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On Modules over Local Rings

Fatma Özen Erdoğan, Süleyman Çiftçi and Atilla Akpınar

Abstract

This paper is dealed with a special local ring A and modules over A.
Some properties of modules, that are constructed over the real plural
algebra, are investigated. Moreover a module is constructed over the
linear algebra of matrix Mmm(R) and one of its basis is found.

1 Introduction.

The structure of a field which has many simplicities in its operations, in fact is
a generalization of the system of real numbers R. The structure of a ring which
does not have some properties that a field has, is also a generalization of the
system of integers Z. For example, while all linear equations have solutions
according to both addition and multiplication in R or in a field, every linear
equation according to multiplication in Z or in a ring does not necessarily
have any solutions because of non-existence of inverse element. In the study
of vector spaces constructed over fields, certainly there are many simplicities
compared to the study of modules constructed over rings. Modules are more
general structures than vector spaces. For more detailed study on modules, we
refer to [1]. For the Algebra and Linear Algebra that will be used throughout
this paper, we refer to [4] and [5].

In this paper, we investigate some properties of modules constructed over
the real plural algebra A. We construct a module over the linear algebra of
matrix Mmm(R) and we find one of its basis. Furthermore, we give a theorem
that describes the linear independent vectors in a module constructed over a
local ring.
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2 Preliminaries.

In this section, we will recall some basic definitons and propositions from [2]
and [3].

Definition 1 ([2, Def. 1.1]). A real plural algebra of order m is a linear algebra
A on R having, as a vector space over R, a basis

{
1, η, η2, η3, · · · , ηm−1

}
,

where ηm = 0.

A ring with identity element is called local if the set of its non-units form an
ideal. A module that is constructed over a local ring A is called an A−module.

Definition 2 ([3, Def. 1]). Let A be a local ring. Let M be a finitely gen-
erated A−module. Then M is an A−space of finite dimension if there exists
E1, E2, · · · , En in M with

i) M = AE1 ⊕AE2 ⊕ · · · ⊕AEn

ii) the map A→ AEi defined by x→ xEi is an isomorphism for 1 ≤ i ≤ n.

Definition 3 ([2, Def. 1.2]). By a system of projections A→ R, it is meant a
system of mappings pk : A onto R, defined for k = 0, 1, · · · ,m− 1, as follows:

∀β ∈ A, β =

m−1∑
i=0

biη
i, pk(β) := bk.

Now we can introduce the following propositions without proof, from [2].

Proposition 4 ([2, Prop. 1.3]). An element ε ∈ A is a unit if and only if
p0(ε) 6= 0.

Proposition 5 ([2, Prop. 1.5]). A is a local ring with the maximal ideal ηA.
The ideals ηjA, 1 ≤ j ≤ m, are all ideals in A.

3 Modules Constructed Over The Real Plural Algebra.

In this section, we examine some properties of modules constructed over the
real plural algebra A. First we give a theorem that tells us the relation between
units and zero divisors in A. Then we give a short proof of the isomorphism
between A and linear algebra of matrix K = Mmm(R). After that we investi-
gate a basis for K and we construct a module over K and find one of its basis.
We give a theorem that describes the linear independent vectors in a module
constructed over a local ring. Finally we give a detailed proof of Remark 2
given in [3].
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Theorem 6. None of the units of A are zero divisors, namely for every
α, β ∈ A;

α =

m−1∑
i=0

aiη
i, a0 6= 0 and β =

m−1∑
i=0

biη
i if α · β = 0 or β · α = 0,

then β = 0. Also for 1 ≤ k ≤ m−1 and α = akη
k+ak+1η

k+1+· · ·+am−1ηm−1
if α·β = 0 or β ·α = 0, then β = bm−kη

m−k+bm−k+1η
m−k+1+· · ·+bm−1ηm−1.

Proof. If α is a unit, then there is an inverse element α−1 and since there is
an associative property in the real algebra;

α · β = 0⇒ α−1(α · β) = α−1 · 0⇒ β = 0.

For β · α = 0, it is easily seen that β = 0 by similar calculations.
Now we show that for 1 ≤ k ≤ m − 1, α · β = (akη

k + ak+1η
k+1 + · · · +

am−1η
m−1)(b0 + b1η + b2η

2 + · · · + bm−1η
m−1) = 0 ⇒ β = bm−kη

m−k +
bm−k+1η

m−k+1 + · · ·+ bm−1η
m−1.

First let k = 1, so we deal with α = a1η+a2η
2 + · · ·+am−1η

m−1. We have
α ·β = (a1η+a2η

2 + · · ·+am−1η
m−1) · (b0 + b1η+ b2η

2 + · · ·+ bm−1η
m−1) and

α · β = 0

⇒ (a1b0)η + (a1b1 + a2b0)η2 + (a1b2 + a2b1 + a3b0)η3

+ · · ·+ (a1bm−2 + a2bm−3 + · · ·+ am−2b1 + am−1b0)ηm−1

+(a1bm−1 + a2bm−2 + · · ·+ am−2b2 + am−1b1)ηm

+(a2bm−1 + a3bm−2 + · · ·+ am−2b3 + am−1b2)ηm+1

+ · · ·+ (am−1bm−1)η2m−2

= 0η + 0η2 + · · ·+ 0ηm−1 + cmη
m + cm+1η

m+1 + · · ·+ c2m−2η
2m−2.

Here since ηm = ηm+1 = · · · = η2m−2 = 0, the coefficients cm, cm+1, · · · , c2m−2
need not to be zero. Forcing the coefficient of η to be zero, we obtain
a1b0 = 0, and since a1 6= 0, we find b0 = 0. Forcing the coefficient of η2

to be zero, we obtain a1b1 + a2b0 = 0. If we put b0 = 0 in this equation
and use the fact that a1 6= 0, we obtain b1 = 0. Forcing the coefficient of
η3 to be zero, we get a1b2 + a2b1 + a3b0 = 0. Putting b0 = b1 = 0 in this
equation and using a1 6= 0, we find b2 = 0. Carrying on this process, we
get bk = 0 for 0 ≤ k ≤ m − 3. Finally forcing the coefficient of ηm−1 to
be zero, we get a1bm−2 + a2bm−3 + · · · + am−2b1 + am−1b0 = 0. Putting
b0 = b1 = · · · = bm−3 = 0 in this equation and using a1 6= 0, we find bm−2 = 0.
If we put b0 = b1 = · · · = bm−3 = bm−2 = 0 in the following equation, we have
(a1bm−1)ηm = 0. Since ηm = 0, then bm−1 ∈ R. Thus for k = 1, we obtain
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α · β = (a1η+ a2η
2 + · · ·+ am−1η

m−1) · (b0 + b1η+ b2η
2 + · · ·+ bm−1η

m−1) =
0⇒ β = bm−1η

m−1.
Now let k = 2 so we deal with α = a2η

2 +a3η
3 + · · ·+am−1η

m−1. We have
α · β = (a2η

2 + a3η
3 + · · ·+ am−1η

m−1) · (b0 + b1η + b2η
2 + · · ·+ bm−1η

m−1)
and

α · β = 0

⇒ (a2b0)η2 + (a2b1 + a3b0)η3 + (a2b2 + a3b1 + a4b0)η4

+ · · ·+ (a2bm−4 + a3bm−5 + · · ·+ am−3b1 + am−2b0)ηm−2

+(a2bm−3 + a3bm−4 + · · ·+ am−2b1 + am−1b0)ηm−1

+(a2bm−2 + a3bm−3 + · · ·+ am−2b2 + am−1b1)ηm

+(a2bm−1 + a3bm−2 + · · ·+ am−2b3 + am−1b2)ηm+1

+ · · ·+ (am−1bm−1)η2m−2

= 0η + 0η2 + · · ·+ 0ηm−1 + cmη
m + cm+1η

m+1 + · · ·+ c2m−2η
2m−2.

Here since ηm = ηm+1 = · · · = η2m−2 = 0, the coefficients cm, cm+1, · · · , c2m−2
need not be zero. Forcing the coefficient of η2 to be zero, we obtain a2b0 = 0
and since a2 6= 0, we find b0 = 0. Forcing the coefficient of η3 to be zero,
we obtain a2b1 + a3b0 = 0. If we use b0 = 0 in this equation and use the
fact that a2 6= 0, we obtain b1 = 0. Forcing the coefficient of η4 to be zero,
we get a2b2 + a3b1 + a4b0 = 0. If we put b0 = b1 = 0 in this equation and
use a2 6= 0, we obtain b2 = 0. Continuing on this process, we get bk = 0 for
0 ≤ k ≤ m − 3. If we put b0 = b1 = · · · = bm−3 = 0 in the coefficient of ηm,
we have (a2bm−2)ηm = 0. Since ηm = 0, we find bm−2 ∈ R. Similarly if we
put b0 = b1 = · · · = bm−3 = 0 and bm−2 ∈ R, in the coefficient of ηm+1, we
get (a2bm−1 + a3bm−2)ηm+1 = 0. Since ηm+1 = 0, we have bm−1 ∈ R. Thus
for k = 2, we find α · β = (a2η

2 + a3η
3 + · · ·+ am−1η

m−1) · (b0 + b1η + b2η
2 +

· · ·+ bm−1η
m−1) = 0⇒ β = bm−2η

m−2 + bm−1η
m−1.

Finally we generalize this process for k. Let α = akη
k + ak+1η

k+1 + · · ·+
am−1η

m−1. Then we have
α·β = (akη

k+ak+1η
k+1+· · ·+am−1ηm−1)·(b0+b1η+b2η

2+· · ·+bm−1ηm−1)
and

α · β = 0

⇒ (akb0)ηk + (akb1 + ak+1b0)ηk+1 + (akb2 + ak+1b1 + ak+2b0)ηk+2
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+ · · ·+ (akbm−(k+1) + ak+1bm−(k+2) + · · ·+ am−1b0)ηm−1

+(akbm−k + ak+1bm−(k+1) + · · ·+ am−2b2 + am−1b1)ηm

+(akbm−(k−1) + ak+1bm−k + · · ·+ am−2b3 + am−1b2)ηm+1

+ · · ·+ (am−1bm−1)η2m−2,

= 0η + 0η2 + · · ·+ 0ηm−1 + cmη
m + cm+1η

m+1 + · · ·+ c2m−2η
2m−2.

Here since ηm = ηm+1 = · · · = η2m−2 = 0, the coefficients cm, cm+1, · · · , c2m−2
need not be zero. Forcing the coefficient of ηk to be zero, we obtain akb0 = 0
and since ak 6= 0, we find b0 = 0. Forcing the coefficient of ηk+1 to be zero, we
obtain akb1 + ak+1b0 = 0. If we put b0 = 0 in this equation and use ak 6= 0,
we obtain b1 = 0. Forcing the coefficient of ηk+2 to be zero, we get akb2 +
ak+1b1+ak+2b0 = 0. If we use b0 = b1 = 0 in this last equation and use ak 6= 0,
we obtain b2 = 0. Carrying on this process, we can easily find b0 = b1 = · · · =
bm−(k+1) = 0 by forcing the coefficients of ηk, ηk+1, ηk+2, · · · , ηm−1 to be zero.
Now if we put b0 = b1 = · · · = bm−(k+1) = 0 in the coefficient of ηm, we obtain
(akbm−k)ηm = 0. Since ηm = 0, we have bm−k ∈ R. By similar calculations,
if we use b0 = b1 = · · · = bm−(k+1) = 0 and bm−k ∈ R in the coefficient of
ηm+1, we obtain (akbm−(k−1) + ak+1bm−k)ηm+1 = 0. Since ηm+1 = 0, we get
bm−(k−1) ∈ R. Carrying on this process by using ηm = ηm+1 = · · · = η2m−2 =
0 we can easily find bm−k, bm−(k−1), bm−(k−2), · · · , bm−1 ∈ R. Thus for α =

akη
k +ak+1η

k+1 + · · ·+am−1η
m−1 and β = b0 + b1η+ b2η

2 + · · ·+ bm−1η
m−1,

α · β = 0 implies β = bm−kη
m−k + bm−k+1η

m−k+1 + · · ·+ bm−1η
m−1.

Let A be a real plural algebra having a basis
{

1, η, η2, η3, · · · , ηm−1
}

with
ηm = 0. Let K = Mmm(R) be the linear algebra of matrix of the form

b0 b1 · · · bm−1
0 b0 · · · bm−2
...

...
. . .

...
0 · · · · · · b0

 ,

where bi ∈ R for 0 ≤ i ≤ m− 1. In [2] it is stated that without proof the map
f : A→K which is given as

f(α) = (aij) =

{
aij = 0 , j < i
aij = aj−i , j ≥ i.

for every α =
m−1∑
i=0

aiη
i ∈ A is isomorphism. Here we give the short proof of

this proposition.
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Proposition 7. The ring A is isomorphic to the linear algebra of matrix K
of the form: 

b0 b1 · · · bm−1
0 b0 · · · bm−2
...

...
. . .

...
0 · · · · · · b0

 .

Proof. The map f : A → K is defined in the following way: For every α =
m−1∑
i=0

aiη
i ∈ A,

f(α) = (aij) =

{
aij = 0 , j < i
aij = aj−i , j ≥ i.

Then f(α) =


a0 a1 a2 · · · am−1
0 a0 a1 · · · am−2
0 0 a0 · · · am−3
...

...
...

. . .
...

0 0 0 · · · a0

.

Now for the considered mapping f , it is easily seen that f is one to one,
onto and for every α = a0 + a1η+ a2η

2 + · · ·+ am−1η
m−1 and β = b0 + b1η+

b2η
2 + . · · ·+ bm−1η

m−1 ∈ A and for every c ∈ R

f(α+ β) = f(α) + f(β) and f(cα) = cf(α).

Now we show the multiplication are preserved under this map. For every α,
β ∈ A, α·β = (a0b0)+(a0b1+a1b0)η+(a0b2+a1b1+a2b0)η2+. · · ·+(a0bm−1+
a1bm−2 + · · ·+ am−1b0)ηm−1. Then we obtain

f(αβ) =



a0b0 a0b1 + a1b0 · · · a0bm−1 + a1bm−2 + · · ·+ am−1b0
0 a0b0 · · · a0bm−2 + a1bm−3 + · · ·+ am−2b0

0 0
. . . a0bm−3 + a1bm−2 + · · ·+ am−3b0

...
...

. . .
...

0 0 · · · a0b0


and by using multiplication of matrices, we get

f(α · β) =


a0 a1 a2 · · · am−1
0 a0 a1 · · · am−2
0 0 a0 · · · am−3
...

...
...

. . .
...

0 0 0 · · · a0

 ·


b0 b1 b2 · · · bm−1
0 b0 b1 · · · bm−2
0 0 b0 · · · bm−3
...

...
...

. . .
...

0 0 0 · · · b0


= f(α) · f(β).
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Now we investigate one of the basis of K. If we take any element of K
such that

B =


b0 b1 b2 · · · bm−1
0 b0 b1 · · · bm−2
0 0 b0 · · · bm−3
...

...
...

. . .
...

0 0 0 · · · b0

 ∈K,

we can write it as follows:

B =


b0 b1 b2 · · · bm−1
0 b0 b1 · · · bm−2
0 0 b0 · · · bm−3
...

...
...

. . .
...

0 0 0 · · · b0

 = b0


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1



+b1



0 1 0 · · · 0
0 0 1 · · · 0

0 0 0
. . . 0

...
...

...
. . . 1

0 0 0 · · · 0

+ · · ·+ bm−1



0 0 0 · · · 1
0 0 0 · · · 0

0 0 0
. . . 0

...
...

...
. . . 0

0 0 0 · · · 0

 .

Here if we put

η0 = (aij) =


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1


m×m

where aij =

{
1 , i = j
0 , i 6= j

η1 = (aij) =



0 1 0 · · · 0
0 0 1 · · · 0

0 0 0
. . . 0

...
...

...
. . . 1

0 0 0 · · · 0


m×m

where aij =

{
1 , j = i+ 1
0 , j 6= i+ 1

η2 = (aij) =



0 0 1 · · · 0

0 0 0
. . . 0

0 0 0
. . . 1

...
...

...
. . . 0

0 0 0 · · · 0


m×m

where aij =

{
1 , j = i+ 2
0 , j 6= i+ 2
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...

ηm−1 = (aij) =



0 0 0 · · · 1
0 0 0 · · · 0

0 0 0
. . . 0

...
...

...
. . . 0

0 0 0 · · · 0

 where aij =

{
1 , j = i+ (m− 1)
0 , j 6= i+ (m− 1)

then it is seen that B = b0η0 + b1η1 + b2η2 + · · · + bm−1ηm−1 and also lin-
ear independence of the set {η0,η1, η2, · · · , ηm−1} is obvious. Thus the set
{η0,η1, η2, · · · , ηm−1} is a basis of K. We can express any element of this set
in general as follows:

For 0 ≤ i, j, k ≤ m− 1, ηk = (aij)m×m where aij =

{
1 , j = i+ k
0 , j 6= i+ k

.

Also if we take

η = η1 =



0 1 0 · · · 0
0 0 1 · · · 0

0 0 0
. . . 0

...
...

...
. . . 1

0 0 0 · · · 0


we see that ηk = ηk for every ηk where 1 ≤ k ≤ m− 1. For example

η2 =



0 1 0 · · · 0
0 0 1 · · · 0

0 0 0
. . . 0

...
...

...
. . . 1

0 0 0 · · · 0





0 1 0 · · · 0
0 0 1 · · · 0

0 0 0
. . . 0

...
...

...
. . . 1

0 0 0 · · · 0



=



0 0 1 · · · 0

0 0 0
. . . 0

0 0 0
. . . 1

...
...

...
. . . 0

0 0 0 · · · 0


= η2.

Now we construct a module M over the linear algebra of matrix K, then
we will find one of the basis of it.

Proposition 8. M = Rm
n is a module over the linear algebra of matrix K.

Then the following set is a basis of K−module M .



ON MODULES OVER LOCAL RINGS 225

E1 =


0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

1 0 0 · · · 0

 , E2 =


0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 1 0 · · · 0

 ,

E3 =


0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 1 0 · · · 0

 , · · · , En =


0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1


 .

Proof. Linear independence of this set is obvious. Moreover for every X ∈M,
X can be written as follows:

X =


x11 x12 x13 · · · x1n
x21 x22 x23 · · · x2n

...
...

...
. . .

...
xm1 xm2 xm3 · · · xmn



=


xm1 x(m−1)1 · · · x11

0 xm1 · · · x21
... 0

. . .
...

0 · · · 0 xm1




0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

1 0 0 · · · 0



+


xm2 x(m−1)2 · · · x12

0 xm2 · · · x22
... 0

. . .
...

0 · · · 0 xm2




0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 1 0 · · · 0



+ · · ·+


xmn x(m−1)n · · · x1n

0 xmn · · · x2n
... 0

. . .
...

0 · · · 0 xmn




0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

 .

Thus [E1, E2, · · · , En] = M. Consequently, the set {E1, E2, · · · , En} is a basis
of K−module M.

For some a1, a2, · · · , an ∈ R, we write

a1E1 + a2E2 + · · ·+ anEn =


0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . . 0
a1 a2 a3 · · · an

 .
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So if M is thought as a vector space over R, it is seen that

[E1, E2, · · · , En] = P0

=




0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . . 0
a1 a2 a3 · · · an


∣∣∣∣∣∣∣∣∣ ai ∈ R, 1 ≤ i ≤ n

 .

Thus {E1, E2, · · · , En} can not be a basis for module M over R. However if
we take the system of generators B = {IE1, IE2, · · · , IEn, ηE1, ηE2, · · · , ηEn,
η2E1, η

2E2, · · · , η2En, · · · , ηm−1E1, η
m−1E2, · · · , ηm−1En}, B is obviously a

basis of the module M over R. Consequently M is an mn-dimensional vector
space over R.

From Proposition 8 we have seen that for every X = (xij) ∈ Rm
n , X can

be written as follows:

X =


x11 x12 x13 · · · x1n
x21 x22 x23 · · · x2n

...
...

...
. . .

...
xm1 xm2 xm3 · · · xmn

 =


xm1 x(m−1)1 · · · x11

0 xm1 · · · x21
... 0

. . .
...

0 · · · 0 xm1

E1

+


xm2 x(m−1)2 · · · x12

0 xm2 · · · x22
... 0

. . .
...

0 · · · 0 xm2

E2 + · · ·

+


xmn x(m−1)n · · · x1n

0 xmn · · · x2n
... 0

. . .
...

0 · · · 0 xmn

En.

Here by using
xmk x(m−1)k · · · x1k

0 xmk · · · x2k
... 0

. . .
...

0 · · · 0 xmk

 = xmkη0 + x(m−1)kη1 + · · ·+ x1kηm−1,

X also can be expressed as follows:
X = (xm1η0 +x(m−1)1η1 + · · ·+x11ηm−1)E1 + (xm2η0 +x(m−1)2η1 + · · ·+

x12ηm−1)E2 + · · ·+ (xmnη0 + x(m−1)nη1 + · · ·+ x1nηm−1)En.
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The set M = Rm
n is a vector space over the field R. If m 6= n for the

matrices Am×n and Bm×n multiplication is not defined but if m = n then M
is an associative algebra with identity. Furthermore if we use a commutative
ring with identity then M = Rm

n is a module over the ring R. Multiplication
is defined when m = n, so the operation is associative and it has unity.

Theorem 9. Let A be a local ring with a maximal ideal J and M = An. Then
for u1, u2, · · · , uk ∈ A \ J and xij ∈ J, there are linearly independent vectors
such that α1 = (u1, x21, x31, · · · , xn1), α2 = (x12, u2, x32, · · · , xn2), α3 = (x13,
x23, u3, · · · , xn3), · · · , αk = (x1k, x2k, x3k, · · · , uk, x(k+1)k, · · · , xnk), and for
k = n, the set {α1, α2, · · · , αn} is a basis for M.

Proof. First let k = 1 so we deal with only α1 = (u1, x21, x31, · · · , xn1) ∈M.
For a1 ∈ A, let a1α1 = 0 ⇒ a1α1 = (a1u1, a1x21, a1x31, · · · , a1xn1) =

(0, 0, 0, · · · , 0), then from the equality of first components, we get a1u1 = 0.
Since u1 is a unit, we obtain a1 = 0. Thus the vector α1 is linearly independent.

Let k = 2 so we deal with

α1 = (u1, x21, x31, · · · , xn1) and α2 = (x12, u2, x32, · · · , xn2).

Then for a1, a2 ∈ A, let

a1α1 + a2α2 = 0⇒ a1(u1, x21, x31, · · · , xn1) + a2(x12, u2, x32, · · · , xn2)

= (0, 0, 0, · · · , 0).

From the equality of first two components, we get a1u1 + a2x12 = 0, a1x21 +
a2u2 = 0. If we compose these equations, we obtain

a1 = −a2x12u−11 (1)

and
a2(u2 − x12u−11 x21) = 0 (2)

Since u2 ∈ A \ J and x12u
−1
1 x21 ∈ J , we have u2 − x12u−11 x21 ∈ A \ J , so we

find a2 = 0 from the equation (2). If we put a2 = 0 in equation (1), we get
a1 = 0. Thus the vectors α1 and α2 are linearly independent.

Finally to understand the process, let k = 3 so we have deal with a1 = (u1,
x21, x31, · · · , xn1), α2 = (x12, u2, x32, · · · , xn2), α3 = (x13, x23, u3, · · · , xn3) ∈
M. Let a1α1 + a2α2 + a3α3 = 0. From the equality of first three components,
we obtain the following equations:

a1u1 + a2x12 + a3x13 = 0 (3)

a1x21 + a2u2 + a3x23 = 0 (4)

a1x31 + a2x32 + a3u3 = 0. (5)
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We get
a1 = −(a2x12 + a3x13)u−11 (6)

from equation (3). Then if we put a1 in equation (4), we obtain a2(−x12u−11 x21+
u2) + a3(−x13u−11 x21 + x23) = 0.

Since x12u
−1
1 x21 ∈ J and u2 ∈ A \ J, we get x12u

−1
1 x21 + u2 ∈ A \ J from

which we obtain

a2 = a3(x13u
−1
1 x21 − x23)(−x12u−11 x21 + u2)−1. (7)

Now if we put a1 and a2 in equation (5) and compose the equations we get

a3

[
(x23 − x13u−11 x21)(u2 − x12u−11 x21)x12u

−1
1 x31 − x13u−11 x31

+(x13u
−1
1 x21 − x23)(u2 − x12u−11 x21)−1x32 + u3

]
= 0.

Since (x23−x13u−11 x21)(u2−x12u−11 x21)x12u
−1
1 x31−x13u−11 x31+(x13u

−1
1 x21−

x23)(u2 − x12u−11 x21)−1x32 + u3 ∈ A \ J, we obtain a3 = 0. By using a3 = 0
in equations (6) and (7), we get a2 = 0 and a1 = 0. Thus the vectors α1, α2

and α3 are linearly independent.
For a positive integer k, we have

α1 = (u1, x21, x31, · · · , xn1), α2 = (x12, u2, x32, · · · , xn2),

α3 = (x13, x23, u3, · · · , xn3), · · · , αk = (x1k, x2k, · · · , uk, · · · , xnk).

Let
k∑

i=1

aiαi = 0. Then from the equality of first k components to zero, we

get exactly k equations. By similar calculations, we obtain all ai’s to be zero.
Thus the set {α1, α2, ..., αk} is linearly independent.

Finally we express Remark 2 from [3] as a proposition and we give detailed
proof of this proposition.

Proposition 10. An A−module M over a local ring A is an A−space if and
only if it is a free finitely dimensional module.

Proof. Let M be a free module over A with a basis {E1, E2, · · · , En}. Now we
will show that the A−module M is an A−space. For every β ∈M , β can be
written as

β = b1E1 + b2E2 + · · ·+ bnEn ∈ AE1 + AE2 + · · ·+ AEn.

Let β ∈
∑
i 6=j

AEi ∩AEj . Then we can write

β = a1E1 + a2E2 + · · ·+ aj−1Ej−1 + aj+1Ej+1 + · · ·+ anEn = ajEj .
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So we get a1E1 + a2E2 + · · ·+ aj−1Ej−1− ajEj + aj+1Ej+1 + · · ·+ anEn = 0.
Here for 1 ≤ i ≤ n, all ai’s must be zero because of the linearly independence
of the vectors E1, E2, · · · , En. Thus β must be zero. Then since the following
conditions are satisfied:

i) M = AE1 + AE2 + · · ·+ AEn

ii)
∑
i6=j

AEi ∩AEj = {0}.

We can say M = AE1 ⊕AE2 ⊕ · · · ⊕AEn. Now we show that for 1 ≤ i ≤ n,
all functions fi : A→ AEi are isomorphisms. For every X,Y ∈ A,

fi(X + Y ) = (X + Y )Ei = XEi + Y Ei = fi(X) + fi(Y )

and also for every X ∈ A and for every λ ∈ R,

fi(λX) = (λX)Ei = λ(XEi) = λfi(X).

So each fi preserves the operations. Let fi(X) = fi(Y ) for some X,Y ∈ A. So
we get XEi = Y Ei and hence (X−Y )Ei = 0. By using the linear independence
of the vectors Ei for 1 ≤ i ≤ n,

X − Y = 0 and hence X = Y

is obtained. Thus for 1 ≤ i ≤ n, every fi is one-to-one. For every XEi ∈ AEi,
there is obviously an X ∈ A such that f(X) = XEi. Thus for 1 ≤ i ≤ n,
every fi is onto.

Conversely let M be a finite dimensional A−space over the local ring A.
Now we show that M is a finite dimensional free module. Since M is an
A−space, there are the vectors E1, E2, · · · , En, and they form a finite basis of
M . So M is a finite dimensional free module.
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