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Positive solutions of nth-order impulsive
differential equations with integral boundary

conditions

Fatma Tokmak Fen and Ilkay Yaslan Karaca

Abstract

This paper is concerned with the existence and nonexistence of pos-
itive solutions of nth-order impulsive boundary value problem with in-
tegral boundary conditions. The fixed point theorem of cone expansion
and compression is used to investigate the existence of at least one pos-
itive solution. Also, an example is given to illustrate the effective of our
results.

1 Introduction

The theory of impulsive differential equations is adequate mathematical mod-
els for description of evolution processes characterized by the combination of
a continuous and jumps change of their state. Impulsive differential equations
have become an important area of research in recent years of the needs of
modern technology, engineering, economic and physics. Moreover, impulsive
differential equations are richer in applications compared to the corresponding
theory of ordinary differential equations. Many of the mathematical problems
encountered in the study of impulsive differential equations cannot be treated
with the usual techniques within the standard framework of ordinary differen-
tial equations. For the introduction of the basic theory of impulsive equations,
see [5, 6, 18, 22] and the references therein.
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At the same time, the theory of boundary value problems with integral
boundary conditions for differential equations arises in different areas of ap-
plied mathematics and physics. For example, a class of boundary value prob-
lems with integral boundary conditions arise naturally in thermal conduc-
tion problems [9], semiconductor problems [16], hydrodynamic problems [10].
Moreover, boundary value problems with integral boundary conditions con-
stitute a very interesting and important class of problems. They include two,
three, multi-point and nonlocal boundary value problems as special cases.
The existence and multiplicity of positive solutions for such problems have
received a great deal of attentions. To indentify a few, we refer the reader
to [1, 2, 8, 13, 19, 23, 24] and references therein. On the other hand, there
are fewer results in the literature for higher-order differential equations with
integral boundary conditions, see [3, 4, 20]. In particular, we would like to
mention some results of Ahmad and Ntouyas [3, 4].

In [3], Ahmad and Ntouyas considered the following n-th order differential
inclusion with four-point integral boundary conditions

x(n)(t) ∈ F (t, x(t)), 0 < t < 1,

x(0) = α

∫ ξ

0

x(s)ds, x′(0) = 0, x′′(0) = 0, . . . , x(n−2)(0) = 0,

x(1) = β

∫ 1

η

x(s)ds, 0 < ξ < η < 1.

The existence results were obtained by applying the nonlinear alternative of
Leray-Schauder type and some suitable theorems of fixed point theory.

In [4], Ahmad and Ntouyas developed some existence results for the fol-
lowing nth-order boundary value problem with four-point nonlocal integral
boundary conditions by using Krasnoselskii’s fixed point theorem and Leray-
Schauder degree theory

x(n)(t) = f(t, x(t)), 0 < t < 1,

x(0) = α

∫ ξ

0

x(s)ds, x′(0) = 0, x′′(0) = 0, . . . , x(n−2)(0) = 0,

x(1) = β

∫ 1

η

x(s)ds, 0 < ξ < η < 1.

Recently, the existence and multiplicity of positive solutions for linear and
nonlinear second-order impulsive differential equations with integral boundary
conditions have been studied extensively. To identify a few, we refer to the
reader to see [7, 11, 15, 17, 21, 26]. However, we can only see that the boundary
value problems with integral boundary conditions for impulsive differential
equations have been discussed in [12, 25]. So this paper fills the gap.
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In [25], Zhang et al. investigated the existence of positive solutions of the
following nth-order boundary value problem with integral boundary conditions
by using the fixed point theory for strict set contraction operator

x(n)(t) + f(t, x(t), x′(t), x′′(t), . . . , x(n−2)(t)) = θ, t ∈ J, t 6= tk,

∆x(n−2)|t=tk = −Ik(x(n−2)(tk)), k = 1, 2, . . . ,m,

x(i)(0) = θ, i = 0, 1, . . . , n− 3,

x(n−2)(0) = x(n−2)(1) =

∫ 1

0

g(t)x(n−2)(t)dt.

In [12], Feng et al. studied the existence, nonexistence, and multiplicity of
positive solutions for the following nth-order impulsive differential equations
with integral boundary conditions

x(n)(t) + f(t, x(t)) = 0, t ∈ J, t 6= tk,

−∆x(n−1)|t=tk = Ik(x(tk)), k = 1, 2, . . . ,m,

x(0) = x′(0) = · · · = x(n−2)(0) = 0, x(1) =

∫ 1

0

h(t)x(t)dt.

Motivated by the above results, in this study, we consider the following
nth-order impulsive boundary value problem (BVP)

u(n)(t) + q(t)f(t, u(t)) = 0, t ∈ J := [0, 1], t 6= tk,

∆u(n−2)|t=tk = Ik(u(n−2)(tk)), k = 1, 2, . . . , l,

∆u(n−1)|t=tk = −Jk(u(n−2)(tk)),

au(n−2)(0)− bu(n−1)(0) =

∫ 1

0

g1(s)u(n−2)(s)ds,

cu(n−2)(1) + du(n−1)(1) =

∫ 1

0

g2(s)u(n−2)(s)ds,

u(j)(0) = 0, 0 ≤ j ≤ n− 3,

(1.1)

where tk ∈ (0, 1), k = 1, 2, . . . , l with 0 < t1 < t2 < . . . < tl < 1. ∆u(n−2)|t=tk
and ∆u(n−1)|t=tk denote the jumps of u(n−2)(t) and u(n−1)(t) at t = tk, i.e.,

∆u(n−2)|t=tk = u(n−2)(t+k )− u(n−2)(t−k ),

∆u(n−1)|t=tk = u(n−1)(t+k )− u(n−1)(t−k ),
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where u(n−2)(t+k ), u(n−1)(t+k ) and u(n−2)(t−k ), u(n−1)(t−k ) represent the right-
hand limits and left-hand limits of u(n−2)(t) and u(n−1)(t) at t = tk, k =
1, 2, . . . , l, respectively.

Throughout this paper we assume that following conditions hold:

(C1) a, b, c, d ∈ [0,+∞) with ac+ ad+ bc > 0,

(C2) f ∈ C([0, 1]× R+,R+), where R+ = [0,+∞), q ∈ C([0, 1],R+),

(C3) g1, g2 ∈ C([0, 1],R+),

(C4) Ik ∈ C(R+,R+) and Jk ∈ C(R+,R+) are bounded functions such that
(c(1− tk) + d)Jk(u(tk)) > cIk(u(tk)), k = 1, 2, . . . , l.

By using the fixed point theorem of cone expansion and compression [14],
we get the existence of at least one positive solution for the impulsive BVP
(1.1).

This paper is organized as follows. In Section 2, we provide some definitions
and preliminary lemmas which are key tools for our main results. We give and
prove our main results in Section 3. Finally, in Section 4, we give an example
to demonstrate our main result.

2 Preliminaries

In this section, we present auxiliary lemmas which will be used later.
Throughout the rest of this paper, we assume that the points of impulse

tk are right dense for each k = 1, 2, . . . , l. Let J ′ = J \ {t1, t2, . . . , tl}.
Set

PC(J) =
{
u : u is a map from J into R+ such that u(t) is continuous at

t 6= tk, u(t+k ) and u(t−k ) exist and u(t−k ) = u(tk), k = 1, 2, . . . , l
}
,

PC1(J) =
{
u : u is a map from J into R+ such that u′(t) is continuous at

t 6= tk, u
′(t+k ) and u′(t−k ) exist and u′(t−k ) = u′(tk), k = 1, 2, . . . , l

}
,

PCn−1(J) =
{
u : u is a map from J into R+ such that u(n−1)(t) is

continuous at t 6= tk, u
(n−1)(t+k ) and u(n−1)(t−k ) exist and

u(n−1)(t−k ) = u(n−1)(tk), k = 1, 2, . . . , l
}
.

Obviously, PC(J), PC1(J) and PCn−1(J) are Banach spaces with the norms

‖u‖PC = sup
t∈J
‖u(t)‖ , ‖u‖PC1 = max {‖u‖PC , ‖u′‖PC} ,

‖u‖PCn−1 = max
{
‖u‖PC , ‖u′‖PC , . . . , ‖u(n−1)‖PC

}
.
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We shall reduce problem (1.1) to an integral equation in PC1(J). To this
goal, firstly by means of the transformation

u(n−2)(t) = y(t), (2.1)

and the boundary conditions u(j)(0) = 0, j = 1, 2, . . . , n − 3, one can obtain
that

u(j)(t) =

∫ t

0

(t− s)n−3−j

(n− 3− j)!
y(s)ds, j = 0, 1, 2, . . . , n− 3. (2.2)

Thus, under the transformation (2.1), we obtain the following BVP,

−y′′(t) = q(t)f (t, u(t)) = 0, t ∈ J, t 6= tk,

∆y|t=tk = Ik(y(tk)), k = 1, 2, . . . , l,

∆y′|t=tk = −Jk(y(tk)),

ay(0)− by′(0) =

∫ 1

0

g1(s)y(s)ds,

cy(1) + dy′(1) =

∫ 1

0

g2(s)y(s)ds.

(2.3)

Note that, the nth order BVP (1.1) has a solution if and only if the second
order BVP (2.3) has a solution.

Set

4 :=
−
∫ 1

0

g1(s) (b+ as) ds ρ−
∫ 1

0

g1(s) (d+ c(1− s)) ds

ρ−
∫ 1

0

g2(s) (b+ as) ds −
∫ 1

0

g2(s) (d+ c(1− s)) ds
, (2.4)

and

ρ := ad+ ac+ bc. (2.5)

Lemma 2.1. Let (C1)-(C4) hold. Assume that 4 6= 0. Then y(t) is a solution
of the BVP (2.3) if and only if y(t) is a solution of the following integral
equation

y(t) =

∫ 1

0

G (t, s) q(s)f (s, u(s)) ds+

l∑
k=1

Wk (t, tk)

+A(f)(b+ at) +B(f)(d+ c(1− t)), (2.6)
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where

G (t, s) =
1

ρ

{
(b+ as) (d+ c(1− t)) , s ≤ t,
(b+ at) (d+ c(1− s)) , t ≤ s, (2.7)

Wk (t, tk) =
1

ρ


(b+ at) (−cIk(y(tk)) + (d+ c(1− tk))Jk (y(tk))) ,

t < tk,

(d+ c(1− t)) (aIk(y(tk)) + (b+ atk)Jk (y(tk))) ,
tk ≤ t,

(2.8)

A(f) =
1

4

∫ 1

0

g1(s)H(s)ds, ρ−
∫ 1

0

g1(s)(d+ c(1− s))ds∫ 1

0

g2(s)H(s)ds −
∫ 1

0

g2(s)(d+ c(1− s))ds
, (2.9)

B(f) =
1

4

−
∫ 1

0

g1(s)(b+ as)ds

∫ 1

0

g1(s)H(s)ds

ρ−
∫ 1

0

g2(s)(b+ as)ds

∫ 1

0

g2(s)H(s)ds

, (2.10)

and

H(s) =

∫ 1

0

G (s, r) q(r)f (r, u(r)) dr +

l∑
k=1

Wk (s, tk) . (2.11)

Proof. Let y satisfies the integral equation (2.6), then we will show that y
is a solution of the impulsive BVP (2.3). Since y satisfies equation (2.6), then
we have

y(t) =

∫ 1

0

G (t, s) q(s)f (s, u(s)) ds+

l∑
k=1

Wk (t, tk)

+A(f)(b+ at) +B(f)(d+ c(1− t)),
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i.e.,

y(t) =

∫ t

0

1

ρ
(b+ as)(d+ c(1− t))q(s)f (s, u(s)) ds

+

∫ 1

t

1

ρ
(b+ at)(d+ c(1− s))q(s)f (s, u(s)) ds

+
1

ρ

∑
0<tk<t

(d+ c(1− t)) (aIk(y(tk)) + (b+ atk)Jk (y(tk)))

+
1

ρ

∑
t<tk<1

(b+ at) (−cIk(y(tk)) + (d+ c(1− tk))Jk (y(tk)))

+A(f)(b+ at) +B(f)(d+ c(1− t)),

y′(t) = −
∫ t

0

c

ρ
(b+ as)q(s)f (s, u(s)) ds

+

∫ 1

t

a

ρ
(d+ c(1− s))q(s)f (s, u(s)) ds

−1

ρ

∑
0<tk<t

c (aIk(y(tk)) + (b+ atk)Jk (y(tk)))

+
1

ρ

∑
t<tk<1

a (−cIk(y(tk)) + (d+ c(1− tk))Jk (y(tk)))

+A(f)a−B(f)c.

So that

y′′(t) =
1

ρ
(−c(b+ at)− a(d+ c(1− t))) q(t)f (t, u(t))

=
1

ρ
(−(ad+ ac+ bc)) q(t)f (t, u(t)) = −q(t)f (t, u(t)) ,

y′′(t) + q(t)f(t, u(t)) = 0.

Since

y(0) =

∫ 1

0

b

ρ
(d+ c(1− s))q(s)f (s, u(s)) ds

+
1

ρ

l∑
k=1

b (−cIk(y(tk)) + (d+ c(1− tk))Jk (y(tk)))

+A(f)b+B(f)(d+ c),
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y′(0) =

∫ 1

0

a

ρ
(d+ c(1− s))q(s)f (s, u(s)) ds+A(f)a−B(f)c

+
1

ρ

l∑
k=1

a (−cIk(y(tk)) + (d+ c(1− tk))Jk (y(tk))) ,

we have that

ay(0)− by′(0) = B(f) (ad+ ac+ bc)

=

∫ 1

0

g1(s)

[ ∫ 1

0

G (s, r) q(r)f (r, u(r)) dr +

l∑
k=1

Wk (s, tk)

+A(f)(b+ as) +B(f)(d+ c(1− s))
]
ds. (2.12)

Since

y(1) =

∫ 1

0

d

ρ
(b+ a(s))q(s)f (s, u(s)) ds+A(f)(b+ a) +B(f)d

+
1

ρ

l∑
k=1

d (aIk(y(tk)) + (b+ atk)Jk (y(tk))) ,

y′(1) = −
∫ 1

0

c

ρ
(b+ a(s))q(s)f (s, u(s)) ds

−1

ρ

l∑
k=1

c (aIk(y(tk)) + (b+ atk)Jk (y(tk))) +A(f)a−B(f)c,

we have that

cy(1) + dy′(1) = A(f) (ad+ ac+ bc)

=

∫ 1

0

g2(s)

[ ∫ 1

0

G (s, r) q(r)f (r, u(r)) dr +

l∑
k=1

Wk (s, tk)

+A(f)(b+ as) +B(f)(d+ c(1− s))
]
ds. (2.13)
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From (2.6), (2.12) and (2.13), we get that

[
−
∫ 1

0

g1(s)(b+ as)ds

]
A(f) +

[
ρ−

∫ 1

0

g1(s)(d+ c(1− s))ds
]
B(f)

=

∫ 1

0

g1(s)H(s)ds,[
ρ−

∫ 1

0

g2(s)(b+ as)ds

]
A(f) +

[
−
∫ 1

0

g2(s)(d+ c(1− s))ds
]
B(f)

=

∫ 1

0

g2(s)H(s)ds,

which implies that A(f) and B(f) satisfy (2.9) and (2.10), respectively. Then
y(t) satisfies all the conditions of (2.3), hence y(t) is a solution of (2.3).

Conversely, if y(t) is a solution of the BVP (2.3), by integrating one can
easily show that y(t) is in the form (2.6).

Lemma 2.2. Let (C1)-(C4) hold. Assume

(C5) 4 < 0, ρ−
∫ 1

0

g2(s)(b+ as)ds > 0, a−
∫ 1

0

g1(s)ds > 0.

Then for y ∈ PC1(J) ∩ C2(J ′) with f, q ≥ 0, the solution y of the problem
(2.3) satisfies

y(t) ≥ 0 for t ∈ J.

Proof. It is an immediate consequence of the facts that G ≥ 0 on [0, 1]× [0, 1]
and A(f) ≥ 0, B(f) ≥ 0.

Lemma 2.3. Let (C1)-(C5) hold. Assume that

(C6) c−
∫ 1

0

g2(s)ds < 0.

Then the solution y ∈ PC1(J)∩C2(J ′) of the problem (2.3) satisfies y′(t) ≥ 0
for t ∈ J.

Proof. Assume that the inequality y′(t) < 0 holds. Since y′(t) is nonincreas-
ing on J, one can verify that

y′(1) ≤ y′(t), t ∈ J.

From the boundary conditions of the problem (2.3), we have

− c
d
y(1) +

1

d

∫ 1

0

g2(s)y(s)ds ≤ y′(t) < 0.
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The last inequality yields

−cy(1) +

∫ 1

0

g2(s)y(s)ds < 0.

Therefore, we obtain that∫ 1

0

g2(s)y(1)ds <

∫ 1

0

g2(s)y(s)ds < cy(1),

i.e., (
c−

∫ 1

0

g2(s)ds

)
y(1) > 0.

According to Lemma 2.2, we have that y(1) ≥ 0. So, c −
∫ 1

0

g2(s)ds > 0.

However, this contradicts to condition (C6). Consequently, y′(t) ≥ 0 for t ∈ J.

Note that by Lemmas 2.1 and 2.2, we know that if (C1)−(C5) are satisfied,
then the solutions of the BVPs (1.1) and (2.3) are both positive. Therefore,
we only need to deal with the existence of the positive solutions of (2.3).

To establish the existence of positive solutions in PC1(J) ∩ C2(J ′), we
construct a cone P in PC(J) by

P =

{
y ∈ PC(J) : y is nonnegative, nondecreasing on J and y′ is

nonincreasing on J, ay(0)− by′(0) =

∫ 1

0

g1(s)y(s)ds

}
.

Obviously, P is a cone in PC(J). We note that, for each y ∈ P, ‖y‖PC =
sup
t∈J
|y(t)| = y(1).

Lemma 2.4. The Green’s function G(t, s) defined by (2.7) satisfies

min
t∈J

G(t, s) ≥ γG(s, s), ∀s ∈ J, (2.14)

where γ = min

{
d

d+ c
,

b

b+ a

}
.
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Proof. Applying (2.7), we have that for t, s ∈ J

G(t, s)

G(s, s)
=


b+ at

b+ as
, 0 ≤ t ≤ s ≤ 1,

d+ c(1− t)
d+ c(1− s)

, 0 ≤ s ≤ t ≤ 1,

≥


b

b+ a
, 0 ≤ t ≤ s ≤ 1,

d

d+ c
, 0 ≤ s ≤ t ≤ 1,

≥ γ.

Thus, we have

min
t∈J

G(t, s) ≥ γG(s, s).

Lemma 2.5. Let y ∈ P. Then min
t∈J

y(t) ≥ Γ ‖y‖PC , where

Γ =

∫ 1

0

g1(s)sds

a−
∫ 1

0

g1(s)(1− s)ds
.

Proof. For y ∈ P, since y′(t) is nonincreasing on J one arrives at

y(t)− y(0)

t
≥ y(1)− y(0)

1
,

i.e., y(t) ≥ ty(1) + (1− t)y(0). Hence,∫ 1

0

g1(s)y(s)ds ≥
∫ 1

0

g1(s)sy(1)ds+

∫ 1

0

g1(s)(1− s)y(0)ds.

By ay(0)− by′(0) =

∫ 1

0

g1(s)y(s)ds, we get

y(0) ≥

∫ 1

0

g1(s)sds

a−
∫ 1

0

g1(s)(1− s)ds
y(1).

So, the proof of Lemma 2.5 is completed.
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Now define an operator T by

(Ty)(t) =

∫ 1

0

G (t, s)F (s, y(s))q(s)ds+

l∑
k=1

Wk (t, tk)

+A(f)(b+ at) +B(f)(d+ c(1− t)), (2.15)

where F (t, y(t)) = f

(
t,

∫ t

0

(t− r)n−3

(n− 3)!
y(r)dr

)
, G, Wk, A(f) and B(f) are

defined as in (2.7), (2.8), (2.9) and (2.10), respectively.

Lemma 2.6. (i) If u ∈ PCn−1(J) ∩ Cn(J ′) is a positive solution of BVP
(1.1), then y(t) = u(n−2)(t) ∈ PC1(J) ∩ C2(J ′) is a fixed point of T ;

(ii) If y ∈ PC1(J) ∩ C2(J ′) is a fixed point of T, then

u(t) =

∫ t

0

(t− s)n−3

(n− 3)!
y(s)ds ∈ PCn−1(J) ∩ Cn(J ′) is a positive solution

of BVP (1.1).

Proof. From Lemmas 2.1 and 2.2, the proof can be easily seen.

Lemma 2.7. Let (C1)-(C6) hold. Then T : P→ P is completely continuous.

Proof. For all y ∈ P, Lemmas 2.1, 2.2, 2.3 and the definition of T , we have

(Ty)(t) ≥ 0, (Ty)′(t) ≥ 0, and (Ty)′(t) is nonincreasing on J,

a(Ty)(0)− b(Ty)′(0) =

∫ 1

0

g1(s)(Ty)(s)ds.

Then Ty ∈ P. So T is an operator from P to P. By Arzela-Ascoli theorem, we
can prove that operator T is completely continuous.

The following fixed point theorem is fundamental and important to the
proof of the existence of at least one positive solution in the next section.

Lemma 2.8. ([14]) Let Ω1 and Ω2 be two bounded open sets in Banach space
E, such that 0 ∈ Ω1 and Ω̄1 ⊂ Ω2. Let P be a cone in E and let operator
T : P ∩

(
Ω̄2 \ Ω1

)
→ P be completely continuous. Suppose that one of the

following two conditions is satisfied:

(i) Ty 6≥ y, ∀y ∈ P ∩ ∂Ω1; Ty 6≤ y, ∀y ∈ P ∩ ∂Ω2;

(ii) Ty 6≤ y, ∀y ∈ P ∩ ∂Ω1; Ty 6≥ y, ∀y ∈ P ∩ ∂Ω2.

Then, T has at least one fixed point in P ∩
(
Ω̄2 \ Ω1

)
.
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3 Main Results

We are now ready to apply the fixed point theorem of cone expansion and
compression [14] to the operator T in order to get sufficient conditions for the
existence of at least one positive solution to the problem (1.1).

Theorem 3.1. Assume that the conditions (C1)-(C6) are satisfied. In addi-
tion, letting f, Ik and Jk satisfy the following conditions:

(C7) There exists ρ1 > 0 such that F (t, y) ≥ L1y for all (t, y) ∈ J × [0, ρ1],

where L1 >

[
γΓ

∫ 1

0

G(s, s)q(s)ds

]−1
;

(C8) There exists ρ2 > ρ1 > 0 such that F (t, y) ≤ L2ρ2, Ik(y) ≤ εkρ2, Jk(y) ≤
ε̄kρ2, k = 1, 2, . . . , l,∀ 0 ≤ y ≤ ρ2, t ∈ J where εk, ε̄k ≥ 0 and L2 ≥ 0
satisfies

L2

∫ 1

0

G (s, s) q(s)ds+
1

ρ
(c+ d)(2a+ b)

l∑
k=1

ηk +A(b+ a) +B(d+ c) < 1.

Here,

A =
1

4

∫ 1

0

g1(s)Hds, ρ−
∫ 1

0

g1(s)(d+ c(1− s))ds∫ 1

0

g2(s)Hds −
∫ 1

0

g2(s)(d+ c(1− s))ds
,

B =
1

4

−
∫ 1

0

g1(s)(b+ as)ds

∫ 1

0

g1(s)Hds

ρ−
∫ 1

0

g2(s)(b+ as)ds

∫ 1

0

g2(s)Hds

,

ηk = max {εk, ε̄k} ,

and

H = L2

∫ 1

0

G(r, r)q(r)dr +
1

ρ
(c+ d)(2a+ b)

l∑
k=1

ηk.

Then the BVP (1.1) has at least one positive solution.
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Proof. Considering (C7), we show that

Ty 6≤ y, y ∈ P, ‖y‖PC = ρ1. (3.1)

In fact, if there exists y0 ∈ P, ‖y0‖PC = ρ1 such that Ty0 ≤ y0, then with
Lemmas 2.4, 2.5, we have

y0(t) ≥ (Ty0)(t) ≥
∫ 1

0

G (t, s)F (s, y0(s)) q(s)ds

≥ γ

∫ 1

0

G (s, s)F (s, y0(s)) q(s)ds

≥ γL1

∫ 1

0

G (s, s) y0(s)q(s)ds

≥ γΓL1

∫ 1

0

G (s, s) q(s)ds ‖y0‖PC

≥ γΓL1

∫ 1

0

G (s, s) q(s)ds ρ1

> ρ1.

Hence, ρ1 = ‖y0‖PC ≥ ‖Ty0‖PC > ρ1 = ‖y0‖PC , which is a contradiction.
So, (3.1) holds.

Now, we prove that

Ty 6≥ y, y ∈ P, ‖y‖PC = ρ2. (3.2)

In fact, if there exists y1 ∈ P, ‖y1‖PC = ρ2 such that Ty1 ≥ y1, then we have

y1(t) ≤ (Ty1)(t)

=

∫ 1

0

G (t, s)F (s, y1(s))q(s)ds+

l∑
k=1

Wk (t, tk) +A(f)(b+ at)

+B(f)(d+ c(1− t))

≤
(
L2

∫ 1

0

G (s, s) q(s)ds+
1

ρ
(c+ d)(2a+ b)

l∑
k=1

ηk +A(b+ a)

+B(d+ c)

)
ρ2

< ρ2,

that is, ‖y1‖PC < ‖y1‖PC , which is a contradiction. Hence, (3.2) holds.
Applying (ii) of Lemma 2.8 to (3.1) and (3.2) yields that T has a fixed

point y∗ ∈ P̄ρ1,ρ2 = {y∗ ∈ P : ρ1 ≤ ‖y∗‖PC ≤ ρ2}. Thus it follows that BVP



POSITIVE SOLUTIONS OF NTH-ORDER IMPULSIVE DIFFERENTIAL
EQUATIONS WITH INTEGRAL BOUNDARY CONDITIONS 257

(2.3) has one positive solution y∗ with ρ1 ≤ ‖y∗‖PC ≤ ρ2. Then the nth-order
BVP (1.1) has at least one positive solution

u(t) =

∫ t

0

(t− r)n−3

(n− 3)!
y∗(r)dr.

Our last result corresponds to the case when problem (1.1) has no positive
solution. Write

Λ =

[
γΓ

∫ 1

0

G (s, s) q(s)ds

]−1
(3.3)

Theorem 3.2. Assume that (C1)-(C6) hold. If F (t, y) > Λy, t ∈ J, y > 0,
then problem (1.1) has no positive solution.

Proof. Assume to the contrary that problem (1.1) has a positive solution,
that is, T has a fixed point y. Then y ∈ P, y > 0 for t ∈ J , and

y(t) ≥
∫ 1

0

G (t, s)F (s, y(s)) q(s)ds

> Λγ

∫ 1

0

G (s, s) y(s)q(s)ds

≥ ΛγΓ

∫ 1

0

G (s, s) q(s)ds ‖y‖PC

= ‖y‖PC ,

which is a contradiction, and this completes the proof.
To illustrate how our main results can be used in practice we present an

example.
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4 Example

Example 4.1 Consider the following problem

u(6)(t) + 90f(t, u(t)) = 0, t ∈ J, t 6= 1

2
,

∆u(4)|t= 1
2

= I1

(
u(4)

(
1

2

))
,

∆u(5)|t= 1
2

= −J1
(
u(4)

(
1

2

))
,

2u(4)(0)− u(5)(0) =

∫ 1

0

u(4)(s)ds,

1

3
u(4)(1) + 2u(5)(1) =

∫ 1

0

u(4)(s)ds,

u(0) = u′(0) = u′′(0) = u′′′(0) = 0,

(4.1)

where

F (t, y) = 0.0006y + 0.15

I1(y) = J1(y) =
y

250
, y ≥ 0.

By simple calculation, we get ρ = 5, 4 = −25

6
, γ = Γ =

1

3
, and

G(t, s) =
1

15

{
(1 + 2s)(7− t), s ≤ t,
(1 + 2t)(7− s), t ≤ s.

Taking ε1 =
1

200
, ε̄1 =

1

210
, L1 = 0.12, L2 = 0.001, ρ1 = 1, ρ2 = 1000, we

can obtain that η1 =
1

200
, A = B =

127386

15000
. It is clear that (C1)-(C6) are

satisfied. Next, we show that (C7) and (C8) are also satisfied.
For (t, y) ∈ J × [0, 1], we have F (t, y) ≥ 0.15 ≥ 0.12 ≥ L1y.

So (C7) is satisfied.
For (t, y) ∈ [0, 1]× [0, 1000], we get F (t, y) ≤ 0.75 ≤ L2ρ2 = 1, I1(y) ≤ 4 ≤

ε1ρ2 = 5 and J1(y) ≤ 4 ≤ ε̄1ρ2 =
1000

210
. Hence (C8) holds.

Then all conditions of Theorem 3.1 hold. Therefore, BVP (4.1) has at least
one positive solution.

Acknowledgements

We would like to thank the referees for their valuable comments and sugges-
tions. This study is supported by Ege University Scientific Research Project
(Grant No. 13-FEN-045).



POSITIVE SOLUTIONS OF NTH-ORDER IMPULSIVE DIFFERENTIAL
EQUATIONS WITH INTEGRAL BOUNDARY CONDITIONS 259

References

[1] B. Ahmad, A. Alsaedi and B. S. Alghamdi, Analytic approximation of so-
lutions of the forced Duffing equation with integral boundary conditions,
Nonlinear Anal. Real World Appl. 9 (2008) 1727-1740.

[2] B. Ahmad and A. Alsaedi, Existence of approximate solutions of the
forced Duffing equation with discontinuous type integral boundary con-
ditions, Nonlinear Anal. Real World Appl. 10 (2009) 358-367.

[3] B. Ahmad and S. K. Ntouyas, Boundary value problems for n-th or-
der differential inclusions with four-point integral boundary conditions,
Opuscula Math. 32 (2012) 205-226.

[4] B. Ahmad and S. K. Ntouyas, A study of higher-order nonlinear ordinary
differential equations with four-point nonlocal integral boundary condi-
tions, J. Appl. Math. Comput. 39 (2012) 97-108.

[5] M. Akhmet, Principles of Discontinuous Dynamical Systems, Springer,
New York, 2010.

[6] M. Benchohra, J. Henderson and S. Ntouyas, Impulsive Differential Equa-
tions and Inclusions, New York, USA, 2006.

[7] M. Benchohra, F. Berhoun and J. J. Nieto, Existence results for impul-
sive boundary value problem with integral boundary conditions, Dynam.
Systems Appl. 19 (2010) 585-597.

[8] A. Boucherif, Second-order boundary value problems with integral bound-
ary conditions, Nonlinear Anal. 70 (2009) 364-371.

[9] J. R. Cannon, The solution of the heat equation subject to the specifica-
tion of energy, Quart. Appl. Math. 21 (1963) 155-160.

[10] R. Yu. Chegis, Numerical solution of a heat conduction problem with an
integral condition, Litovsk. Mat. Sb. 24 (1984) 209-215.

[11] W. Ding and Y. Wang, New result for a class of impulsive differential
equation with integral boundary conditions, Commun. Nonlinear Sci. Nu-
mer. Simul. 18 (2013) 1095-1105.

[12] M. Feng, X. Zhang and X. Yang, Positive solutions of nth-order non-
linear impulsive differential equation with nonlocal boundary conditions,
Bound. Value Probl. Art. ID 456426 (2011) 19 pp.



POSITIVE SOLUTIONS OF NTH-ORDER IMPULSIVE DIFFERENTIAL
EQUATIONS WITH INTEGRAL BOUNDARY CONDITIONS 260

[13] M. Feng, Multiple positive solutions of four-order impulsive differen-
tial equations with integral boundary conditions and one-dimensional p-
Laplacian, Bound. Value Probl. Article ID 654871 (2011) 26 pp.

[14] D. J. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract
Cones, Academic Press, Boston, Mass, USA, 1988.

[15] X. Hao, L. Liuand Y. Wu, Positive solutions for second order impulsive
differential equations with integral boundary conditions, Commun. Non-
linear Sci. Numer. Simul. 16 (2011) 101-111.

[16] N. I. Ionkin, The solution of a certain boundary value problem of the
theory of heat conduction with a nonclassical boundary condition, Differ-
encial’nye Uravnenija 13 (1977) 294-304.

[17] M. Jia and X. P. Liu, Multiple nonnegative solutions to boundary value
problems for a class of second-order impulsive differential equations with
integral boundary conditions, J. Jilin Univ. Sci. 49 (2011) 594-600.

[18] V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impul-
sive Differential Equations, World Scientific, Singapore, 1989.

[19] Y. Li and F. Li, Sign-changing solutions to second-order integral boundary
value problems, Nonlinear Anal. 69 (2008) 1179-1187.

[20] Y. H. Li, H. Y. Zhang and Z. L. Zhang, Existence of three positive solu-
tions to a singular integral boundary value problem for systems of non-
linear nth-order ordinary differential equations, Appl. Math. J. Chinese
Univ. Ser. A 27 (2012) 168-174.

[21] Z. W. Lv, J. Liang and T. J. Xiao, Multiple positive solutions for second
order impulsive boundary value problems in Banach spaces, Electron. J.
Qual. Theory Differ. Equ. 28 (2010) 15 pp.

[22] A. M. Samoilenko, N. A. Perestyuk, Impulsive Differential Equations,
World Scientific, Singapore, 1995.

[23] Z. Yang, Existence of nontrivial solutions for a nonlinear Sturm-Lioville
problem with integral boundary conditions, Nonlinear Anal. 68 (2008)
216-225.

[24] X. Zhang, M. Feng and W. Ge, Existence results for nonlinear boundary-
value problems with integral conditions in Banach spaces, Nonlinear Anal.
69 (2008) 3310-3321.



POSITIVE SOLUTIONS OF NTH-ORDER IMPULSIVE DIFFERENTIAL
EQUATIONS WITH INTEGRAL BOUNDARY CONDITIONS 261

[25] X. Zhang, X. Yang and W. Ge, Positive solutions of nth-order impulsive
boundary value problems with integral boundary conditions in Banach
spaces, Nonlinear Anal. 71 (2009) 5930-5945.

[26] X. Zhang, M. Feng and W. Ge, Existence of solutions of boundary value
problems with integral boundary conditions for second-order impulsive
integro-differential equations in Banach spaces, J. Comput. Appl. Math.
233 (2010) 1915-1926.

Fatma TOKMAK FEN,
Department of Mathematics,
Gazi University,
06500 Teknikokullar, Ankara, Turkey.
Email:fatmatokmak@gazi.edu.tr
Department of Mathematics,
Ege University,
35100 Bornova, Izmir, Turkey.
Email: fatma.tokmakk@gmail.com

Ilkay YASLAN KARACA,
Department of Mathematics,
Ege University,
35100 Bornova, Izmir, Turkey.
Email: ilkay.karaca@ege.edu.tr



POSITIVE SOLUTIONS OF NTH-ORDER IMPULSIVE DIFFERENTIAL
EQUATIONS WITH INTEGRAL BOUNDARY CONDITIONS 262


