

\$ sciendo Vol. 29(1),2021, 37–52

Univalence Criteria for some General Integral Operators

Camelia Bărbatu and Daniel Breaz

Abstract

The main object of this paper is to extend the univalent condition for two general integral operators. A number of known univalent condition would follow upon specializing the parameters involved in our main results.

1 Introduction and preliminaries

Let \mathcal{A} denote the class of the functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

which are analytic in the open unit disk

$$\mathbb{U} = \{ z \in \mathbb{C} : |z| < 1 \}$$

and satisfy the following usual normalization conditions:

$$f(0) = f'(0) - 1 = 0,$$

 $\mathbb C$ being the set of complex numbers.

Key Words: Integral operator; analytic and univalent functions; univalent conditions, unit disk, Schwarz Lemma.

²⁰¹⁰ Mathematics Subject Classification: Primary 30C45; Secondary 30C75. Received: 22.02.2020 Accepted: 26.06.2020

Accepted: 20.00.2020

We denote by S the subclass of \mathcal{A} consisting of functions $f \in \mathcal{A}$, which are univalent in U.

In this paper, we obtain new univalence conditions for the general integral operators \mathcal{M}_n and \mathcal{C}_n .

We consider the integral operator:

$$\mathcal{M}_n(z) = \left\{ \delta \int_0^z t^{\delta-1} \prod_{i=1}^n \left[\left(\frac{f_i(t)}{t} \right)^{\alpha_i - 1} \left(g_i'(t) \right)^{\beta_i} \left(\frac{g_i(t)}{t} \right)^{\gamma_i} \right] \mathrm{dt} \right\}^{\frac{1}{\delta}}, \quad (1)$$

where f_i, g_i are analytic in \mathbb{U} , and $\alpha_i, \beta_i, \gamma_i \in \mathbb{C}$ for all $i = \overline{1, n}, n \in \mathbb{N} \setminus \{0\}$, $\delta \in \mathbb{C}$, with $\operatorname{Re}\delta > 0$.

Remark 1.1. The integral operator \mathcal{M}_n defined by (1), introduced by Bărbatu and Breaz in the paper [1], is a general integral operator of Pfaltzgraff, Kim-Merkes and Ovesea types which extends also the other operators as follows:

i) For n = 1, $\delta = 1$, $\alpha_1 - 1 = \alpha_1$ and $\beta_1 = \gamma_1 = 0$ we obtain the integral operator which was studied by Kim-Merkes [6]

$$\mathcal{F}_{\alpha}(z) = \int_{0}^{z} \left(\frac{f(t)}{t}\right)^{\alpha} dt.$$

ii) For n = 1, $\delta = 1$ and $\alpha_1 - 1 = \gamma_1 = 0$ we obtain the integral operator which was studied by Pfaltzgraff [18]

$$\mathcal{G}_{\alpha}(z) = \int_{0}^{z} \left(f'(t)\right)^{\alpha} dt.$$

iii) For $\alpha_i - 1 = \alpha_i$ and $\beta_i = \gamma_i = 0$ we obtain the integral operator which was defined and studied by D. Breaz and N. Breaz [4]

$$\mathcal{D}_n(z) = \left[\delta \int_0^z t^{\delta-1} \prod_{i=1}^n \left(\frac{f_i(t)}{t}\right)^{\alpha_i} dt\right]^{\frac{1}{\delta}},$$

this integral operator is a generalization of the integral operator introduced by Pascu and Pescar [12].

iv) For $\alpha_i - 1 = \gamma_i = 0$ we obtain the integral operator which was defined and studied by D. Breaz, S. Owa and N. Breaz [5]

$$\mathfrak{I}_n(z) = \left[\delta \int_0^z t^{\delta-1} \prod_{i=1}^n \left[f_i'(t)\right]^{\alpha_i} dt\right]^{\frac{1}{\delta}},$$

this integral operator is a generalization of the integral operator introduced by Pescar and Owa in [16].

v) For $\alpha_i - 1 = \alpha_i$ and $\gamma_i = 0$ we obtain the integral operator which was defined and studied by Frasin [7]

$$\mathcal{F}_n(z) = \left[\delta \int_0^z t^{\delta-1} \prod_{i=1}^n \left(\frac{f_i(t)}{t}\right)^{\alpha_i} \left(f_i'(t)\right)^{\beta_i} dt\right]^{\frac{1}{\delta}},$$

this integral operator is a generalization of the integral operator introduced by Ovesea in [11].

vi) For $\alpha_i - 1 = \alpha_i$ and $\gamma_i = 0$ we obtain the integral operator which was studied by Ularu in [21]

$$\mathfrak{I}_n(z) = \left[\delta \int_0^z t^{\delta-1} \prod_{i=1}^n \left(\frac{f_i(t)}{t}\right)^{\alpha_i} \left(g_i'(t)\right)^{\beta_i} dt\right]^{\frac{1}{\delta}}.$$

Thus, the integral operator \mathcal{M}_n , introduced here by the formula (1), can be considered as an extension and a generalization of these operators above mentioned.

Now we consider the integral operator:

$$\mathcal{C}_{n}(z) = \left\{ \delta \int_{0}^{z} t^{\delta-1} \prod_{i=1}^{n} \left[\left(\frac{f_{i}(t)}{t} e^{g_{i}(t)} \right)^{\alpha_{i}-1} \left(h_{i}'(t) \right)^{\beta_{i}} \left(\frac{h_{i}(t)}{t} \right)^{\gamma_{i}} \right] \mathrm{dt} \right\}^{\frac{1}{\delta}},$$

$$(2)$$

where f_i, g_i, h_i are analytic in \mathbb{U} and $\delta, \alpha_i, \beta_i, \gamma_i$ are complex numbers for all $i = \overline{1, n}, n \in \mathbb{N} \setminus \{0\}, \delta \in \mathbb{C}$, with $\operatorname{Re}\delta > 0$..

This general integral operator was introduced by Bărbatu and Breaz in the paper [2], is a general integral operator of Pfaltzgraff, Kim-Merkes and Ovesea types which extends also the other operators as follows:

Remark 1.2. i) For n = 1, $\delta = 1$ and $\alpha_1 - 1 = \beta_1 = 0$ we obtain the integral operator which was studied by Kim-Merkes [6]

$$\mathcal{F}_{\alpha}(z) = \int_{0}^{z} \left(\frac{f(t)}{t}\right)^{\alpha} dt.$$

ii) For n = 1, $\delta = 1$ and $\alpha_1 - 1 = \gamma_1 = 0$ we obtain the integral operator which was studied by Pfaltzgraff [18]

$$\mathcal{G}_{\alpha}(z) = \int_{0}^{z} \left(f'(t)\right)^{\alpha} dt.$$

iii) For $\alpha_i - 1 = \beta_i = 0$ we obtain the integral operator which was defined and studied by D. Breaz and N. Breaz [4]

$$\mathcal{D}_n(z) = \left[\delta \int_0^z t^{\delta-1} \prod_{i=1}^n \left(\frac{f_i(t)}{t}\right)^{\alpha_i} dt\right]^{\frac{1}{\delta}},$$

this integral operator is a generalization of the integral operator introduced by Pascu and Pescar [12].

iv) For $\alpha_i - 1 = \gamma_i = 0$ we obtain the integral operator which was defined and studied by D. Breaz, Owa and N. Breaz [5]

$$\mathfrak{I}_n(z) = \left[\delta \int_0^z t^{\delta-1} \prod_{i=1}^n \left[f_i'(t)\right]^{\alpha_i} dt\right]^{\frac{1}{\delta}},$$

this integral operator is a generalization of the integral operator introduced by Pescar and Owa in [16].

v) For $\alpha_i - 1 = 0$ we obtain the integral operator which was defined and studied by Frasin [7]

$$\mathcal{F}_n(z) = \left[\delta \int_0^z t^{\delta-1} \prod_{i=1}^n \left(\frac{f_i(t)}{t}\right)^{\alpha_i} \left(f_i'(t)\right)^{\beta_i} dt\right]^{\frac{1}{\delta}},$$

this integral operator is a generalization of the integral operator introduced by Ovesea in [11].

vi) For n = 1, $\delta = \beta$ and $\alpha_i - 1 = \alpha_i$ and $\beta_i = \gamma_i = 0$ we obtain the integral operator which was defined and studied by Stanciu in [20]

$$\mathcal{H}_1(z) = \left[\beta \int_0^z t^{\beta-1} \left(\frac{f(t)}{t} e^{g(t)}\right)^\alpha dt\right]^{\frac{1}{\beta}}.$$

Thus, the integral operator C_n , introduced here by the formula (2), can be considered as an extension and a generalization of these operators above mentioned.

The following univalent conditions was derived by Pescar.

Theorem 1.3. (Pescar [14]) Let γ be complex number, $Re\gamma > 0$ and c a complex number, $|c| \leq 1$, $c \neq -1$, and $f \in A$, $f(z) = z + a_2 z^2 + \dots$ If

$$\left|c\right|\left|z\right|^{^{2Re\gamma}}+\frac{1-\left|z\right|^{^{2Re\gamma}}}{Re\gamma}\left|\frac{zf^{\prime\prime}(z))}{f^{\prime}(z)}\right|\leq1,$$

for all $z \in \mathbb{U}$, then the integral operator

$$F_{\gamma}(z) = \left(\gamma \int_0^z t^{\gamma-1} f'(t) dt\right)^{\frac{1}{\gamma}},$$

is regular and univalent in \mathbb{S} .

Theorem 1.4. (Pescar [14]) Let γ be complex number, $Re\gamma > 0$ and c a complex number, $|c| \leq 1$, $c \neq -1$, and $f \in A$. If

$$|c| |z|^{^{2Re\gamma}} + \frac{1 - |z|^{^{2Re\gamma}}}{Re\gamma} \left| \frac{zf''(z))}{f'(z)} \right| \le 1,$$

for all $z \in \mathbb{U}$, then for any complex γ with $Re\gamma \geq Re\delta$, the integral operator

$$F_{\gamma}(z) = \left(\gamma \int_0^z t^{\gamma-1} f'(t) dt\right)^{\frac{1}{\gamma}},$$

is in the class S.

In [22], it is defined the class S(p), which for $0 , includes the functions <math>f \in A$ which satisfy the conditions:

$$f(z) \neq 0 \quad for \quad 0 < |z| < 1 \tag{3}$$

and

$$\left| \left(\frac{z}{f(z)} \right)^{''} \right| \le p \tag{4}$$

for all $z \in \mathcal{U}$.

Theorem 1.5. (Singh [19]) If $f \in S(p)$, then the following inequality is true

$$\left| \frac{z^2 f'(z)}{\left[f(z) \right]^2} - 1 \right| \le p \left| z \right|^2, z \in \mathbb{U}$$
(5)

Finally, in our present investigation, we shall also need the familiar Schwarz Lemma.

Lemma 1.6. (General Schwarz Lemma [8]) Let f be the function regular in the disk $\mathbb{U}_R = \{z \in \mathbb{C} : |z| < R, R > 0\}$ with |f(z)| < M for a fixed number M > 0 fixed. If f(z) has one zero with multiplicity order bigger than a positive integer m for z = 0, then

$$|f(z)| \le \frac{M}{R^m} z^m, \quad z \in \mathbb{U}_R.$$

The equality for $z \neq 0$ can hold only if

$$f(z) = e^{i\theta} \frac{M}{R^m} z^m,$$

where θ is constant.

2 Main results

Our main results give sufficient conditions for the general integral operators \mathcal{M}_n and \mathcal{C}_n to be univalent in the open disk \mathbb{U} .

Theorem 2.1. Let $f_i, g_i \in \mathcal{A}$, where g_i be in the class $S(p_i)$, $0 < p_i \leq 2$, M_i, N_i are real positive numbers and $\delta, \alpha_i, \beta_i, \gamma_i, c$ be complex numbers for all $i = \overline{1, n}$, with

$$Re\delta > \sum_{i=1}^{n} \{ |\alpha_i - 1| \left[(1+p_i) M_i + 1 \right] + |\beta_i| + |\gamma_i| \left[(1+p_i) N_i + 1 \right] \}, \quad (6)$$

where $|c| \leq 1, c \neq -1$. If

$$|f_i(z)| < M_i, \quad |g_i(z)| < N_i, \quad \left|\frac{g''_i(z)}{g'_i(z)}\right| \le 1,$$

and

$$|c| \le 1 - \frac{1}{Re\delta} \sum_{i=1}^{n} \{ |\alpha_i - 1| \left[(1+p_i) M_i + 1 \right] + |\beta_i| + |\gamma_i| \left[(1+p_i) N_i + 1 \right] \}$$
(7)

for all $z \in \mathbb{U}$, $i = \overline{1, n}$ then, the integral operator \mathcal{M}_n , defined by (1) is in the class S.

Proof. Let us define the function

$$M_n(z) = \int_0^z \prod_{i=1}^n \left(\frac{f_i(t)}{t}\right)^{\alpha_i - 1} \left(g_i'(t)\right)^{\beta_i} \left(\frac{g_i(t)}{t}\right)^{\gamma_i} \mathrm{dt},$$

for all $f_i, g_i \in \mathcal{A}, i = \overline{1, n}$.

The function M_n is regular in \mathbb{U} and satisfies the following normalization condition $M_n(\theta) = M'_n(\theta) - 1 = \theta$.

We easily find that

$$\frac{zM_n''(z)}{M_n'(z)} = \sum_{i=1}^n \left[(\alpha_i - 1) \left(\frac{zf_i'(z)}{f_i(z)} - 1 \right) + \beta_i \frac{zg_i''(z)}{g_i'(z)} + \gamma_i \left(\frac{zg_i'(z)}{g_i(z)} - 1 \right) \right],$$

for all $z \in \mathbb{U}$, $i = \overline{1, n}$, which readily shows that

$$\begin{aligned} |c| |z|^{2\operatorname{Re}\delta} &+ \frac{1 - |z|^{2\operatorname{Re}\delta}}{2\operatorname{Re}\delta} \left| \frac{zM_n''(z)}{M_n'(z)} \right| \le |c| |z|^{\operatorname{Re}\delta} + \\ &+ \frac{1 - |z|^{2\operatorname{Re}\delta}}{\operatorname{Re}\delta} \sum_{i=1}^n \left[|\alpha_i - 1| \left| \frac{zf_i'(z)}{f_i(z)} - 1 \right| + |\beta_i| \left| \frac{zg_i''(z)}{g_i'(z)} \right| + |\gamma_i| \left| \frac{zg_i'(z)}{g_i(z)} - 1 \right| \right] \le \\ &\le |c| + \frac{1}{\operatorname{Re}\delta} \sum_{i=1}^n \left[|\alpha_i - 1| \left(\left| \frac{zf_i'(z)}{f_i(z)} \right| + 1 \right) + |\beta_i| \left| \frac{zg_i''(z)}{g_i'(z)} \right| + |\gamma_i| \left(\left| \frac{zg_i'(z)}{g_i(z)} \right| + 1 \right) \right]. \end{aligned}$$

$$\end{aligned}$$

$$(8)$$

By applying the General Schwarz Lemma to the functions $f_i, g_i, i = \overline{1, n}$ we obtain:

$$|f_i(z)| \le M_i |z|, \quad |g_i(z)| \le N_i |z|.$$

Since g_i be in the class $S(p_i)$, $0 < p_i \leq 2$ for all $i = \overline{1, n}$ from (8) and hypothesis we obtain:

$$\begin{aligned} |c| \, |z|^{2\operatorname{Re\delta}} &+ \frac{1 - |z|^{2\operatorname{Re\delta}}}{2\operatorname{Re\delta}} \left| \frac{zM_n''(z)}{M_n'(z)} \right| \leq \\ &\leq |c| + \frac{1}{\operatorname{Re\delta}} \sum_{i=1}^n \left[|\alpha_i - 1| \left(\left| \frac{z^2 f_i'(z)}{[f_i(z)]^2} \right| \left| \frac{f_i(z)}{z} \right| + 1 \right) \right] + \\ &+ \frac{1}{\operatorname{Re\delta}} \sum_{i=1}^n \left[|\beta_i| \left| \frac{zg_i''(z)}{g_i'(z)} \right| + |\gamma_i| \left(\left| \frac{z^2 g_i'(z)}{[g_i(z)]^2} \right| \left| \frac{g_i(z)}{z} \right| + 1 \right) \right] \right] \leq \\ &\leq |c| + \frac{1}{\operatorname{Re\delta}} \sum_{i=1}^n \left\{ |\alpha_i - 1| \left[\left(\left| \frac{z^2 f_i'(z)}{[f_i(z)]^2} - 1 \right| + 1 \right) M_i + 1 \right] \right\} + \\ &+ \frac{1}{\operatorname{Re\delta}} \sum_{i=1}^n \left\{ |\beta_i| \cdot 1 + |\gamma_i| \left[\left(\left| \frac{z^2 g_i'(z)}{[g_i(z)]^2} - 1 \right| + 1 \right) N_i + 1 \right] \right\} \leq |c| + \\ &+ \frac{1}{\operatorname{Re\delta}} \sum_{i=1}^n \left[|\alpha_i - 1| \left(p_i M_i \, |z|^2 + M_i + 1 \right) + |\beta_i| + |\gamma_i| \left(p_i N_i \, |z|^2 + N_i + 1 \right) \right] + \\ &\leq |c| + \frac{1}{\operatorname{Re\delta}} \sum_{i=1}^n \left\{ |\alpha_i - 1| \left[(1 + p_i) M_i + 1 \right] + |\beta_i| + |\gamma_i| \left[(1 + p_i) N_i + 1 \right] \right\}. \end{aligned}$$

So, using (7) and (9), we have

$$\left|c\right|\left|z\right|^{2\operatorname{Re}\delta} + \frac{1 - \left|z\right|^{2\operatorname{Re}\delta}}{2\operatorname{Re}\delta} \left|\frac{zM_n''(z)}{M_n'(z)}\right| \le 1$$

for all $z \in \mathbb{U}$, $i = \overline{1, n}$.

Finally, by applying Theorem 1.4, we conclude that, the general integral operator \mathcal{M}_n given by (1) is in the class S.

Theorem 2.2. Let $f_i, g_i, h_i \in A$, where g_i be in the class $S(p_i), 0 < p_i \leq 2$, M_i, N_i, P_i are real positive numbers and $\delta, \alpha_i, \beta_i, \gamma_i, c$ be complex numbers for all $i = \overline{1, n}$, with

$$Re\delta > \sum_{i=1}^{n} \left\{ |\alpha_i - 1| \left[M_i + N_i^2 \left(1 + p_i \right) + 1 \right] + |\beta_i| + |\gamma_i| \left(P_i + 1 \right) \right\}, \quad (10)$$

where $|c| \leq 1, c \neq -1$. If

$$\left|\frac{zf_{i}^{'}(z)}{f_{i}(z)}\right| \leq M_{i}, \quad |g_{i}(z)| < N_{i}, \quad \left|\frac{h_{i}^{''}(z)}{h_{i}^{'}(z)}\right| \leq 1, \quad \left|\frac{zh_{i}^{'}(z)}{h_{i}(z)}\right| \leq P_{i}$$

and

$$|c| \le 1 - \frac{1}{Re\delta} \sum_{i=1}^{n} \left\{ |\alpha_i - 1| \left[M_i + N_i^2 \left(1 + p_i \right) + 1 \right] + |\beta_i| + |\gamma_i| \left(P_i + 1 \right) \right\}$$
(11)

for all $z \in \mathbb{U}$, $i = \overline{1, n}$, then the integral operator \mathbb{C}_n , defined by (2) is in the class S.

Proof. Let us define the function

$$C_{n}(z) = \int_{0}^{z} \prod_{i=1}^{n} \left[\left(\frac{f_{i}(t)}{t} e^{g_{i}(t)} \right)^{\alpha_{i}-1} \left(h_{i}'(t) \right)^{\beta_{i}} \left(\frac{h_{i}(t)}{t} \right)^{\gamma_{i}} \right] \mathrm{d}t,$$

for all $f_i, g_i, h_i \in \mathcal{A}, i = \overline{1, n}$.

The function C_n is regular in \mathbb{U} and satisfies the following normalization condition $C_n(\theta) = C'_n(\theta) - 1 = \theta$.

We easily find that

$$\begin{split} |c| \, |z|^{2\text{Re}\delta} &+ \frac{1 - |z|^{2\text{Re}\delta}}{2\text{Re}\delta} \left| \frac{zC''_n(z)}{C'_n(z)} \right| \leq \\ &\leq |c| \, |z|^{\text{Re}\delta} + \frac{1 - |z|^{2\text{Re}\delta}}{\text{Re}\delta} \sum_{i=1}^n |\alpha_i - 1| \left| \frac{zf'_i(z)}{f_i(z)} - 1 \right| + \\ &+ \frac{1 - |z|^{2\text{Re}\delta}}{\text{Re}\delta} \sum_{i=1}^n \left[\left| zg'_i(z) \right| + |\beta_i| \left| \frac{zh''_i(z)}{h'_i(z)} \right| + |\gamma_i| \left| \frac{zh'_i(z)}{h_i(z)} - 1 \right| \right] \leq \end{split}$$

$$\leq |c| + \frac{1}{\operatorname{Re\delta}} \sum_{i=1}^{n} \left[|\alpha_{i} - 1| \left(\left| \frac{zf_{i}'(z)}{f_{i}(z)} \right| + 1 \right) + \left| \frac{z^{2}g_{i}'(z)}{[g_{i}(z)]^{2}} \right| \left| \frac{[g_{i}(z)]^{2}}{z} \right| \right] + \frac{1}{\operatorname{Re\delta}} \sum_{i=1}^{n} \left[|\beta_{i}| \left| \frac{zh_{i}''(z)}{h_{i}'(z)} \right| + |\gamma_{i}| \left(\left| \frac{zh_{i}'(z)}{h_{i}(z)} \right| + 1 \right) \right].$$
(12)

By applying the General Schwarz Lemma to the functions $g_i,\,i=\overline{1,n}$ we obtain

$$\left|g_{i}\left(z\right)\right| \leq N_{i}\left|z\right|,$$

Since g_i be in the class $S(p_i)$, $0 < p_i \leq 2$ for all $i = \overline{1, n}$ from (12) and hypothesis we obtain:

$$\begin{aligned} |c| \, |z|^{2\operatorname{Re}\delta} &+ \frac{1 - |z|^{2\operatorname{Re}\delta}}{2\operatorname{Re}\delta} \left| \frac{zC_n''(z)}{C_n'(z)} \right| \leq \\ &\leq |c| + \frac{1}{\operatorname{Re}\delta} \sum_{i=1}^n \left\{ |\alpha_i - 1| \left[M_i + 1 + \left(\left| \frac{z^2 g_i'(z)}{[g_i(z)]^2} - 1 \right| + 1 \right) N_i^2 \right] \right\} + \\ &+ \frac{1}{\operatorname{Re}\delta} \sum_{i=1}^n \left[|\beta_i| \left| \frac{zh_i''(z)}{h_i'(z)} \right| + |\gamma_i| \left(\left| \frac{z^2 h_i'(z)}{[h_i(z)]^2} \right| \left| \frac{zh_i(z)}{z} \right| + 1 \right) \right] \leq \\ &\leq |c| + \frac{1}{\operatorname{Re}\delta} \sum_{i=1}^n \left\{ |\alpha_i - 1| \left[M_i + N_i^2 \left(p_i + 1 \right) + 1 \right] + |\beta_i| + |\gamma_i| \left(P_i + 1 \right) \right\}. \end{aligned}$$
(13)

So, using (11) and (13), we have

$$\left|c\right|\left|z\right|^{2\operatorname{Re}\delta} + \frac{1 - \left|z\right|^{2\operatorname{Re}\delta}}{2\operatorname{Re}\delta} \left|\frac{zC_n''(z)}{C_n'(z)}\right| \le 1$$

for all $z \in \mathbb{U}$, $i = \overline{1, n}$.

Finally, by applying Theorem 1.4, we conclude that, the general integral operator \mathcal{C}_n given by (2) is in the class S.

3 Corollaries and consequences

First of all, upon setting $M_i = N_i = 1$ in Theorem 2.1, we have the following corollary:

Corollary 3.1. Let $f_i, g_i \in S(p_i), 0 < p_i \leq 2$ and $\delta, \alpha_i, \beta_i, \gamma_i, c$ are complex numbers, for all $i = \overline{1, n}$, with

$$Re\delta > \sum_{i=1}^{n} \left[(p_i + 2) \left(|\alpha_i - 1| + |\gamma_i| \right) + |\beta_i| \right], \quad |c| \le 1.$$
 (14)

If

$$|f_i(z)| < 1, \quad |g_i(z)| < 1, \quad \left|\frac{g''_i(z)}{g'_i(z)}\right| \le 1,$$

and

$$|c| \le 1 - \frac{1}{Re\delta} \sum_{i=1}^{n} \left[(p_i + 2) \left(|\alpha_i - 1| + |\gamma_i| \right) + |\beta_i| \right]$$
(15)

for all $z \in \mathbb{U}$, $i = \overline{1, n}$ then, the integral operator \mathcal{M}_n , defined by (1) is in the class S.

Letting n = 1, $\delta = \gamma = \alpha$ and $\alpha_1 - 1 = \beta_1 = \gamma_1$ in Teorema 2.1, we obtain the next corollary:

Corollary 3.2. Let $f, g \in S(p), 0 are real positive numbers and <math>\alpha, c$ complex numbers, with

$$Re\alpha > |\alpha - 1| \left[(1+p) M + (1+p) N + 3 \right], \quad |c| \le 1.$$
 (16)

If

$$|f(z)| < M, \quad |g(z)| < N, \quad \left|\frac{g''(z)}{g'(z)}\right| \le 1,$$

and

$$|c| \le 1 - \frac{1}{Re\alpha} > |\alpha - 1| \left[(1+p) M + (1+p) N + 3 \right].$$
 (17)

for all $z \in \mathbb{U}$ then, the integral operator \mathcal{M} , defined by

$$\mathcal{M}(z) = \left\{ \alpha \int_0^z \left[f(t)g'(t)\frac{g(t)}{t} \right]^{\alpha-1} dt \right\}^{\frac{1}{\alpha}},$$
(18)

is in the class S.

Letting $\delta = 1$ and $\gamma_i = 0$ in Theorem 2.1, we obtain the following corollary:

Corollary 3.3. Let $f_i, g_i \in A$, where g_i be in the class $S(p_i), 0 < p_i \leq 2$, M_i are real positive numbers and α_i, β_i, c be complex numbers for all $i = \overline{1, n}$, with

$$1 > \sum_{i=1}^{n} \{ |\alpha_i - 1| \left[(1+p_i) M_i + 1 \right] + |\beta_i| \}, \quad |c| \le 1, \quad c \ne -1.$$
 (19)

If

$$\left|f_{i}\left(z
ight)
ight| < M_{i}, \quad \left|rac{g_{i}^{''}\left(z
ight)}{g_{i}^{''}(z)}
ight| \leq 1,$$

and

$$|c| \le 1 - \sum_{i=1}^{n} \{ |\alpha_i - 1| \left[(1+p_i) M_i + 1 \right] + |\beta_i| \}$$
(20)

for all $z \in \mathbb{U}$, $i = \overline{1, n}$ then, the integral operator \mathfrak{F}_n , defined by

$$\mathcal{F}_n(z) = \int_0^z \prod_{i=1}^n \left[\left(\frac{f_i(t)}{t} \right)^{\alpha_i - 1} \left(g_i'(t) \right)^{\beta_i} \right] dt \tag{21}$$

is in the class S.

Remark 3.4. The integral operator from Corollary 3.3, given by (21) is a known result proven in [21].

Letting $\delta = 1$ and $\beta_i = 0$ in Theorem 2.1, we have the following corollary:

Corollary 3.5. Let $f_i, g_i \in A, M_i, N_i$ are real positive numbers and α_i, γ_i, c be complex numbers for all $i = \overline{1, n}$, with

$$1 > \sum_{i=1}^{n} \{ |\alpha_i - 1| [(1+p_i) M_i + 1] + |\gamma_i| [(1+p_i) N_i + 1] \}, \quad |c| \le 1, \quad c \ne -1.$$
(22)
If

$$|f_i(z)| < M_i, \quad |g_i(z)| < N_i,$$

and

$$|c| \le 1 - \sum_{i=1}^{n} \{ |\alpha_i - 1| \left[(1+p_i) M_i + 1 \right] + |\gamma_i| \left[(1+p_i) N_i + 1 \right] \}$$
(23)

for all $z \in \mathbb{U}$, $i = \overline{1, n}$ then, the integral operator \mathfrak{G}_n , defined by

$$\mathcal{G}_n(z) = \int_0^z \prod_{i=1}^n \left[\left(\frac{f_i(t)}{t} \right)^{\alpha_i - 1} \left(\frac{g_i(t)}{t} \right)^{\gamma_i} \right] dt \tag{24}$$

is in the class S.

Remark 3.6. On the integral operator from Corollary 3.5, given by (24) if we take $\alpha_i - 1 = \alpha_i$, we obtain another known result proven in [10].

Putting $\delta = 1$ and $\alpha_i - 1 = 0$ in Theorem 2.1, we obtain the following corollary:

Corollary 3.7. Let $g_i \in A$, where g_i be in the class $S(p_i)$, $0 < p_i \leq 2$, N_i are real positive numbers and β_i, γ_i, c be complex numbers for all $i = \overline{1, n}$, with

$$1 > \sum_{i=1}^{n} \{ |\beta_i| + |\gamma_i| \left[(1+p_i) N_i + 1 \right] \}, \quad |c| \le 1, \quad c \ne -1.$$
 (25)

If

$$|g_i(z)| < N_i, \quad \left|\frac{g''_i(z)}{g'_i(z)}\right| \le 1,$$

and

$$|c| \le 1 - \sum_{i=1}^{n} \{ |\beta_i| + |\gamma_i| \left[(1+p_i) N_i + 1 \right] \}$$
(26)

for all $z \in \mathbb{U}$, $i = \overline{1, n}$ then, the integral operator \mathfrak{I}_n , defined by

$$\mathcal{I}_n(z) = \int_0^z \prod_{i=1}^n \left[\left(g_i'(t) \right)^{\beta_i} \left(\frac{g_i(t)}{t} \right)^{\gamma_i} \right] dt \tag{27}$$

is in the class S.

Remark 3.8. The integral operator from Corollary 3.7, given by (27) was proven in [7].

Letting $M_i = N_i = P_i = 1$ in Theorem 2.2, we obtain the following corollary:

Corollary 3.9. Let $f_i, g_i, h_i \in S(p_i), 0 < p_i \leq 2$ and $\delta, \alpha_i, \beta_i, \gamma_i, c$ are complex numbers, for all $i = \overline{1, n}$, with

$$Re\delta > \sum_{i=1}^{n} \left[(p_i + 3) \left| \alpha_i - 1 \right| + \left| \beta_i \right| + 2 \left| \gamma_i \right| \right], \quad |c| \le 1.$$
(28)

If

$$\left|\frac{zf_{i}^{'}(z)}{f_{i}(z)}\right| \le 1, \quad |g_{i}(z)| \le 1, \quad \left|\frac{h_{i}^{''}(z)}{h_{i}^{'}(z)}\right| \le 1, \quad \left|\frac{zh_{i}^{'}(z)}{h_{i}(z)}\right| \le 1$$

and

$$|c| \le 1 - \frac{1}{Re\delta} \sum_{i=1}^{n} \left[(p_i + 3) \left| \alpha_i - 1 \right| + \left| \beta_i \right| + 2 \left| \gamma_i \right| \right], \tag{29}$$

for all $z \in \mathbb{U}$, $i = \overline{1, n}$ then, the integral operator \mathbb{C}_n , defined by (2) is in the class S.

Letting n = 1, $\delta = \gamma = \alpha$ and $\alpha_1 - 1 = \beta_1 = \gamma_1$ in Theorem 2.2, we have: **Corollary 3.10.** Let $f, g, h \in S(p), 0 are real positive numbers and <math>\alpha, c$ complex numbers, with

$$Re\alpha > |\alpha - 1| \left[M + N^2 \left(1 + p \right) + P + 3 \right], \quad |c| \le 1.$$
 (30)

If

$$\left|\frac{zf^{'}\left(z\right)}{f(z)}\right| \le M, \quad |g\left(z\right)| < N, \quad \left|\frac{h^{''}(z)}{h^{'}(z)}\right| \le 1, \quad \left|\frac{zh^{'}\left(z\right)}{h(z)}\right| \le P$$

and

$$|c| \le 1 - \frac{1}{Re\alpha} |\alpha - 1| \left[M + N^2 \left(1 + p \right) + P + 3 \right]$$
(31)

for all $z \in \mathbb{U}$ then, the integral operators \mathfrak{C} , defined by

$$\mathcal{C}(z) = \left\{ \alpha \int_0^z \left[f(t) e^{g(t)} h'(t) \frac{h(t)}{t} \right]^{\alpha - 1} dt \right\}^{\frac{1}{\alpha}}, \tag{32}$$

is in the class S.

Letting $\delta = 1$ and $\gamma_i = 0$ in Theorem 2.2, we obtain the next corollary:

Corollary 3.11. Let $f_i, g_i, h_i \in A$, where g_i be in the class $\mathcal{S}(p_i), 0 < p_i \leq 2$, M_i, N_i are real positive numbers and α_i, β_i, c complex numbers, for all $i = \overline{1, n}$, with

$$1 > \sum_{i=1}^{n} \left\{ |\alpha_i - 1| \left[M_i + N_i^2 \left(1 + p_i \right) + 1 \right] + |\beta_i| \right\}, \quad |c| \le 1, \quad c \ne -1.$$
(33)

If

$$\left|\frac{zf_i'(z)}{f_i(z)}\right| \le M_i, \quad |g_i(z)| < N_i, \quad \left|\frac{h_i''(z)}{h_i'(z)}\right| \le 1$$

and

$$c| \le 1 - \sum_{i=1}^{n} \left\{ |\alpha_i - 1| \left[M_i + N_i^2 \left(1 + p_i \right) + 1 \right] + |\beta_i| \right\}$$
(34)

for all $z \in \mathbb{U}$, $i = \overline{1, n}$ then, the integral operator \mathfrak{T}_n defined by

$$\mathfrak{T}_n(z) = \int_0^z \prod_{i=1}^n \left[\left(\frac{f_i(t)}{t} e^{g_i(t)} \right)^{\alpha_i - 1} \left(h_i'(t) \right)^{\beta_i} \right] dt, \tag{35}$$

is in the class S.

Remark 3.12. The integral operator from Corollary 3.11, given by (35), if we take $\beta_i = 0$, we obtain a known result proven in [20].

Putting $\delta = 1$ and $\beta_i = 0$ in Theorem 2.2, we obtain the following corollary:

Corollary 3.13. Let $f_i, g_i, h_i \in A$, where g_i be in the class $S(p_i), 0 < p_i \leq 2$, M_i, N_i, P_i are real positive numbers and α_i, γ_i, c complex numbers, for all $i = \overline{1, n}$, with

$$1 > \sum_{i=1}^{n} \left\{ |\alpha_i - 1| \left[M_i + N_i^2 \left(1 + p_i \right) + 1 \right] + |\gamma_i| \left(P_i + 1 \right) \right\}, \quad |c| \le 1, \quad c \ne -1.$$
(36)

If

$$\left|\frac{zf_{i}^{'}(z)}{f_{i}(z)}\right| \leq M_{i}, \quad |g_{i}(z)| < N_{i}, \quad \left|\frac{zh_{i}^{'}(z)}{h_{i}(z)}\right| \leq P_{i}$$

and

$$|c| \le 1 - \sum_{i=1}^{n} \left\{ |\alpha_i - 1| \left[M_i + N_i^2 \left(1 + p_i \right) + 1 \right] + |\gamma_i| \left(P_i + 1 \right) \right\}$$
(37)

for all $z \in \mathbb{U}$, $i = \overline{1, n}$ then, the integral operator \mathfrak{R}_n , defined by

$$\mathcal{R}_n(z) = \int_0^z \prod_{i=1}^n \left[\left(\frac{f_i(t)}{t} e^{g_i(t)} \right)^{\alpha_i - 1} \left(\frac{h_i(t)}{t} \right)^{\gamma_i} \right] dt, \tag{38}$$

is in the class S.

Remark 3.14. Putting $\gamma_i = 0$ in (38) we obtain another known result proven in [20].

Letting $\delta = 1$ and $\alpha_i - 1 = 0$ in Theorem 2.2, we obtain:

Corollary 3.15. Let $h_i \in A$, P_i are real positive numbers and β_i, γ_i, c complex numbers, for all $i = \overline{1, n}$, with

$$1 > \sum_{i=1}^{n} \{ |\beta_i| + |\gamma_i| (P_i + 1) \}, \quad |c| \le 1, \quad c \ne -1.$$
(39)

If

$$\left|\frac{h_i^{''}(z)}{h_i^{'}(z)}\right| \le 1, \quad \left|\frac{zh_i^{'}(z)}{h_i(z)}\right| \le P_i$$

and

$$|c| \le 1 - \sum_{i=1}^{n} \{ |\beta_i| + |\gamma_i| (P_i + 1) \}$$
(40)

for all $z \in \mathbb{U}$, $i = \overline{1, n}$ then, the integral operator \mathfrak{I}_n , defined by

$$\mathcal{I}_n(z) = \int_0^z \prod_{i=1}^n \left[\left(h_i'(t) \right)^{\beta_i} \left(\frac{h_i(t)}{t} \right)^{\gamma_i} \right] dt, \tag{41}$$

is in the class S.

Remark 3.16. The integral operator from Corollary 3.15, given by (41) was proven in [7].

References

- C. Bărbatu, D. Breaz, The univalence conditions for a general integral operator. Acta Universitatis Apulensis, Alba Iulia, 51(2019), 75-87.
- [2] C. Bărbatu, D. Breaz, Univalence Criteria for a General Integral Operator. General Mathematics, Sibiu, 27(2019), 43-57.
- [3] D. Blezu, On univalence criteria. General Mathematics, Cluj-Napoca, Mathematica, 14(2006), pg. 77-84.
- [4] D. Breaz, N. Breaz, Two Integral Operators. Studia Univ."Babes-Bolyai", Cluj-Napoca, Mathematica, 47(2002), no. 3, pg. 13-21.
- [5] D. Breaz, S. Owa, N. Breaz, A new integral univalent operator. Acta Universitatis Apulensis, 16(2008).
- [6] Y. J. Kim, E. P. Merkes, On an integral of powers of aspirallike function. Kyungpook Math. J., 12(2)(1972), 249-253.
- [7] B. A. Frasin, Order of convexity and univalence of general integral operator. J. Franklin Inst., 348(2011), 1013-1019.
- [8] O. Mayer, The Functions Theory of the One Variable Complex. Acad. Ed., Bucuresti, Romania, 1981, 101-117.
- [9] Z. Nehari, *Conformal Mapping*. Mc Graw-Hill Book Comp., New York, 1975 (Dover Publ. Inc., 1975).
- [10] A. Oprea, D. Breaz, H. M. Srivastava Univalence conditions for a new family of integral operators. Filomat, (30)5(2016), 1243-1251.
- [11] H. Ovesea, Integral operators of Bazilevic type. Bull. Math. Bucuresti, 37(1993), 115-125.

- [12] N. N. Pascu, V. Pescar, On the integral operators Kim-Merkes and Pfaltzgraff. Mathematica, UBB, Cluj-Napoca, 32(55),2 (1990), 185-192.
- [13] V. Pescar, On the univalence of some integral operators. General Mathematics, Cluj-Napoca, Mathematica, 14(2006), no. 2, 77-84.
- [14] V. Pescar, New generalization of Ahlfors's, Becker's and Pascu's univalence criterion. Acta Univ. Apulensis, no. 34 (2013), 173-178.
- [15] V. Pescar, Univalence conditions for certain integral operators. Journal of Inequalities in Pure and Applied Math., (7) 147 (2006), 169-177.
- [16] V. Pescar, S. Owa, Univalence of certain integral operators. Int. J. Math. Math. Sci., 23(2000), 697-701.
- [17] V. Pescar, L. Stanciu Some univalence criteria for a family of integral operators. Creative Math. Inform., 24 (2015), no 2, 213-219.
- [18] J. Pfaltzgraff, Univalence of the integral of $(f'(z))^{\lambda}$. Bull. London Math. Soc., 7(1975), no. 3, 254-256.
- [19] V. Singh, On a class of univalent functions. Int. J. Math., Sci 23 (2000), 855-857.
- [20] L. Stanciu, *The Univalence conditions of some integral operators*. Abstract and Applied Analysis, ID 924645, 2012, 9 pages.
- [21] N. Ularu, Convexity properties for an integral operator. Acta Universitatis Apulensis Math., 27(2011), 115-120.
- [22] D. Yang, J. Liu, On a class of univalent functions. Int. J. Math., Sci 22 (3) (1999), 605-610.

Camelia Bărbatu, Faculty of Mathematics and Computer Sciences,

"Babeş-Bolyai" University, 1, Kogălniceanu Street, 400084 Cluj-Napoca, Romania. Email: camipode@yahoo.com

Daniel Breaz,

Department of Mathematics, "1 Decembrie" University, 5, Gabriel Bethlen Street, 510009 Alba-Iulia, Romania. Email: dbreaz@uab.ro