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Abstract

The degree distance DD(G) of a connected graph G was invented by
Dobrynin and Kochetova in 1994. Recently, one of the present authors
introduced the concept of k-center Steiner degree distance defined as

S dege <v>} da (9),

veES

SDD(G) =
s‘gv(c)
v

where dg(S) is the Steiner k-distance of S and degq(v) is the degree
of the vertex v in G. In this paper, we investigate the Steiner degree
distance of complete and Cartesian product graphs.

1 Introduction

All graphs in this paper are assumed to be undirected, finite, and simple.
Let G be such a graph with vertex set V(G) and edge set E(G). Then the
order and size of G are n = n(G) = |[V(G)| and m = m(G) = |E(G)|. In
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other words, G has n vertices and m edges. The degree degi(u) of the vertex
u € V(G) is number of first neighbors of this vertex.

Distance is one of the basic concepts of graph theory [7]. If G is connected
and u,v € V(G), then the distance d(u,v) = dg(u,v) between u and v is the
length of a shortest path connecting v and v. If v is a vertex of a connected
graph G, then the eccentricity e(v) of v is defined as e(v) = max{d(u,v) | u €
V(G)}. Furthermore, the radius rad(G) and diameter diam(G) of G are
rad(G) = min{e(v) |v € V(G)} and diam(G) = max{e(v) |v € V(G)}. These
latter two quantities are related by the inequalities rad(G) < diam(G) <
2rad(G). More details on this subject can be found in [14]. We refer to [5]
for graph theoretical notation and terminology not specified here.

For a graph G with vertex set V(G), the degree distance is defined as [13]

DD=DD(G)= Y [dega(u)+ dega(v)] dg(u,v). (1)
{u,v}eV(Q)
For more details on degree-and-distance-based graph invariant, we refer to
[2, 3, 4, 6, 17, 18, 30, 32, 35].
The Wiener index W(G) of the graph G is defined as
W(G) = Z da(u,v). (2)
{u,v}CV(G)
Details on this oldest distance-based topological index can be found in nu-
merous surveys, e.g., in [11, 12, 19, 20, 33, 34, 36).

The Steiner distance of a graph, introduced by Chartrand et al. [9] in 1989,
is a natural and nice generalization of the concept of classical graph distance.
For a subset S of the vertex set V(G), consisting of at least two vertices,
the Steiner distance d(S) (or simply the distance of S) is the minimum size
(number of edges) of a connected subgraphs whose vertex set contains S. This

connected subgraph is necessarily a tree and is referred to as a Steiner tree.
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Note that if S = {u, v}, then d(S) = d(u,v) is nothing new, but the classical
distance between u and v. Clearly, if |S| = k, then d(S) > k — 1.

Let n and k be integers such that 2 < k < n. The Steiner k-eccentricity
er(v) of a vertex v of G is e (v) = max{d(S) | S C V(G), |S| = k,and v € S}.
The Steiner k-radius of G is srady,(G) = min{ex(v) |v € V(G)}, whereas the
Steiner k-diameter of G is sdiamy(G) = max{ex(v)|v € V(G)}. Note that
for every connected graph G, e3(v) = e(v) for all vertices v of G, srads(G) =
rad(G) and sdiams(G) = diam(G). For more details on Steiner distance, we
refer to [1, 8, 9, 10, 14, 31].

The following result is immediate.

Observation 1.1. If H is a connected spanning subgraph of G, then
sdiamy(G) < sdiamy(H)
holds for all k, 2 < k < n.

Li et al. [21] put forward a Steiner—distance—based generalization of the
Wiener index concept. According to [21], the k-center Steiner Wiener index
SWi(G) of the graph G is defined by

SWi(G) = > d(S). (3)
B

For k = 2, the above defined Steiner Wiener index coincides with the ordinary
Wiener index, Eq. (2). It is usual to consider SWy, for 2 < k < n — 1, but
the above definition would be applicable also in the cases k = 1 and k = n,
implying SW1(G) = 0 and SW,,(G) = n — 1. For more details on Steiner

Wiener index, we refer to [21, 22, 26, 27, 28, 29).
Recently, Gutman [16] offered an analogous generalization of the concept of

degree distance, Eq. (1). Thus, the k-center Steiner degree distance SDDy(G)
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of G is defined as

SDD(G) = > [Z degc(”)] da(S) . (4)
scv(G) LvesS
|S|=k

Mao et al. [28] reported expressions for the k-center Steiner degree distance
of the star, path, as well as the complete and complete bipartite graphs, and
got general expressions for SDDy(G) for k = n,n — 1. They also obtained
sharp lower and upper bounds for SDDy. Very recently, Mao and Das [25]
generalize the concept of Gutman index by Steiner distance. The Steiner

Gutman k-index SGut(G) of graph G is defined by

SGutp(G) = >

SCV(G)
| .

11 degg(v)] da(S).

veS

The join and Cartesian products are defined as follows:

The join or complete product GV H of two disjoint graphs G and H, is the
graph with vertex set V(G)UV (H) and edge set E(G)UE(H)U{uv|u €
V(G),ve V(H)}.

The Cartesian product GLOH of two graphs G and H, is the graph with
vertex set V(G) x V(H), in which two vertices (u,v) and (u/,v’) are

adjacent if and only if u = v’ and vv’ € E(H), or v =" and wv’ € E(G).
2 Complete product

In this section, we give the exact expression of SDDy(G V H).

Theorem 2.1. Let G, H be two connected graphs of order a,b (a < b), respec-

tively. Let k be an integer with 3 <k < a+b.
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(1) If 1 <k < a, then

SDDL(GV H) = k(Z) — 2 — 2¢(G) (Z B D - i (Z degg(v)>

i=1 veS;

+k(2) —y — 2e(H) (Z:D —Ey: (Z degH(v))

=1 'L;GS;

+2(k — 1)[e(G) + e(H) + ab] <a ;‘f; 1>

(k- 1)ab(z_1> - 1)‘“)(2_1)’

where S1,Sa,...,S, are all the k-subsets of V(G) such that G[S;] (1 < i <
x) is connected, and S1,55,...,S, are all the k-subsets of V(H) such that
H[S]] (1 <i<y) is connected.

(2) If a < k < b, then

SDDLGV H) = ak? (2) — akz + 2¢(H) (Z - D _ Z (Z degH(v)>

i=1 \wes;

#2 = 0e(@) + e+l (70T ) e a7 )

(k- 1)@(2_1) —(k—1)-2¢(G) <Z_1>

where S1,Sa, ..., Sy are all the k-subsets of V(H) such that H[S;] (1 <i < x)
is connected.

3) Ifb<k<a+b, then

oz 1477 e oel )

am)] e [(25) - (5]
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Proof. Let V(G) = {uy,us,...,uq} and V(H) = {v1,va,...,v5}. Without
loss of generality, we can assume that a < b. We distinguish the following
three cases to show this theorem.

Case 1. 1 <k <a. For any S C V(G) and |S| = k, we have SNV (G) = &,
or SNV(H)=@2,0or SNV(G)# @ and SNV (H) # @.

If SNV(H) = @, then S C V(G). Recall that 51752,...,5’(:) be all
the k-subsets of V(G), and S, Ss,..., S, are all the k-subsets of V(G) such
that G[S;] (1 <4 < z) is connected. Then dg(S;) = davu(S;) = k — 1 for
each i (1 <i < z). Foreachi (z+1 < i< (7)), we have dg(S;) > k and

davu(S;) =k. Forve V(GVH),ifv e V(G), then deggyu (v) = dega(v) +Db.
This case contributes to SDDy(G V H) by

> (Z degcm(@)) davu(S)

scv(@) \veS
|S|=k
= > <Z(degc(v)+b)> davi ()
scv(@) \veS
|S|=k
- <Zd€gc(v)> davr(S) +0k Y davn(S)
SCV(G) \vES SCV(G)
|S|=k |S|=k

=k-1Y (Z degg(v)> +kY (Z degg(v)> + kY dava(S)

SCV(G), |S|=k \VES SCV(G), |S|=k \VES SCV(G)
dg(S)=k—1 dg(S)>k |S|=k

kY (Z degg(v)> -y (Z degc(v)> + bk [k (Z) —x}

sSCcv(G) \weS SCV(G), |S|=k \vES
|S|=k da(S)=k—1

2%ke(G) (Z - D - _1 (Z degg(v)> + bk? (Z) — bka.

vES;
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If SNV (G) = @, then S C V(H). Similarly, this case contributes to SDDy(GV
H) by

i=1 \ves;

e (1Y) -3 (z degH@)) ca(?) -

Suppose SNV(G) # @ and SNV (H) # @. In this case, dgvu(S) = k — 1.
This case contributes to SDDy(G V H) by

Z <Z degG\/H(U)> dG\/H(S)

SCV(@),|S|=k vES
SNV (G)#2,SNV (H)#2

= (k—-1) > (Z degGvH(v)>

SCV(G),|S|=k veES
SNV (G)#2,SNV (H)#2

= (k‘—D'Q@(G\/H)(a_]:EIl) _(k_l)_ze(G)(Z:D

T R ROty

= (k= 1)(2¢(G) + 2e(H) + 2ab) ( o 1) ~ (k=1)-2¢(6) (Z _ D

(k- 1)@(2:1) (k- 1) - 2(H) (Z:D (k- 1)@(2:1).

From the above arguments, we conclude that

SDDy(GV H) = bk? (Z) — bkz + 2¢(G) (Z B 1) - _I ( 3 degg(v)>

e () —ary 2 (V1) -3 (z degH<v>)

+2(k — 1)[e(G) + e(H) + ab] (a Zf; 1) — (k- 1)ab<z B 1) — (k- 1)ab (Z B 11>
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where S7,5s,...,S; are all the k-subsets of V(G) such that G[S;] (1 < i <
) is connected, and S7,55,...,S5, are all the k-subsets of V/(H) such that
H[S!] (1 <i<y)is connected.

Case 2. a < k <b. For any S C V(G) and |S| = k, we have SNV (G) = &,
or SNV(G)# @ and SNV (H) # @.

If SNV(G) = @, then S C V(H). Recall that ShSQ,...,S(z) be all
the k-subsets of V(H), and S1,Sa, ..., S, are all the k-subsets of V(H) such
that G[S;] (1 < i < ) is connected. Then dg(S;) = dgvm(S;) = k — 1 for
each i (1 <i<uz). Foreachi (x4+1<i< (2))7 we have dpy(S;) > k and

davu(S;) = k. Forv e V(GVH), ifv € V(H), then deggyvm (v) = degu (v)+a.
This case contributes to SDDy(G V H) by

> <Z degc:m(ﬂ)) davu(S)

SCV(H) \vES

= Z (Z(degb{(v) + a)) dovu(S)

SCV(H) \vES
|S|=k
= Y (ZdegH(v)> dovu(S)+ak > davr(S)
SCV(H) \vES SCV(H)
|S|=Fk |S|=Fk

= (k-1 > (ZdegH(v)>+k > (Zdew(v))

SCV(H), |S|=k \VES SCV(H), |S|=k \VES
dy (S)=k—1 du(S)>k
+ak E deH(S)
SCV(H)
|S|=k

= kY (Z degH(v)> - > (Z degH(v)> + ak [k(Z) —x]

SCV(H) \vES SCV(G), |S|=k \VES
[S|=Fk di(S)=k—1
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— ke(H) (Z - 1) - i (; degH(v)> +ak? (Z) _akz.

Suppose SNV (G) # @ and SNV (H) # @. In this case, dgvg(S) =k — 1.
Then this case contributes to SDDy, (G V H) by

) (Z degG\/H(U)> davm(S)
veS

SCV(G),|S|=k
SNV (G)#£2,5NV (H)#£2

= (k-1 Z (Z degGvH(v)>

SCV(G),|S|=k veS
SNV (G)#2,SNV (H)#2

- <k—1>-2e<Gvﬂ><aZle)‘““‘”'26“;)(2:1)

—(k - U‘”(Z:D = (k= 1) - 2¢(H) (Z:D — (k- 1)ab<z:i>

= (k—1)(2¢(G) + 2e(H) + 2ab) (a ZEI 1) —(k—1)-2(G) (a - 1>

a—1

—(k — 1)ab<k - 1) —(k—1)-2e(H) (Z:D — (k- 1)ab<z:i>.

From the above arguments, we conclude that

SDDy(GV H) = ak? (2) — akx + 2e(H) (Z : D - _ (Z degH(v)>

+2(k — 1)[e(G) + e(H) + ab] (“ o= 1)

(k- 1)ab<Z:1> (k- 1)ab(z:11> —(k—1)- %(G)(Z:D,

where 57,59, ..., S, are all the k-subsets of V(H) such that H[S;] (1 <i < x)

is connected.
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Case 3. b <k < a+b. For any S C V(G) and |S| = k, we have SNV (G) # @
and SNV (H) # @. In this case, dgvm(S) =k — 1. Then

SDD;(GV H)

= Z (Z degGvH(U)> davu(S)

sScv(G) \veS

= (k=1) Y (ZdegGvH(v)>

scv(a) \veS

= (k—l)-2e(G\/H)<aZEII) _(k,_l).Qe(G)<a—l)

—(k - 1W’<Z:D — (k- 1)-2€(H)<Z:1> — (k- 1)@(2:11)

= <k—1)[2e<G>+2e<H>+2ab](aZbI1)_(k_l)_ze(G)(a—1>
ol () )
s @ (127 - (2D e () < ()
ra-ven | (1071 - (20)]

This completes the proof of the theorem.
2.1 Cartesian product

In [15], Gologranc obtained the following lower bound for Steienr distance.

Lemma 2.1. [15] Let k > 2 be an integer, and let G, H be two connected

graphs. Let S ={(g1,h1),(92,h2),...,(gk, hx)} be a set of distinct vertices of
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GUOH. Let S¢ ={91,92,---,9x} and Sg = {h1,ha,...,hi}. Then

dGI:IH(S) > dg(Sg) + dH(SH).

Mao et al. derived the following results for Steiner distance.

Lemma 2.2. Let G, H be two connected graphs of order n,m, respectively.
Let k be an integer with 3 < k < mn. Let S = {(g1,h1), (g2, h2),. .., (gr, hr)}
be a set of distinct vertices of GOH. Let S¢ = {91,92,---,9x} and Sy =
{hl, h2, ceey hk} Then

da(Se) +du(Su) < deou(S)
< min{dG(SG) =+ (k — Q)dH(SH), dH(SH) =+ (k — Q)dG(Sg)}.
In this section, we give the upper and lower bounds of SDDy(GOH).

Theorem 2.2. Let G, H be two connected graphs of order a,b (a < b), respec-
tively. Let k be an integer with 3 < k < a-+0b. Then

X < SDDy(GOH) < []“21} X,

where

X:ib(:’ —_11> (:) (:_)SDDi(G)+ia<§__ll> <5a> (Sa_)sm)j(H)
+2€(H)Zb(rbl__l1) (2) <:>iSWi(G)
+2e(G)Za<:1_11> (;‘;) (fj)jswj(m,

Z;:1Tp:k7 22:1%:]@ rp>1(1<p<i), sq=>1(1<q<).

Proof. From the definition of Steiner degree distance, we have

SDDy(GOH) = Y > degeon(u,v) | denm(S).

scv(cOH) \(u,v)€ES
|S|=k
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Let S = {(u1,v1), (ug,v2), ..., (uk,vx)}. Then

" degomn(uv) zdegG s +zdegH ).

(u,v)€S
From Lemma 2.1, we have dgoy (S) > da(Sg) + dg(SH), and hence

SDDy(GOH)

> >

sScv(GOH) (z

Zdegc (us) +ZdegH vl)> [da(Se) + du(SH))

1 =1
|S|=k

Zdegc U; > da(Se) + Z <Z degm (v; > du(Sw)

SCV(GOH) SCV(GOH)
|S|=k |S|=k

SCV(GDH) i=1 SCV(GDH) i=1

—ib(:’ _11> (:7) <:_>SDDZ~(G) —|—§k:a(:1_11> (;‘;) <Sa_>SDD]-(H)

From Lemma 2.2, we have dgog (S) < min{da(Sc)+du (Su)(k—2),du(Sy)+
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da(Se)(k —2)} < [5527[da(Se) + dr (S)], and hence

SDDy,(GOH)
< [E] > ( k degc(ui)+zk:d€gH(Ui)> [da(Se) + du(Sh)]
2
scv(eom \i=1 i=1
|S|=k
e gbC’l—_ll) (Z) (Z)SDD,»(G) + ’;;a<;—_11) (52)
(;)SDD](H) + ke(H) ;b<rb1_—11) (Z) (Z)iSWi(G)
+he(G) i a(sl__11> (;‘;) . (:j)jswj(ﬂ).

This completes the proof of the theorem.

Remark 2.1. For k = 3, the lower and upper bounds on SDDy(GOH) are
same (X) in Theorem 2.2.

3 Conclusion

The Steiner distance in a graph, introduced by Chartrand et al. is a natural
generalization of the concept of classical graph distance. The degree distance
seems to have been considered first by Dobrynin and Kochetova, and prac-
tically at the same time by Gutman, who used a different name for it. The
k-center Steiner degree distance introduced very recently. In this paper, we
obtain the k-center Steiner degree distance of complete and Cartesian product
graphs. Investigating the other graph products (corona product, composition,

disjunction etc.) are our future work.
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