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Eigenvalues for Finsler p-Laplacian with zero
Dirichlet boundary condition

Maria Fărcăşeanu

Abstract

In this paper we analyze the problem −Qpu(x) = λu(x) when x ∈ Ω
with u(x) = 0 when x ∈ ∂Ω, where Ω ⊂ RN is a bounded domain, Qp

stands for Finsler p-Laplacian and p ∈
(

2N
N+2

,∞
)
\ {2} is a given real

number. Using adequate variational methods we show that the set of
eigenvalues of this problem is the interval (0,∞).

1 Introduction and main result

The goal of this paper is to investigate the eigenvalue problem{
−Qpu(x) = λu(x), for x ∈ Ω
u(x) = 0, for x ∈ ∂Ω,

(1)

where Ω ⊂ RN (N ≥ 3) is a bounded domain with smooth boundary, λ is a

positive real number and p ∈
(

2N
N+2 ,∞

)
\ {2}. We recall that

Qpu :=

N∑
i=1

∂

∂xi

(
H(∇u)p−1Hxi

(∇u)
)
,

denotes the Finsler p-Laplacian, where H is a Finsler norm, i.e. H : RN →
[0,∞) is a convex function of class C2(RN\{0}) even and homogeneous of
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degree 1 (we refer to a paper by Ferone and Kawohl [4] for the properties
of Finsler norms and for some examples). For H(x) = |x| (here | · | denotes

the euclidian norm in RN ), we have Qpu = ∆pu :=
∑N
i=1

∂
∂xi

(
|∇u|p−2∇u

)
,

where ∆p denotes the usual p-Laplacian. Note that if H(x) = |x| and p = 2 it
is well-known that problem (1) possesses an unbounded sequence of positive
eigenvalues (see, e.g. Brezis [2, Theorem IX.31] or [3])

0 < λD1 < λD2 ≤ ... ≤ λDn ≤ ... .

Consequently, in this case we deduce that the set of eigenvalues of problem
(1) is discrete. Moreover, each eigenfunction corresponding to any eigenvalue
λDk with k ≥ 2 changes sign in Ω.

Definition 1. We say that λ ∈ R is an eigenvalue of problem (1), if there
exists u ∈W 1,p

0 (Ω) \ {0} such that∫
Ω

(H(∇u))p−2∇H(∇u)∇ϕ dx = λ

∫
Ω

uϕ dx, (2)

for all ϕ ∈ W 1,p
0 (Ω). Such a function u will be called an eigenfunction corre-

sponding to the eigenvalue λ.

Remark. Note that for N ≥ 3 and p ∈
(

1, 2N
N+2

)
we can not define a solution

of problem (1) in the sense of Definition 1 since in that case the integral from
the right-hand side of relation (2) is not correctly defined. In the context of our
approach this situation is related with the fact that the Sobolev embedding
of W 1,p

0 (Ω) in L2(Ω) fails to hold if 2 > Np/(N − p) (see, e.g. [2, Theorem
IX.16] or [3]).

The main result of this paper is given by the following theorem:

Theorem 1. The set of eigenvalues of problem (1) is given by the inter-
val (0,∞). Moreover, each eigenvalue possesses a nonnegative corresponding
eigenfunction.

Remark. By Theorem 1 we deduce that for each p ∈
(

2N
N+2 ,∞

)
\ {2} the

set of eigenvalues of problem (1) is a continuous family. Moreover, for each
eigenvalue we can find a corresponding eigenfunction which does not change
sign in Ω. This is in sharp contrast with the situation which occurs for p = 2.
Note also that our main result complements some known results by Ôtani [5]
where the particular case H(x) = |x| was investigated.
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2 Proof of the main result

First, note that if a real number λ is an eigenvalue of problem (1) then it is
positive. This is a simple remark of the fact that if we replace ϕ with the
corresponding eigenfunction u 6= 0 in relation (2), we get λ > 0.

Next, our approach will be based on a method described in [8, pp. 118-119]
(see also [9]).

We consider the minimization problem

Minimize

∫
Ω

(H(∇u))p dx, (3)

under the assumptions u ∈W 1,p
0 (Ω) and ||u||L2(Ω) = 1.

We will show that the solutions for problem (3) are also solutions of prob-
lem (1).

Lemma 1. If there exists u ≥ 0 a solution of problem (3), then it is a solution
of problem (1) with

λ := inf
w∈W 1,p

0 (Ω),‖w‖L2(Ω)=1

∫
Ω

(H(∇w))p dx. (4)

Proof. Let u ∈ W 1,p
0 (Ω) be a solution of (3), i.e. ‖u‖L2(Ω) = 1 and∫

Ω
(H(∇u))p dx = λ. We fix ϕ ∈ W 1,p

0 (Ω) arbitrarily. Define f : R → R
by

f(ε) =

∫
Ω

(H(∇(u+ εϕ)))p dx− λ
(∫

Ω

(u+ εϕ)2 dx

) p
2

.

Clearly, there exists δ > 0 such that u+ εϕ 6≡ 0 for all ε ∈ (−δ, δ). By (4) we
deduce that

λ = inf
w∈W 1,p

0 (Ω)\{0}

∫
Ω

(H(∇w))p dx(∫
Ω
|w|2 dx

) p
2

.

Then f(ε) ≥ 0,∀ ε ∈ R and f(0) = 0, so ε = 0 is a global minimum point for
f . By Fermat’s theorem we get that f ′(0) = 0. We deduce that

f ′(ε) = p

∫
Ω

(H(∇(u+ εϕ)))p−2∇H(∇(u+ εϕ))∇ϕ dx

−λp
2

(∫
Ω

(u+ εϕ)2 dx

) p
2−1

2

∫
Ω

(u+ εϕ)ϕ dx.
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Therefore

0 = f ′(0) = p

∫
Ω

(H(∇u))p−2∇H(∇u)∇ϕ dx− λp
∫

Ω

uϕ dx,

which proves that u is a solution for problem (1).

Lemma 2. There exists u ∈W 1,p
0 (Ω) \ {0}, u ≥ 0 solution of problem (3).

Proof. Let {un}n ∈W 1,p
0 (Ω) be a minimizing sequence for λ, that is

‖un‖L2(Ω) = 1, for every n and

∫
Ω

(H(∇un))p dx→ λ as n→∞ .

So, {un}n is bounded in W 1,p
0 (Ω), which implies that there exists u ∈W 1,p

0 (Ω)
such that un converges weakly to u in W 1,p

0 (Ω). Since H is convex the fact
that un converges weakly to u in W 1,p

0 (Ω) implies∫
Ω

(H(∇u))p dx ≤ lim inf
n→∞

∫
Ω

(H(∇un))p dx.

As W 1,p
0 (Ω) is embedded compactly in L2(Ω) for p ∈

(
2N
N+2 ,∞

)
\ {2}, we

deduce that un converges strongly to u in L2(Ω) and as ||un||L2(Ω) = 1, we
conclude that ||u||L2(Ω) = 1. From the definition of λ we obtain

λ =

∫
Ω

(H(∇u))p dx.

We can take |u(x)| instead of u(x) and conclude that problem (3) has a solution
u(x) ≥ 0 in Ω.

Theorem 2. Let Ω ⊂ RN (N ≥ 3) be a bounded domain with smooth boundary

and p ∈
(

2N
N+2 ,∞

)
\ {2}. Then, for every µ ≥ 0, problem −Qpv(x) = µv(x), for x ∈ Ω

v(x) = 0, for x ∈ ∂Ω
v(x) ≥ 0, for x ∈ Ω,

(5)

has a nontrivial solution.

Proof. By Lemmas 1 and 2, there exists u ∈ W 1,p
0 (Ω) \ {0}, u ≥ 0, a solution

of problem (1) with

λ := inf
w∈W 1,p

0 (Ω), ‖w‖L2(Ω)=1

∫
Ω

(H(∇w))p dx,
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and
∫

Ω
(H(∇u))p−2∇H(∇u)∇ϕ dx = λ

∫
Ω
uϕ dx for all φ ∈W 1,p

0 (Ω).
Consider µ > 0 fixed. Let t > 0 such that tp−2 = µ

λ and v := tu, v ∈
W 1,p

0 (Ω) \ {0}. Since H is homogeneous of degree 1 (i.e., H(tx) = |t|H(x) for
all t ∈ R and all ξ ∈ RN ) we find that∫

Ω

(H(∇v))p−2∇H(∇v)∇ϕ dx = tp−1

∫
Ω

(H(∇u))p−2∇H(∇u)∇ϕ dx

= tp−1λ

∫
Ω

uϕ dx = tp−1λ

∫
Ω

v

t
ϕ dx

= tp−2λ

∫
Ω

vϕ dx

= µ

∫
Ω

vϕ dx, ∀ ϕ ∈W 1,p
0 (Ω),

which concludes the proof.

2.1 An alternative proof of Theorem 1 in the case p ∈ (2,∞)

In order to analyze problem (1) when p ∈ (2,∞) we can also use the so-called
Direct Method in the Calculus of Variations (see [6, Theorem 1.2]).

Theorem 3. Assume X is a reflexive Banach space and let M ⊆ X be a
nonempty, weakly closed subset of X. Assume I : M → R ∪ {∞} is coercive
on M with respect to X and weakly lower semi-continuous on M with respect
to X. Then, I is bounded from below on M and attains its minimum in M .

In order to apply Theorem 3, we define for each arbitrary but fixed λ > 0
the energy functional J : W 1,p

0 (Ω)→ R by

J(u) =
1

p

∫
Ω

(H(∇u))p dx− λ

2

∫
Ω

u2 dx, ∀ u ∈W 1,p
0 (Ω).

We establish some basic properties of J .

Proposition 1. For each λ > 0, the functional J is well-defined on W 1,p
0 (Ω)

and J ∈ C1(W 1,p
0 (Ω) \ {0},R) with the derivative given by

〈J ′(u), ϕ〉 =

∫
Ω

(H(∇u))p−2∇H(∇u)∇ϕ dx− λ
∫

Ω

uϕ dx,

for all u ∈W 1,p
0 (Ω) \ {0} and ϕ ∈W 1,p

0 (Ω).
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The proof of Proposition 1 follows from two results which can be found in
Badiale and Serra [1, Theorem 2.6.4] and Willem [7, Proposition 1.12]. We
recall their proofs for readers’ convenience.

Lemma 3. Let Ω ⊆ RN (N ≥ 3) be an open set. For p > 2, define a functional
G : W 1,p

0 (Ω)→ R by

G(u) =

∫
Ω

(H(∇u))p dx.

Then G is differentiable in W 1,p
0 (Ω) \ {0} and

〈G′(u), v〉 = p

∫
Ω

(H(∇u))p−2∇H(∇u)∇v dx ,

for all u ∈W 1,p
0 (Ω) \ {0} and v ∈W 1,p

0 (Ω).

Proof. We consider the function ϕ : RN → R, defined by ϕ(x) = H(x)p. It
is a C1-function and ∇ϕ(x) = pH(x)p−2∇H(x), so that, for all x ∈ RN \ {0}
and y ∈ RN ,

lim
t→0

ϕ(x+ ty)− ϕ(x)

t
= pH(x)p−2∇H(x)y.

As a consequence for each u ∈W 1,p
0 (Ω) \ {0} and ϕ ∈W 1,p

0 (Ω) we have

lim
t→0

H(∇(u(x) + tv(x)))p − (H(∇u(x)))p

t
= pH(∇u(x))p−2∇H(∇u(x))∇v(x) ,

a.e. in Ω. By the mean value theorem there exists θ ∈ R such that |θ| ≤ |t|
and∣∣∣∣ (H(∇(u+ tv)))p − (H(∇u))p

t

∣∣∣∣ ≤ p ∣∣(H(∇(u+ θv)))p−2∇H(∇(u+ θv))∇v
∣∣

≤ C
(
(H(∇u))p−1|∇v|+ |∇v|p

)
∈ L1(Ω).

By the dominated convergence theorem of Lebesgue we obtain

lim
t→0

∫
Ω

(H(∇(u+ tv)))p −H(∇u)p

t
dx = p

∫
Ω

(H(∇u))p−2∇H(∇u)∇v dx,

so that G is Gâteaux differentiable and

〈G′(u), v〉 = p

∫
Ω

(H(∇u))p−2∇H(∇u)∇v dx.

We have now to prove that G′ : W 1,p
0 (Ω)→ [W 1,p(Ω)]′ is continuous. To this

aim we take a sequence {uk}k in W 1,p
0 (Ω) such that uk → u in W 1,p

0 (Ω). In
particular we can assume, as usual, that up to subsequences,



EIGENVALUES FOR P -LAPLACIAN WITH ZERO DIRICHLET BOUNDARY
CONDITION 237

• ∇uk → ∇u in (Lp(Ω))N as k →∞;

• ∇uk(x)→ ∇u(x) a.e. in Ω as k →∞;

• there exists w ∈ L1(Ω) such that |∇uk(x)|p ≤ w(x) a.e. in Ω and for all
k ∈ N.

We have

〈G′(u)−G′(uk), v〉 = p

∫
Ω

(H(∇u))p−2∇H(∇u)∇v dx

−p
∫

Ω

(H(∇uk))p−2∇H(∇uk)∇v dx

and by Hölder’s inequality we get∣∣∣∣∫
Ω

(
(H(∇u))p−2∇H(∇u)− (H(∇uk))p−2∇H(∇uk)

)
∇v dx

∣∣∣∣
≤

(∫
Ω

∣∣(H(∇uk))p−2∇H(∇uk)− (H(∇u))p−2∇H(∇u)
∣∣ p
p−1 dx

) p−1
p

(∫
Ω

|∇v|p dx
) 1

p

≤
(∫

Ω

∣∣(H(∇uk))p−2∇H(∇uk)− (H(∇u))p−2∇H(∇u)
∣∣ p
p−1 dx

) p−1
p

||v||,

so that

||G′(u)−G′(uk)|| = sup
{
|〈G′(u)−G′(uk), v〉| ; v ∈W 1,p(Ω), ||v|| = 1

}
≤
(∫

Ω

∣∣(H(∇uk))p−2∇H(∇uk)− (H(∇u))p−2∇H(∇u)
∣∣ p
p−1 dx

) p−1
p

.

Now we know that

(H(∇uk(x)))p−2∇H(∇uk(x))→ (H(∇u(x)))p−2∇H(∇u(x))

almost everywhere in Ω, and that∣∣(H(∇uk))p−2∇H(∇uk)− (H(∇u))p−2∇H(∇u)
∣∣ p
p−1

≤ C ((H(∇uk))p + (H(∇u))p)

≤ C(w + (H(∇u))p) ∈ L1(Ω) .



EIGENVALUES FOR P -LAPLACIAN WITH ZERO DIRICHLET BOUNDARY
CONDITION 238

By Lebesgue’s dominated convergence theorem we obtain∫
Ω

∣∣(H(∇uk))p−2∇H(∇uk)− (H(∇u))p−2∇H(∇u)
∣∣ p
p−1 dx→ 0,

and hence ||G′(u)−G′(uk)|| → 0. This holds for a subsequence of the original
sequence {uk}, but, actually, we can obtain that G′ is a continuous function,
so that G is differentiable with the derivative given by

〈G′(u), v〉 = p

∫
Ω

(H(∇u))p−2∇H(∇u)∇v dx.

Lemma 4. Let Ω be an open subset of RN . The functional

H(u) =

∫
Ω

u2 dx

is of class C1(L2(Ω),R) and

〈H′(u), h〉 = 2

∫
Ω

uh dx, ∀ u, h ∈ L2(Ω) .

Proof. Existence of the Gâteaux derivative. Let u, h ∈ L2(Ω). Given
x ∈ Ω and 0 < |t| < 1, by the mean value theorem, there exists λ ∈ [0, 1] such
that ∣∣∣∣ |u(x) + th(x)|2 − |u(x)|2

|t|

∣∣∣∣ = 2|u(x) + λth(x)||h(x)|

≤ 2(|u(x)|+ |h(x)|)|h(x)|.
Hölder’s inequality implies that

(|u(x)|+ |h(x)|)|h(x)| ∈ L1(Ω).

It follows then from Lebesgue’s theorem that

〈H′(u), h〉 = 2

∫
Ω

uh dx.

Continuity of the Gâteaux derivative. Let us define f(u) := 2u. Assume
that un → u in L2(Ω). Then f(un) → f(u) in L2. We obtain, by Hölder’s
inequality,

|〈H′(un)−H′(u), h〉| ≤ |f(un)− f(u)|L2(Ω)|h|L2(Ω),

and so

‖H′(un)−H′(u)‖ ≤ |f(un)− f(u)|L2(Ω) → 0, as n→∞.
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Combining Lemmas 3 and 4 we infer that Proposition 1 holds true.

Proposition 2. If J ∈ C1(W 1,p
0 (Ω) \ {0},R) possesses a global minimum on

W 1,p
0 (Ω) achieved in u0 ∈W 1,p

0 (Ω) \ {0}, then u0 is a critical point of J .

Proof. Let ϕ ∈ W 1,p
0 (Ω) be arbitrary but fixed. We define the function f :

R→ R by

f(ε) = J(u0 + εϕ) =
1

p

∫
Ω

(H(∇(u0 + εϕ)))p dx− λ

2

∫
Ω

(u0 + εϕ)2 dx.

The function f has a minimum at ε = 0 and is differentiable with the derivative
given by

f ′(ε) = lim
ε→0

J(u0 + εϕ)− J(u0)

ε
= 〈J ′(u0 + εϕ), ϕ〉

=

∫
Ω

(H(∇(u0 + εϕ)))p−2∇H(∇(u0 + εϕ))∇ϕ dx− λ
∫

Ω

(u0 + εϕ)ϕ dx .

Therefore

0 = f ′(0) =

∫
Ω

(H(∇u0))p−2∇H(∇u0)∇ϕ dx− λ
∫

Ω

u0ϕ dx = 〈J ′(u0), ϕ〉 ,

which implies that u0 is a critical point for J .

Lemma 5. The functional J is coercive (i.e. lim‖u‖
W

1,p
0 (Ω)

→∞ J(u) =∞) on

W 1,p
0 (Ω).

Proof. We know that

J(u) =
1

p

∫
Ω

(H(∇u))p dx− λ

2

∫
Ω

u2 dx

=
1

p

∫
Ω

(H(∇u))p dx− λ

2
||u||2L2(Ω).

Since any two norms are equivalent on RN we infer that for H defined as above
there exists a positive constant k such that∫

Ω

(H(∇u))p dx ≥ k
∫

Ω

|∇u|p dx = k‖u‖p
W 1,p

0

.

We recall here that for every 2 < p < ∞, W 1,p
0 (Ω) is continuously embedded

in L2(Ω) (see, e.g. [2, Corollary IX.14] or [3]), i.e. there exists c > 0 such that
||u||L2(Ω) ≤ c||u||W 1,p

0 (Ω). Taking into account the above facts, we obtain

J(u) ≥ k

p
||u||p

W 1,p
0 (Ω)

− λc2

2
||u||2

W 1,p
0 (Ω)

.
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From this inequality and taking into account that p > 2, we deduce that J is
coercive.

Lemma 6. The functional J is weakly lower semi-continuous (i.e. for every
sequence {un}n∈N ⊂ W 1,p

0 (Ω) converging weakly to u ∈ W 1,p
0 (Ω), we have

J(u) ≤ lim infn→∞ J(un)) on W 1,p
0 (Ω).

Proof. We take {un}n∈N ⊂W 1,p
0 (Ω) converging weakly to u ∈W 1,p

0 (Ω). Since
H is convex by [2, Proposition III.5 (iii)] we have

1

p

∫
Ω

(H(∇u))p dx ≤ lim inf
n→∞

1

p

∫
Ω

(H(∇un))p dx. (6)

Since W 1,p
0 (Ω) is compactly embedded in L2(Ω) (see [2, Theorem IX.16] or

[3]), we obtain that {un} converges strongly to u in L2(Ω). It follows that

λ

2

∫
Ω

u2
n dx→

λ

2

∫
Ω

u2 dx. (7)

From relations (6) and (7), we conclude that

J(u) ≤ lim inf
n→∞

J(un).

Lemma 7. There exists θ ∈W 1,p
0 (Ω) \ {0} such that J(θ) < 0.

Proof. Let θ ∈W 1,p
0 (Ω) \ {0} be fixed. For each t > 0 we have

J(tθ) =
tp

p

∫
Ω

(H(∇θ))p dx− λt2

2

∫
Ω

θ2 dx.

As p > 2, for any t ∈
(

0,
[

λp
∫
Ω
θ2 dx

2
∫
Ω

(H(∇θ))p dx

] 1
p−2

)
we have J(tθ) < 0.

Proof of Theorem 1 (when p ∈ (2,∞)). By Lemmas 5 and 6 we
deduce that J is coercive and weakly lower semi-continuous on W 1,p

0 (Ω). Then
Theorem 3 implies that there exists a point uλ ∈ W 1,p

0 (Ω) such that J(uλ) =
minv∈W 1,p

0 (Ω) J(v). Since J(uλ) = J(|uλ|) we may assume that uλ ≥ 0 in Ω.

By Lemma 7 we obtain that there exists θ ∈ W 1,p
0 (Ω) such that J(θ) < 0.

By these remarks we can say that J(uλ) < 0, which implies uλ 6= 0. As J ∈
C1(W 1,p

0 (Ω) \ {0},R), by Proposition 2, 〈J ′(uλ), v〉 = 0, for any v ∈ W 1,p
0 (Ω)

and thus uλ is a nontrivial weak solution of problem (1).
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Finally, note that the Direct Method in Calculus of Variations can not be

applied in order to prove Theorem 1 when N ≥ 3 and p ∈
(

2N
N+2 , 2

)
since in

this case we can not establish the coercivity of the functional J which is an
essential requirement in Theorem 3.

Conclusion. In this paper we emphasized two different situations regarding
the nature of the spectrum of the eigenvalue problem (1). More precisely, first,
we recalled the well-known fact that ifH is the euclidian norm on RN and p = 2
then the spectrum of problem (1) is discrete and, next, we showed that if H is

a general Finsler norm and p ∈
(

2N
N+2 ,∞

)
\{2} then the spectrum of problem

(1) is continuous. Moreover, regarding the corresponding eigenfunctions we
pointed out the fact that they change sign when p = 2 and we showed that

they are one-signed when p ∈
(

2N
N+2 ,∞

)
\ {2}. In particular, we extended

some known results from Ôtani [5] to the case of Finsler p-Laplacian.
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