which for 0 < p ≤ 2, includes the
functions f ∈ A which satisfy the conditions:

f(z) 6= 0 for 0 < |z| < 1 (3)

and ∣∣∣∣∣
(

z

f(z)

)′′∣∣∣∣∣ ≤ p (4)

for all z ∈ U.

Theorem 1.5. (Singh [19]) If f ∈ S(p), then the following inequality is true∣∣∣∣∣z2f
′
(z)

[f(z)]
2 − 1

∣∣∣∣∣ ≤ p |z|2 , z ∈ U (5)

Finally, in our present investigation, we shall also need the familiar Schwarz
Lemma.

Lemma 1.6. ( General Schwarz Lemma [8]) Let f be the function regular in
the disk UR = {z ∈ C : |z| < R,R > 0} with |f(z)| < M for a fixed number
M > 0 fixed. If f(z) has one zero with multiplicity order bigger than a positive
integer m for z = 0, then

|f(z)| ≤ M

Rm
zm, z ∈ UR.
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The equality for z 6= 0 can hold only if

f(z) = eiθ
M

Rm
zm,

where θ is constant.

2 Main results

Our main results give sufficient conditions for the general integral operators
Mn and Cn to be univalent in the open disk U.

Theorem 2.1. Let fi, gi ∈ A, where gi be in the class S (pi), 0 < pi ≤ 2,
Mi, Ni are real positive numbers and δ, αi, βi, γi, c be complex numbers for all
i = 1, n, with

Reδ >

n∑
i=1

{|αi − 1| [(1 + pi)Mi + 1] + |βi|+ |γi| [(1 + pi)Ni + 1]} , (6)

where |c| ≤ 1, c 6= −1. If

|fi (z)| < Mi, |gi (z)| < Ni,

∣∣∣∣∣g
′′

i (z)

g
′
i(z)

∣∣∣∣∣ ≤ 1,

and

|c| ≤ 1− 1

Reδ

n∑
i=1

{|αi − 1| [(1 + pi)Mi + 1] + |βi|+ |γi| [(1 + pi)Ni + 1]} (7)

for all z ∈ U, i = 1, n then, the integral operator Mn, defined by (1) is in the
class S.

Proof. Let us define the function

Mn (z) =

∫ z

0

n∏
i=1

(
fi (t)

t

)αi−1
(gi
′ (t))

βi

(
gi (t)

t

)γi
dt,

for all fi, gi ∈ A, i = 1, n.
The function Mn is regular in U and satisfies the following normalization

condition Mn(0 ) = M
′

n(0 )− 1 = 0 .
We easily find that

zM ′′n (z)

M ′n(z)
=

n∑
i=1

[
(αi − 1)

(
zf ′i(z)

fi(z)
− 1

)
+ βi

zg′′i (z)

g′i(z)
+ γi

(
zg′i(z)

gi(z)
− 1

)]
,
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for all z ∈ U, i = 1, n, which readily shows that

|c| |z|2Reδ +
1− |z|2Reδ

2Reδ

∣∣∣∣zM ′′n (z)

M ′n(z)

∣∣∣∣ ≤ |c| |z|Reδ +

+
1− |z|2Reδ

Reδ

n∑
i=1

[
|αi − 1|

∣∣∣∣zf ′i(z)fi(z)
− 1

∣∣∣∣+ |βi|
∣∣∣∣zg′′i (z)

g′i(z)

∣∣∣∣+ |γi|
∣∣∣∣zg′i(z)gi(z)

− 1

∣∣∣∣] ≤
≤ |c|+ 1

Reδ

n∑
i=1

[
|αi − 1|

(∣∣∣∣zf ′i(z)fi(z)

∣∣∣∣+ 1

)
+ |βi|

∣∣∣∣zg′′i (z)

g′i(z)

∣∣∣∣+ |γi|
(∣∣∣∣zg′i(z)gi(z)

∣∣∣∣+ 1

)]
.

(8)
By applying the General Schwarz Lemma to the functions fi, gi, i = 1, n

we obtain:
|fi (z)| ≤Mi |z| , |gi (z)| ≤ Ni |z| .

Since gi be in the class S (pi), 0 < pi ≤ 2 for all i = 1, n from (8) and
hypothesis we obtain:

|c| |z|2Reδ +
1− |z|2Reδ

2Reδ

∣∣∣∣zM ′′n (z)

M ′n(z)

∣∣∣∣ ≤
≤ |c|+ 1

Reδ

n∑
i=1

[
|αi − 1|

(∣∣∣∣∣z2f ′i(z)[fi(z)]
2

∣∣∣∣∣
∣∣∣∣fi(z)z

∣∣∣∣+ 1

)]
+

+
1

Reδ

n∑
i=1

[
|βi|

∣∣∣∣zg′′i (z)

g′i(z)

∣∣∣∣+ |γi|

(∣∣∣∣∣ z2g′i(z)[gi(z)]
2

∣∣∣∣∣
∣∣∣∣gi(z)z

∣∣∣∣+ 1

)]
≤

≤ |c|+ 1

Reδ

n∑
i=1

{
|αi − 1|

[(∣∣∣∣∣z2f ′i(z)[fi(z)]
2 − 1

∣∣∣∣∣+ 1

)
Mi + 1

]}
+

+
1

Reδ

n∑
i=1

{
|βi| · 1 + |γi|

[(∣∣∣∣∣ z2g′i(z)[gi(z)]
2 − 1

∣∣∣∣∣+ 1

)
Ni + 1

]}
≤ |c|+

+
1

Reδ

n∑
i=1

[
|αi − 1|

(
piMi |z|2 +Mi + 1

)
+ |βi|+ |γi|

(
piNi |z|2 +Ni + 1

)]
+

≤ |c|+ 1

Reδ

n∑
i=1

{|αi − 1| [(1 + pi)Mi + 1] + |βi|+ |γi| [(1 + pi)Ni + 1]} . (9)

So, using (7) and (9), we have

|c| |z|2Reδ +
1− |z|2Reδ

2Reδ

∣∣∣∣zM ′′n (z)

M ′n(z)

∣∣∣∣ ≤ 1
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for all z ∈ U, i = 1, n.
Finally, by applying Theorem 1.4, we conclude that, the general integral

operator Mn given by (1) is in the class S.

Theorem 2.2. Let fi, gi, hi ∈ A, where gi be in the class S (pi), 0 < pi ≤ 2,
Mi, Ni, Pi are real positive numbers and δ, αi, βi, γi, c be complex numbers for
all i = 1, n, with

Reδ >

n∑
i=1

{
|αi − 1|

[
Mi +N2

i (1 + pi) + 1
]

+ |βi|+ |γi| (Pi + 1)
}
, (10)

where |c| ≤ 1, c 6= −1. If∣∣∣∣∣zf
′

i (z)

fi(z)

∣∣∣∣∣ ≤Mi, |gi (z)| < Ni,

∣∣∣∣∣h
′′

i (z)

h
′
i(z)

∣∣∣∣∣ ≤ 1,

∣∣∣∣∣zh
′

i (z)

hi(z)

∣∣∣∣∣ ≤ Pi
and

|c| ≤ 1− 1

Reδ

n∑
i=1

{
|αi − 1|

[
Mi +N2

i (1 + pi) + 1
]

+ |βi|+ |γi| (Pi + 1)
}

(11)

for all z ∈ U, i = 1, n, then the integral operator Cn, defined by (2) is in the
class S.

Proof. Let us define the function

Cn (z) =

∫ z

0

n∏
i=1

[(
fi (t)

t
egi(t)

)αi−1 (
hi
′ (t)

)βi (hi (t)

t

)γi]
dt,

for all fi, gi, hi ∈ A, i = 1, n.
The function Cn is regular in U and satisfies the following normalization

condition Cn(0 ) = C
′

n(0 )− 1 = 0 .
We easily find that

|c| |z|2Reδ +
1− |z|2Reδ

2Reδ

∣∣∣∣zC ′′n(z)

C ′n(z)

∣∣∣∣ ≤
≤ |c| |z|Reδ +

1− |z|2Reδ

Reδ

n∑
i=1

|αi − 1|
∣∣∣∣zf ′i(z)fi(z)

− 1

∣∣∣∣+
+

1− |z|2Reδ

Reδ

n∑
i=1

[∣∣∣zg′

i(z)
∣∣∣+ |βi|

∣∣∣∣zh′′i (z)

h′i(z)

∣∣∣∣+ |γi|
∣∣∣∣zh′i(z)hi(z)

− 1

∣∣∣∣] ≤
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≤ |c|+ 1

Reδ

n∑
i=1

[
|αi − 1|

(∣∣∣∣zf ′i(z)fi(z)

∣∣∣∣+ 1

)
+

∣∣∣∣∣z2g
′

i(z)

[gi(z)]
2

∣∣∣∣∣
∣∣∣∣∣ [gi(z)]2z

∣∣∣∣∣
]

+

+
1

Reδ

n∑
i=1

[
|βi|

∣∣∣∣zh′′i (z)

h′i(z)

∣∣∣∣+ |γi|
(∣∣∣∣zh′i(z)hi(z)

∣∣∣∣+ 1

)]
. (12)

By applying the General Schwarz Lemma to the functions gi, i = 1, n we
obtain

|gi (z)| ≤ Ni |z| ,
Since gi be in the class S (pi), 0 < pi ≤ 2 for all i = 1, n from (12) and

hypothesis we obtain:

|c| |z|2Reδ +
1− |z|2Reδ

2Reδ

∣∣∣∣zC ′′n(z)

C ′n(z)

∣∣∣∣ ≤
≤ |c|+ 1

Reδ

n∑
i=1

{
|αi − 1|

[
Mi + 1 +

(∣∣∣∣∣ z2g′i(z)[gi(z)]
2 − 1

∣∣∣∣∣+ 1

)
N2
i

]}
+

+
1

Reδ

n∑
i=1

[
|βi|

∣∣∣∣zh′′i (z)

h′i(z)

∣∣∣∣+ |γi|

(∣∣∣∣∣ z2h′i(z)[hi(z)]
2

∣∣∣∣∣
∣∣∣∣zhi(z)z

∣∣∣∣+ 1

)]
≤

≤ |c|+ 1

Reδ

n∑
i=1

{
|αi − 1|

[
Mi +N2

i (pi + 1) + 1
]

+ |βi|+ |γi| (Pi + 1)
}
. (13)

So, using (11) and (13), we have

|c| |z|2Reδ +
1− |z|2Reδ

2Reδ

∣∣∣∣zC ′′n(z)

C ′n(z)

∣∣∣∣ ≤ 1

for all z ∈ U, i = 1, n.
Finally, by applying Theorem 1.4, we conclude that, the general integral

operator Cn given by (2) is in the class S.

3 Corollaries and consequences

First of all, upon setting Mi = Ni = 1 in Theorem 2.1, we have the following
corollary:

Corollary 3.1. Let fi, gi ∈ S (pi), 0 < pi ≤ 2 and δ, αi, βi, γi, c are complex
numbers, for all i = 1, n, with

Reδ >

n∑
i=1

[(pi + 2) (|αi − 1|+ |γi|) + |βi|] , |c| ≤ 1. (14)
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If

|fi (z)| < 1, |gi (z)| < 1,

∣∣∣∣∣g
′′

i (z)

g
′
i(z)

∣∣∣∣∣ ≤ 1,

and

|c| ≤ 1− 1

Reδ

n∑
i=1

[(pi + 2) (|αi − 1|+ |γi|) + |βi|] (15)

for all z ∈ U, i = 1, n then, the integral operator Mn, defined by (1) is in the
class S.

Letting n = 1, δ = γ = α and α1 − 1 = β1 = γ1 in Teorema 2.1, we obtain
the next corollary:

Corollary 3.2. Let f, g ∈ S (p), 0 < p ≤ 2, M,N are real positive numbers
and α, c complex numbers, with

Reα > |α− 1| [(1 + p)M + (1 + p)N + 3] , |c| ≤ 1. (16)

If

|f (z)| < M, |g (z)| < N,

∣∣∣∣∣g
′′
(z)

g′(z)

∣∣∣∣∣ ≤ 1,

and

|c| ≤ 1− 1

Reα
> |α− 1| [(1 + p)M + (1 + p)N + 3] . (17)

for all z ∈ U then, the integral operator M, defined by

M(z) =

{
α

∫ z

0

[
f(t)g′(t)

g(t)

t

]α−1
dt

} 1
α

, (18)

is in the class S.

Letting δ = 1 and γi = 0 in Theorem 2.1, we obtain the following corollary:

Corollary 3.3. Let fi, gi ∈ A, where gi be in the class S (pi), 0 < pi ≤ 2, Mi

are real positive numbers and αi, βi, c be complex numbers for all i = 1, n, with

1 >

n∑
i=1

{|αi − 1| [(1 + pi)Mi + 1] + |βi|} , |c| ≤ 1, c 6= −1. (19)

If

|fi (z)| < Mi,

∣∣∣∣∣g
′′

i (z)

g
′
i(z)

∣∣∣∣∣ ≤ 1,
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and

|c| ≤ 1−
n∑
i=1

{|αi − 1| [(1 + pi)Mi + 1] + |βi|} (20)

for all z ∈ U, i = 1, n then, the integral operator Fn, defined by

Fn(z) =

∫ z

0

n∏
i=1

[(
fi(t)

t

)αi−1
(gi
′(t))

βi

]
dt (21)

is in the class S.

Remark 3.4. The integral operator from Corollary 3.3, given by (21) is a
known result proven in [21].

Letting δ = 1 and βi = 0 in Theorem 2.1, we have the following corollary:

Corollary 3.5. Let fi, gi ∈ A, Mi, Ni are real positive numbers and αi, γi, c
be complex numbers for all i = 1, n, with

1 >

n∑
i=1

{|αi − 1| [(1 + pi)Mi + 1] + |γi| [(1 + pi)Ni + 1]} , |c| ≤ 1, c 6= −1.

(22)
If

|fi (z)| < Mi, |gi (z)| < Ni,

and

|c| ≤ 1−
n∑
i=1

{|αi − 1| [(1 + pi)Mi + 1] + |γi| [(1 + pi)Ni + 1]} (23)

for all z ∈ U, i = 1, n then, the integral operator Gn, defined by

Gn(z) =

∫ z

0

n∏
i=1

[(
fi(t)

t

)αi−1(gi(t))
t

)γi]
dt (24)

is in the class S.

Remark 3.6. On the integral operator from Corollary 3.5, given by (24) if
we take αi − 1 = αi, we obtain another known result proven in [10].

Putting δ = 1 and αi − 1 = 0 in Theorem 2.1, we obtain the following
corollary:
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Corollary 3.7. Let gi ∈ A, where gi be in the class S (pi), 0 < pi ≤ 2, Ni are
real positive numbers and βi, γi, c be complex numbers for all i = 1, n, with

1 >

n∑
i=1

{|βi|+ |γi| [(1 + pi)Ni + 1]} , |c| ≤ 1, c 6= −1. (25)

If

|gi (z)| < Ni,

∣∣∣∣∣g
′′

i (z)

g
′
i(z)

∣∣∣∣∣ ≤ 1,

and

|c| ≤ 1−
n∑
i=1

{|βi|+ |γi| [(1 + pi)Ni + 1]} (26)

for all z ∈ U, i = 1, n then, the integral operator In, defined by

In(z) =

∫ z

0

n∏
i=1

[
(gi
′(t))

βi

(
gi(t))

t

)γi]
dt (27)

is in the class S.

Remark 3.8. The integral operator from Corollary 3.7, given by (27) was
proven in [7].

Letting Mi = Ni = Pi = 1 in Theorem 2.2, we obtain the following
corollary:

Corollary 3.9. Let fi, gi, hi ∈ S (pi), 0 < pi ≤ 2 and δ, αi, βi, γi, c are complex
numbers, for all i = 1, n, with

Reδ >

n∑
i=1

[(pi + 3) |αi − 1|+ |βi|+ 2 |γi|] , |c| ≤ 1. (28)

If ∣∣∣∣∣zf
′

i (z)

fi(z)

∣∣∣∣∣ ≤ 1, |gi (z)| ≤ 1,

∣∣∣∣∣h
′′

i (z)

h
′
i(z)

∣∣∣∣∣ ≤ 1,

∣∣∣∣∣zh
′

i (z)

hi(z)

∣∣∣∣∣ ≤ 1

and

|c| ≤ 1− 1

Reδ

n∑
i=1

[(pi + 3) |αi − 1|+ |βi|+ 2 |γi|] , (29)

for all z ∈ U, i = 1, n then, the integral operator Cn, defined by (2) is in the
class S.
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Letting n = 1, δ = γ = α and α1 − 1 = β1 = γ1 in Theorem 2.2, we have:

Corollary 3.10. Let f, g, h ∈ S (p), 0 < p ≤ 2, M,N,P are real positive
numbers and α, c complex numbers, with

Reα > |α− 1|
[
M +N2 (1 + p) + P + 3

]
, |c| ≤ 1. (30)

If ∣∣∣∣∣zf
′
(z)

f(z)

∣∣∣∣∣ ≤M, |g (z)| < N,

∣∣∣∣∣h
′′
(z)

h′(z)

∣∣∣∣∣ ≤ 1,

∣∣∣∣∣zh
′
(z)

h(z)

∣∣∣∣∣ ≤ P
and

|c| ≤ 1− 1

Reα
|α− 1|

[
M +N2 (1 + p) + P + 3

]
(31)

for all z ∈ U then, the integral operators C, defined by

C(z) =

{
α

∫ z

0

[
f(t)eg(t)h′(t)

h(t))

t

]α−1
dt

} 1
α

, (32)

is in the class S.

Letting δ = 1 and γi = 0 in Theorem 2.2, we obtain the next corollary:

Corollary 3.11. Let fi, gi, hi ∈ A, where gi be in the class S (pi), 0 < pi ≤ 2,
Mi, Ni are real positive numbers and αi, βi, c complex numbers, for all i = 1, n,
with

1 >

n∑
i=1

{
|αi − 1|

[
Mi +N2

i (1 + pi) + 1
]

+ |βi|
}
, |c| ≤ 1, c 6= −1. (33)

If ∣∣∣∣∣zf
′

i (z)

fi(z)

∣∣∣∣∣ ≤Mi, |gi (z)| < Ni,

∣∣∣∣∣h
′′

i (z)

h
′
i(z)

∣∣∣∣∣ ≤ 1

and

|c| ≤ 1−
n∑
i=1

{
|αi − 1|

[
Mi +N2

i (1 + pi) + 1
]

+ |βi|
}

(34)

for all z ∈ U, i = 1, n then, the integral operator Tn defined by

Tn(z) =

∫ z

0

n∏
i=1

[(
fi(t)

t
egi(t)

)αi−1 (
hi
′(t)
)βi]

dt, (35)

is in the class S.
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Remark 3.12. The integral operator from Corollary 3.11, given by (35), if
we take βi = 0, we obtain a known result proven in [20].

Putting δ = 1 and βi = 0 in Theorem 2.2, we obtain the following corollary:

Corollary 3.13. Let fi, gi, hi ∈ A, where gi be in the class S (pi), 0 < pi ≤ 2,
Mi, Ni, Pi are real positive numbers and αi, γi, c complex numbers, for all i =
1, n, with

1 >

n∑
i=1

{
|αi − 1|

[
Mi +N2

i (1 + pi) + 1
]

+ |γi| (Pi + 1)
}
, |c| ≤ 1, c 6= −1.

(36)
If ∣∣∣∣∣zf

′

i (z)

fi(z)

∣∣∣∣∣ ≤Mi, |gi (z)| < Ni,

∣∣∣∣∣zh
′

i (z)

hi(z)

∣∣∣∣∣ ≤ Pi
and

|c| ≤ 1−
n∑
i=1

{
|αi − 1|

[
Mi +N2

i (1 + pi) + 1
]

+ |γi| (Pi + 1)
}

(37)

for all z ∈ U, i = 1, n then, the integral operator Rn, defined by

Rn(z) =

∫ z

0

n∏
i=1

[(
fi(t)

t
egi(t)

)αi−1(hi(t))
t

)γi]
dt, (38)

is in the class S.

Remark 3.14. Putting γi = 0 in (38) we obtain another known result proven
in [20].

Letting δ = 1 and αi − 1 = 0 in Theorem 2.2, we obtain:

Corollary 3.15. Let hi ∈ A, Pi are real positive numbers and βi, γi, c complex
numbers, for all i = 1, n, with

1 >

n∑
i=1

{|βi|+ |γi| (Pi + 1)} , |c| ≤ 1, c 6= −1. (39)

If ∣∣∣∣∣h
′′

i (z)

h
′
i(z)

∣∣∣∣∣ ≤ 1,

∣∣∣∣∣zh
′

i (z)

hi(z)

∣∣∣∣∣ ≤ Pi
and

|c| ≤ 1−
n∑
i=1

{|βi|+ |γi| (Pi + 1)} (40)
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for all z ∈ U, i = 1, n then, the integral operator In, defined by

In(z) =

∫ z

0

n∏
i=1

[(
hi
′(t)
)βi (hi(t))

t

)γi]
dt, (41)

is in the class S.

Remark 3.16. The integral operator from Corollary 3.15, given by (41) was
proven in [7].
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