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New Curiosity Bivariate Quadratic
Quaternionic Polynomials and Their Roots

Ilker Akkus and Gonca Kizilaslan

Abstract

We consider the second-order linear homogeneous quaternion recur-
rence solutions for some new curiosity bivariate quadratic quaternionic
equations.

1 Introduction

The introduction section can actually be dealt with in three points of view:
real, quaternion and mixed.

Real Point of View and Initial Motivation:

The integer pairs of solutions of the quadratic equations ax2 + bxy+ cy2 +
d = 0 for some special integral numbers a, b, c, and d are found interesting by
several researchers, see [3, 4]. The well-known general form of a real quadratic
form is as follows:

A real standard quadratic form q in n-variables xi, 1 ≤ i ≤ n, over
a K field is a homogeneous polynomial structure such that every
term has degree two with coefficients in K; i.e,

q(x1, x2, ..., xn) =
∑
i

cix
2
i +

∑
i<j

dijxixj .

Key Words: Quaternion, Real quadratic form, Quadratic quaternionic equation, Poly-
nomials with mixed quaternion coefficients.
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If it is defined on the field K, let us emphasize that our only constraint is
that the characteristic of K must be different from 2. Some types of quadratic
forms are particularly concerned with conical sections. Hence, the conical
sections are pleased by successive pairs terms of the well-known Lucas and Fi-
bonacci integer number sequences are also found considering by many authors,
see [9, 10].

We will give a brief introduction to quaternion algebra and polynomials
over quaternion algebra, as we will deal with quadratic quaternionic equations.

Fundamentals of Quaternion Algebras:

Definition 1.1. The Hamilton’s quaternions are defined by

H := {a0 + a1i + a2j + a3k | ai ∈ R, 0 ≤ i ≤ 3}

where

i2 = j2 = k2 = ijk = −1.

For a quaternion q = a0 + a1i + a2j + a3k, its conjugate q∗ is the quaternion
q∗ = a0−a1i+a2j+a3k. The norm and trace of the quaternion q are denoted
by N(q) and Tr(q), respectively and defined as

Tr(q) = 2a0 and N(q) = a20 + a21 + a22 + a23.

Second-Order Linear Quaternionic Recurrence Relations:

Many researchers studied the quaternions which are called as quaternion
sequences by taking components from different well-known special number
sequences. One of the earliest studies are about the quaternionic homogeneous
recurrence sequences with components Lucas and Fibonacci numbers. In [7],
Horadam described the second-order homogeneous Lucas quaternion sequence
and Fibonacci quaternion sequence as

Vn = Ln + Ln+1i + Ln+2j + Ln+3k

and
Qn = Fn + Fn+1i + Fn+2j + Fn+3k

where Ln and Fn are the nth Lucas numbers and nth Fibonacci number, re-
spectively. In [8], a generalization of Fibonacci quaternion sequence is studied.

Definition 1.2 ([8]). Let n ≥ 0 be an integer and q and p be nonzero real
numbers such that p2 + 4q > 0. (p, q)−Fibonacci sequence Fn := Fn(p, q) is
described by the following recursive relation:

Fn = qFn−2 + pFn−1
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with F0 = 0 and F1 = 1. Then using this number sequence, (p, q)− Fibonacci
quaternion sequence QFn := QFn(p, q) is described by the following quater-
nionic recursive relation:

QFn−3 = Fn−3 + Fn−2i + Fn−1j + Fnk.

Quaternion Point of View:

A monic quaternion polynomial structure with n degree in the quaternion
indeterminate x is defined by

p(x) = xn + qn−1x
n−1 + · · ·+ q0 (1.1)

where q0, q1, · · · , qn−1 are quaternions. We call that α is a root of the quater-
nionic polynomial structure p(x) if p(α) = 0. The roots of polynomials over
special algebraic structures are considered by some researchers, see [2, 6, 11,
12]. Niven proves the existence of a quaternion root of polynomials over real
quaternions with a simple algorithm which based on the norm and trace of a
quaternion [11]. In [14], the authors give a more practical perspective to find
the norm and trace by using the fact that the norm and the trace of the zero
can be found by the companion matrix related to the polynomial. In [12],
another algorithm is given to find the roots of a polynomial over quaternion
algebra.

In [16], authors are interested in the equations of the following form

x2 +

t∑
j=1

α(j)xβ(j) +

s∑
j=1

γ(j)x∗δ(j) = −d (1.2)

where

α(j) = α
(j)
0 + α

(j)
1 i + α

(j)
2 j + α

(j)
3 k,

β(j) = β
(j)
0 + β

(j)
1 i + β

(j)
2 j + β

(j)
3 k,

γ(i) = γ
(i)
0 + γ

(i)
1 i + γ

(i)
2 j + γ

(i)
3 k,

δ(j) = δ
(i)
0 + δ

(i)
1 i + δ

(i)
2 j + δ

(i)
3 k,

d = d0 + d1i + d2j + d3k

are quaternions and α
(j)
m , β

(j)
m , γ

(i)
m , δ

(i)
m , dm are real numbers, m = 0, 1, 2, 3,

j = 1, 2, · · · , t, i = 1, 2, · · · , s and t, s are nonnegative integers. For any
quaternion q = q0 +q1i+q2j+q3k, they defined the matrices R(q), I(q), J(q)
and K(q), see [16], in the following way:

R(q) =


q0 −q1 −q2 −q3
−q1 −q0 q3 −q2
−q2 −q3 −q0 q1
−q3 q2 −q1 −q0

 , I(q) =


q1 q0 q3 −q2
q0 −q1 q2 q3
q3 −q2 −q1 −q0
−q2 −q3 q0 −q1

 ,
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J(q) =


q2 −q3 q0 q1
−q3 −q2 −q1 q0
q0 q1 −q2 q3
q1 −q0 −q3 −q2

 , K(q) =


q3 q2 −q1 q0
q2 −q3 −q0 −q1
−q1 q0 −q3 −q2
q0 q1 q2 −q3


and obtained the following result.

Theorem 1.3 ([16], Theorem 2.1.). x = a0 + a1i + a2j + a3k is a solution of
(1.2) if and only if (a0, a1, a2, a3) fulfills the equations

gl(a0, a1, a2, a3) = 0, l = 0, · · · , 3.

Here

g0 = a20 − a21 − a22 − a23 +

(a0, a1, a2, a3)


t∑

j=1

R(β(j))


α
(j)
0

α
(j)
1

α
(j)
2

α
(j)
3

 +

s∑
i=1

DR(δ(i))


γ
(i)
0

γ
(i)
1

γ
(i)
2

γ
(i)
3


 + d0,

g1 = 2a0a1 +

(a0, a1, a2, a3)


t∑

j=1

I(β(j))


α
(j)
0

α
(j)
1

α
(j)
2

α
(j)
3

 +

s∑
i=1

DI(δ(i))


γ
(i)
0

γ
(i)
1

γ
(i)
2

γ
(i)
3


 + d1,

g2 = 2a0a2 +

(a0, a1, a2, a3)


t∑

j=1

J(β(j))


α
(j)
0

α
(j)
1

α
(j)
2

α
(j)
3

 +

s∑
i=1

DJ(δ(i))


γ
(i)
0

γ
(i)
1

γ
(i)
2

γ
(i)
3


 + d2,

g3 = 2a0a3 +

(a0, a1, a2, a3)


t∑

j=1

K(β(j))


α
(j)
0

α
(j)
1

α
(j)
2

α
(j)
3

 +

s∑
i=1

DK(δ(i))


γ
(i)
0

γ
(i)
1

γ
(i)
2

γ
(i)
3


 + d3

and D = diag(1,−1,−1,−1).

Quadratic left polynomials are also studied in [13]. These polynomials are
considered over the ring of split quaternions. They are interested in factoriz-
ability of a quadratic split quaternion polynomial.
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The linear quaternionic equations are also found interesting. In [15], the
solutions of the linear quaternion equation are considered. In [5], they study
some equations in generalized octonion and quaternion algebras.

Mixed Point of View:

As the equations which are satisfied by the pairs of Lucas and Fibonacci
numbers are found interesting by many authors, we think that quaternionic
equations whose solutions are pairs of Lucas and Fibonacci quaternions will
also be interesting. In [1], we are interested in some quaternionic equations
and found the Lucas and Fibonacci quaternion pairs of solutions. In the
current paper, we consider the quaternion zeros with integer components of
some equations of the following form

x2 − axy ± y2 = q̃,

where x, y and q̃ are quaternions and a is an integer. Also, after some experi-
ments, we obtain that for m ≥ 2, the curiosity generalized equation

x2−(22m−2)xy+y2−2m+1[−2m+i+(23m−2m+1)j+(1−22m+1+24m−1)k] = 0

has (p, q)−Fibonacci quaternion solutions according to the selection of the
quaternion y.

2 Solutions of Some Bivariate Quadratic Quaternionic
Equations

Throughout this section, let m be an integer and x = x0 + x1i + x2j + x3k be
a quaternion with integer coefficients.

2.1 Some Bivariate Quadratic Quaternionic Equations and Their
Commutative Correspondences

Definition 2.1. Let a, b, c be reals and q1 and q2 are real quaternions. The
quadratic quaternionic equations ay2 + bxy + cx2 + q1 = 0 and ay2 + byx +
cx2 + q2 = 0 are called commutative correspondences when they have a same
quaternion solution with integer coefficients.

The following results can be obtained easily by Definition 2.1.

Proposition 2.2. If the quadratic quaternionic equations f(x, y) := ay2 +
bxy + cx2 + q1 = 0 and g(x, y) := ay2 + byx + cx2 + q2 = 0 are commutative
correspondences, then the equation mf(x, y) + ng(x, y) = 0 for real numbers
m and n becomes also commutative correspondences with them.
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Proposition 2.3. Commutative correspondency is an equivalence relation.

We will consider the bivariate quadratic quaternionic equations in the fol-
lowing forms and their some commutative correspondences

x2 − xy − y2 + q1 = 0 and x2 − 3xy + y2 + q2 = 0,

where q1, q2 are some real quaternions. In these types we will find the solutions
by using their equivalent real quadratic forms.

Theorem 2.4. Let quaternion y be m times the Lucas quaternion. Then the
equations

x2 − xy − y2 + 5m2(2 + 2j + 5k) = 0 (2.1)

and
x2 − yx− y2 + 10m2 + 10m2i + 20m2j + 15m2k) = 0 (2.2)

are commutative correspondences. The quaternion solutions whose coefficients
are integers are of the form (x, y) = ±(mV2n+1,mV2n).

Proof. We will find the quaternion zeros with integer components of the above
equation (2.1). Equation (2.2) can be solved similarly.

Let y = mV2n. It can be shown that

V 2
2n = −N(V2n) + 2L2

2n + 2L2nL2n+1i + 2L2nL2n+2j + 2L2nL2n+3k

= −15F4n+3 + 2L2
2n + 2L2nL2n+1i +

2L2nL2n+2j + 2L2nL2n+3k. (2.3)

Then we have

x20 − x21 − x22 − x23 −m(L2nx0 − L2n+1x1 − L2n+2x2 − L2n+3x3) + d0 = 0

2x0x1 −m(L2n+1x0 + L2nx1 + L2n+3x2 − L2n+2x3) + d1 = 0

2x0x2 −m(L2n+2x0 − L2n+3x1 + L2nx2 + L2n+1x3) + d2 = 0

2x0x3 −m(L2n+3x0 + L2n+2x1 − L2n+1x2 + L2nx3) + d3 = 0

where

d = −m2V 2
2n + 5m2(2 + 2j + 5k)

= m2[10 + 15F4n+3 − 2L2
2n − 2L2nL2n+1i + (10− 2L2nL2n+2)j +

(25− 2L2nL2n+3)k]

= d0 + d1i + d2j + d3k.

From these equations we obtain the zero x = mV2n+1. A similar consideration
shows that when y = −mV2n, we have the zero x = −mV2n+1.
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Let y = mV2n+1. Since

V 2
2n+1 = −N(V2n+1) + 2L2

2n+1 + 2L2n+1L2n+2i +

2L2n+1L2n+3j + 2L2n+1L2n+4k

= −15F4n+5 + 2L2
2n+1 + 2L2n+1L2n+2i +

2L2n+1L2n+3j + 2L2n+1L2n+4k, (2.4)

we have the following real quadratic form

x20 − x21 − x22 − x23 −m(L2n+1x0 − L2n+2x1 − L2n+3x2 − L2n+4x3) + d0 = 0

2x0x1 −m(L2n+2x0 + L2n+1x1 + L2n+4x2 − L2n+3x3) + d1 = 0

2x0x2 −m(L2n+3x0 − L2n+4x1 + L2n+1x2 + L2n+2x3) + d2 = 0

2x0x3 −m(L2n+4x0 + L2n+3x1 − L2n+2x2 + L2n+1x3) + d3 = 0

where

d = −m2V 2
2n+1 + 5m2(2 + 2j + 5k)

= m2[10 + 15F4n+5 − 2L2
2n+1 − 2L2n+1L2n+2i + (10− 2L2n+1L2n+3)j +

(25− 2L2n+1L2n+4)k]

= d0 + d1i + d2j + d3k.

But this form does not have real solutions. Similarly for y = −mV2n+1, the
real quadratic form has no solutions.

Theorem 2.5. Let quaternion y be m times the Lucas quaternion. Then the
equations

x2 − 3xy + y2 + 5m2(2− 2i + 7k) = 0 (2.5)

and
x2 − 3yx+ y2 + 5m2(2 + 4i + 6j + k) = 0 (2.6)

are commutative correspondences. The quaternion solutions whose coefficients
are integers are given by (x, y) = ±(mV2n+2,mV2n).

Proof. We will find the quaternion zeros with integer components of the above
equation (2.5). Equation (2.6) can be solved similarly.

Let y = mV2n. Then using Equation (2.3) we obtain the following equa-
tions

x20 − x21 − x22 − x23 − 3m(L2nx0 − L2n+1x1 − L2n+2x2 − L2n+3x3) + d0 = 0

2x0x1 − 3m(L2n+1x0 + L2nx1 + L2n+3x2 − L2n+2x3) + d1 = 0

2x0x2 − 3m(L2n+2x0 − L2n+3x1 + L2nx2 + L2n+1x3) + d2 = 0
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2x0x3 − 3m(L2n+3x0 + L2n+2x1 − L2n+1x2 + L2nx3) + d3 = 0

where

d = m2V 2
2n+1 + 5m2(2− 2i + 7k)

= m2[10− 15F4n+5 + 2L2
2n + (2L2nL2n+1 − 10)i + 2L2nL2n+2j +

(35 + 2L2nL2n+3)k]

= d0 + d1i + d2j + d3k.

From these equations we obtain the zero x = mV2n+2. A similar consideration
shows that when y = −mV2n, we have the zero x = −mV2n+2.

Let y = mV2n+1. Using Equation (2.4), the real quadratic form is

x20 − x21 − x22 − x23 − 3m(L2n+1x0 − L2n+2x1 − L2n+3x2 − L2n+4x3) + d0 = 0

2x0x1 − 3m(L2n+2x0 + L2n+1x1 + L2n+4x2 − L2n+3x3) + d1 = 0

2x0x2 − 3m(L2n+3x0 − L2n+4x1 + L2n+1x2 + L2n+2x3) + d2 = 0

2x0x3 − 3m(L2n+4x0 + L2n+3x1 − L2n+2x2 + L2n+1x3) + d3 = 0

where

d = m2V 2
2n+1 + 5m2(2− 2i + 7k)

= m2[10− 15F4n+5 + 2L2
2n+1 + (2L2n+1L2n+2 − 10)i + 2L2n+1L2n+3j +

(35 + 2L2n+1L2n+4)k]

= d0 + d1i + d2j + d3k.

But this form does not have real solutions. Similarly for y = −mV2n+1, the
real quadratic form has no solutions.

2.2 A Curiosity Generalized Bivariate Quadratic Quaternionic Equa-
tion

Now, we will consider the quaternion zeros of some special quaternionic poly-
nomials and then obtain a general polynomial with generalized Fibonacci
quaternion zeros.

Theorem 2.6. Let y be the generalized Fibonacci quaternion QFn−1(4,−1).
The equation

x2 − 14xy + y2 + 32− 8i− 448j− 776k = 0

has the quaternion solutions whose coefficients are integers in the form
(x, y) = (QFn+1(4,−1),QFn−1(4,−1)).



NEW CURIOSITY BIVARIATE QUADRATIC QUATERNIONIC POLYNOMIALS
AND THEIR ROOTS 13

Proof. Let y = QFn−1(4,−1). Let us denote Fn(4,−1) simply by Un. It can
be easily shown that

QF2
n−1(4,−1) = 14U2

n − 16U2
n+1 + 2Un−1Uni + 2Un−1Un+1j + 2Un−1Un+2k.

Then the equivalent real quadratic form will be

x20 − x21 − x22 − x23 − 14(Un−1x0 − Unx1 − Un+1x2 − Un+2x3) + d0 = 0

2x0x1 − 14(Unx0 + Un−1x1 + Un+2x2 − Un+1x3) + d1 = 0

2x0x2 − 14(Un+1x0 − Un+2x1 + Un−1x2 + Unx3) + d2 = 0

2x0x3 − 14(Un+2x0 + Un+1x1 − Unx2 − Un−1x3) + d3 = 0

where

d = QF2
n−1(4,−1)− 8(−4 + i + 56j + 97k)

= 32 + 14U2
n − 16U2

n+1 + (2Un−1Un − 8)i + (2Un−1Un+1 − 448)j +

(2Un−1Un+2 − 776)k

= d0 + d1i + d2j + d3k.

From these equations we obtain that x = QFn+1(4,−1).

Theorem 2.7. Let y be the generalized Fibonacci quaternion QFn−1(8,−1).
The equation

x2 − 62xy + y2 + 128− 16i− 7936j− 30736k = 0

has the quaternion solutions whose coefficients are integers in the form
(x, y) = (QFn+1(8,−1),QFn−1(8,−1)).

Proof. Let y = QFn−1(8,−1). Let us denote Fn(8,−1) simply by Un. It can
be easily shown that

QF2
n−1(8,−1) = 62U2

n − 64U2
n+1 + 2Un−1Uni + 2Un−1Un+1j + 2Un−1Un+2k.

Then the equivalent real quadratic form will be

x20 − x21 − x22 − x23 − 62(Un−1x0 − Unx1 − Un+1x2 − Un+2x3) + d0 = 0

2x0x1 − 62(Unx0 + Un−1x1 + Un+2x2 − Un+1x3) + d1 = 0

2x0x2 − 62(Un+1x0 − Un+2x1 + Un−1x2 + Unx3) + d2 = 0

2x0x3 − 62(Un+2x0 + Un+1x1 − Unx2 − Un−1x3) + d3 = 0

where

d = QF2
n−1(8,−1)− 16(−8 + i + 496j + 1921k)
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= 128 + 62U2
n − 64U2

n+1 + (2Un−1Un − 16)i + (2Un−1Un+1 − 7936)j +

(2Un−1Un+2 − 30736)k

= d0 + d1i + d2j + d3k.

From these equations we obtain that x = QFn+1(8,−1).

Theorem 2.8. Let y be the generalized Fibonacci quaternion QFn−1(16,−1).
Then the equation

x2 − 62xy + y2 + 4064− 254i− 1032256j− 8193278k = 0

has the quaternion solutions whose coefficients are integers in the form
(x, y) = (QFn+1(16,−1),QFn−1(16,−1)).

Proof. Let y = QFn−1(16,−1). Let us denote Fn(16,−1) simply by Un. It
can be easily shown that

QF2
n−1(16,−1) = 254U2

n − 256U2
n+1 + 2Un−1Uni + 2Un−1Un+1j + 2Un−1Un+2k.

Then the equivalent real quadratic form will be

x20 − x21 − x22 − x23 − 254(Un−1x0 − Unx1 − Un+1x2 − Un+2x3) + d0 = 0

2x0x1 − 254(Unx0 + Un−1x1 + Un+2x2 − Un+1x3) + d1 = 0

2x0x2 − 254(Un+1x0 − Un+2x1 + Un−1x2 + Unx3) + d2 = 0

2x0x3 − 254(Un+2x0 + Un+1x1 − Unx2 − Un−1x3) + d3 = 0

where

d = QF2
n−1(16,−1)− 254(−16 + i + 4064j + 32257k)

= 512 + 254U2
n − 256U2

n+1 + (2Un−1Un − 32)i +

(2Un−1Un+1 − 130048)j + (2Un−1Un+2 − 1032224)k

= d0 + d1i + d2j + d3k.

From these equations we obtain that x = QFn+1(16,−1).

Inspiring by the polynomials given above, the following theorem gives so-
lutions of a generalized polynomial.

Theorem 2.9. Let y be the generalized Fibonacci quaternion QFn−1(2m,−1).
For m ≥ 2, the only quaternion zeros with integer components of the following
equation

x2−(22m−2)xy+y2−2m+1[−2m+i+(23m−2m+1)j+(1−22m+1+24m−1)k] = 0

are given by (x, y) = (QFn+1(2m,−1),QFn−1(2m,−1)).
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Proof. Let m ≥ 2 and y = QFn−1(2m,−1). Let us denote Fn(2m,−1) simply
by Un. It can be easily shown that

QF
2
n−1(2

m,−1) = (22m − 2)U2
n − 22mU2

n+1 + 2Un−1Uni +

2Un−1Un+1j + 2Un−1Un+2k.

Then the equivalent real quadratic form will be

x20 − x21 − x22 − x23 − (22m − 2)(Un−1x0 − Unx1 − Un+1x2 − Un+2x3) + d0 = 0

2x0x1 − (22m − 2)(Unx0 + Un−1x1 + Un+2x2 − Un+1x3) + d1 = 0

2x0x2 − (22m − 2)(Un+1x0 − Un+2x1 + Un−1x2 + Unx3) + d2 = 0

2x0x3 − (22m − 2)(Un+2x0 + Un+1x1 − Unx2 − Un−1x3) + d3 = 0

where

d = QF2
n−1(2m,−1)− (2m+1)(−2m + i + (23m − 2m+1)j +

(1− 22m+1 + 24m−1)k)

= 2m+2 + (22m − 2)U2
n − 22mU2

n+1 + (2Un−1Un − 24m+1 + 22m+2)i +

(2Un−1Un+1 − 2m+1 + 23m+2)j + (2Un−1Un+2 − 25m)k

= d0 + d1i + d2j + d3k.

From these equations we obtain that x = QFn+1(2m,−1).
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