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Abstract

In this paper, we consider graded near-rings over a monoid G as
generalizations of graded rings over groups, and study some of their basic
properties. We give some examples of graded near-rings having various
interesting properties, and we define and study the G°P-graded ring
associated to a G-graded abelian near-ring, where G is a left cancellative
monoid and G°? is its opposite monoid. We also compute the graded ring
associated to the graded near-ring of polynomials (over a commutative
ring R) whose constant term is zero.

Introduction

Near-rings are generalizations of rings: addition is not necessarily abelian and
only one distributive law holds. They arise in a natural way in the study of
mappings on groups: the set M(G) of all maps of a group (G,+) into itself
endowed with pointwise addition and composition of functions is a near-ring.
Another classic example of a near-ring is the set R[X] of all polynomials over a
commutative ring R with respect to addition and substitution of polynomials.

The concept of a ring graded by a group is well-known in the mathematical
literature (see, e.g., [4]). The idea of writing this paper came to us from
noticing that some important near-rings, such as the near-ring of polynomials
over a commutative ring R or the near-ring of affine maps on a vector space
V over a field K, can be naturally graded by a monoid (see Section 2 below).

Key Words: near-ring, graded near-ring, graded ring associated to a graded abelian
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Therefore, we were lead to considering graded near-rings over a monoid as
generalizations of graded rings over groups.

The paper is organized as follows. In Section 1, we present some basic
properties of near-rings graded by a monoid. In Section 2, we give some
interesting examples of graded near-rings. In Section 3, we associate to any
G-graded abelian near-ring a G°P-graded ring, where G is a left cancellative
monoid, and we compute the graded ring associated to the graded near-ring
of polynomials (over a commutative ring R) whose constant term is zero.

For general background on the theory of near-rings we refer the reader to
the monographs written by Pilz [5], Meldrum [3] and Clay [1]. We only briefly
recall some basic definitions and notations which will be used throughout the
paper.

A (right) near-ring is a set N with two binary operations + and - such
that:

(1) (N,+) is a group (not necessarily abelian), with the neutral element de-
noted by 0;

(2) (IV,-) is a semigroup;
(3) (a+b)-c=a-c+b-c forall a,b,c € N ("the right distributive law”).

If (IV, ) is a monoid, we say that N is a near-ring with identity. A subnear-ring
of a near-ring N is a subgroup M of (N, +) such that a-b € M for all a,b € M.
Any near-ring N has two important subnear-rings: No ={n € N | n-0 =0},
called the zero symmetric part of N, and N.={ne€ N |n-0=n}={n €
N |VYa € N, n-a = n}, called the constant part of N. We say that a near-
ring N is zero symmetric if N = Ny, and constant if N = N.. A near-ring
N is called abelian if the additive group (N, +) is abelian, and commutative
if the semigroup (XV,-) is abelian. If N is a near-ring, then we denote by
Ng={d e N |d(r+s)=dr+ds, forall r,s € N} the set of distributive
elements of N. If N is an abelian near-ring, then Ny is a subring of N.

If N and N’ are near-rings, then amap ¢ : N — N’ is a near-ring morphism
in case for all m,n € N we have p(m + n) = ¢(m) + ¢(n) and p(m - n) =
©(m) - ¢(n). A morphism ¢ : N — N’ of near-rings with identity is also
required to be unitary, i.e. p(1y) = 1n-.

If N is a near-ring, then a normal subgroup I of (N, +) is called an ideal
of N if:

(a) ane I, foralla €I and n € N;

(b) m(n+a)—mn eI, foralla € I and m,n € N.
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Normal subgroups I of (N, +) with (a) are called right ideals of N, and normal
subgroups I of (N, +) with (b) are called left ideals of N.

If N is a near-ring, a group (I',+) is called an N-group (or an N-near-
module) if there exists an external multiplication p: N xI' = T, (n, g) — ng
such that for all g € T an m,n € N we have

(m+n)g=mg+ng and (mn)g=m(ng).

We usually denote the N-group above as yI'. An N-subgroup of yIT' is a
subgroup A of " with nh € A for alln € N and h € A. An ideal of yT' is a
normal subgroup A of I" such that for all m € N, g € T', and § € A, we have
n(g+0) —ng € A.

1 Graded near-rings

Unless otherwise stated, G denotes a multiplicatively written monoid with
identity element e. If {N,},eq is a family of additive normal subgroups of a
near-ring IV, then we may consider their sum )} __~ Ny, i.e. the set of all finite
sums of elements of different N,’s. The sum ZOGG N, is called an internal
direct sum and we write @, N, if each element of ) _~ N, has a unique
representation as a finite sum of elements of different N,’s.

Definition 1.1. We say that a near-ring N is G-graded if there exists a family
{Ny}secc of additive normal subgroups of N such that

1) N=@&,cq No (internal direct sum);
2) NoN; C Ny, for all o,7 € G.

The set h(N) = J,cq No is the set of homogeneous elements of N. A
nonzero element n € N, is said to be homogeneous of degree o and we write
deg(n) = 0. An element n € N has a unique decomposition as n = . 1o,
with n, € N, for all ¢ € G, where the sum is finite, i.e. almost all n, are
7Z€ero.

Remark 1.2. Since N.N, C N,, we have that N, is a subnear-ring of N.

Remark 1.3. Since N.N, C N, for all ¢ € G, it follows that N, is an
Ne-subgroup of n, N forall o € G.

Definition 1.4. Let N = @, N be a G-graded near-ring and o € G.

1) An element z € N, is called o-distributive in case for any family (y,)rcqg of
finite support of homogeneous elements in N (with y, € N, for all 7 € G),
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the following distributivity condition is satisfied:

w(z yT) =Y ay,.

TeG T€G

2) The G-graded near-ring N is called o-distributive if any homogeneous ele-
ment in NV of degree o is o-distributive.

Proposition 1.5. If x € N, is o-distributive for any o € G, then x is dis-
tributive (i.e. x € Ng).

Proof. Let y = > _nyr and z = ) __ 2, be two arbitrary elements in N
(with y;, 2z, € Ny, for all 7 € G). If x € N, is o-distributive for any o € G,
then we may write

‘T(y + Z) = z(Z(yT + ZT)) = Z z(yT + ZT)
TEG TEG
- St (L) 4T )
T€G TEG TEG T€G
=xy +T=Z.
Hence x € Ny. O]

If X is a nontrivial additive subgroup of N, then we write X, = X N N,
for o € G. We say that X is G-graded in case X = __, X,. In particular,
when X is a subnear-ring, a left ideal, a right ideal, an ideal, respectively, we
obtain the notions of G-graded subnear-ring, G-graded left ideal, G-graded
right ideal, G-graded ideal, respectively. If I is a graded ideal of N, then
the factor near-ring N/I is a G-graded near-ring N/I = @__,(N/I), with
gradation defined by (N/I), = N, + I/I, for all 0 € G.

oeG

Remark 1.6. Let N = @ . N, be a G-graded near-ring and I be a normal
subgroup of (N, +). Then it is easy to see that the following assertions hold:

(a) I is a graded right ideal of N if and only if an, € I, for all a € I, n, € N,
and o € Gj

(b) T is a graded left ideal of N if and only if m,(n + a) — myn € I, for all
acl,ne N, ms, € Ny, and o € G.

(¢) I is a graded ideal of N if and only if conditions (a) and (b) from above
are satisfied.
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Remark 1.7. Let G be a group and N be a ring. Clearly, if N is a G-graded
near-ring, then N is simply a G-graded ring (see [4]).

Proposition 1.8. If N is a G-graded near-ring, then Ny is a G-graded subnear-
ring of N.

Proof. Let n € Ny, n = Zo_eg ne with n, € N, for all 0 € G. Since n0 = 0,
we have )} .o n,0=0,50n,0=0forallc € G. Hence n, € Ny forallo € G.
Therefore, n, € No N N, = (No), for all o € G. Clearly, No = . (No)o,
so Ny is a G-graded subnear-ring of N. O

Proposition 1.9. If G is a nontrivial left cancellative monoid and N is a
G-graded near-ring, then N, = 0.

Proof. Let n € N., n = ZUGG ne with n, € N, for all o € G. Since n0 = n,
we have ) 1,0 =3 ns, and thus n,0 = n, for all o € G. Hencen, € N,
for all o € G.

Let 0,7 € G, 0 # 7. Since 0 € N,, it follows that n,0 € Ny, 80 1,0 = Ny .
If 7' € G, 7 # 7, then n,0 = ngr = Ny € Nyy N Nyrw = 0, 50 1,0 = 0. But
ns0 = ng, hence n, = 0 for all o € G. Therefore, n = 0, and thus N, = 0. [

Remark 1.10. It is easy to see that any ring R may be viewed as a G-
graded ring, for any monoid G, by considering the so-called trivial grading
on R, ie. R. = R and R, = 0 for all ¢ # e in G. For near-rings, this is
not necessarily true. Indeed, if (N, +,*) is the near-ring with multiplication
defined by a % b = a, for all a,b € N (see [5, p. 8]), then N = N, and from
Proposition 1.9 it follows that there is no nontrivial grading on N by any
nontrivial monoid G.

Proposition 1.11. Let G be a nontrivial left cancellative monoid and N =
@D, cc No be a G-graded near-ring with identity 1. If every homogeneous com-
ponent of degree o of 1 is o-distributive, then 1 € N,.

Proof. Let 1 =} __~ns be the decomposition of 1 with n, € N,. Then for
any ay € Ny (A € G), we have that ax = 1-ax = ) . Noar and nyax € Noya.
For o # e, we have nyay = 0, and for o = e, we have n.ay = ay. Therefore,
if 0 # e, we have 1y (D e @) = Y yeq Noax = 0. Hence, if a = 37, ., an,
it follows that n,a = 0 for o # e. For a = 1, we obtain that n, = 0 for all
o # e. Hence 1 = n, € N,. O

Proposition 1.12. Let G be a nontrivial left cancellative monoid and N =
Doce No be a G-graded near-ring with identity 1. Then the homogeneous
component of degree e of 1 is an idempotent in N,.
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Proof. Let 1 = ZJGG ne be the decomposition of 1 with n, € N,. Then
Ne =1-n¢ =3 cNone With ngne € N, for all o € G. Then nen, = 0, for
all o # e, and n, = n2. Thus n, is an idempotent in N,. O

Proposition 1.13. Let N = @ .o No be a G-graded abelian near-ring with
identity 1. If N Ny is an ideal in y, N for all o € G, then N is e-distributive.

Proof. Let a, € N, x5, € N, and y, € N, be arbitrary homogeneous elements,
where 0,7 € G with ¢ # 7. Since n, N, is an ideal in n, N, we have
ae(zs + n) —aen € N, for all n € N. In particular, for n = y,, we obtain
ae(To + Yr) — GeYr € Ny. Since N, is an Ne-subgroup of y N (Remark 1.3),
we also have —a.x, € N,. Therefore,

ae(xo + yr) — QelYr — ATy € Ng. (1)

Since n, NV, is an ideal of n, /N and an N.-subgroup of y, N, we similarly
obtain
ae(Ty + Yr) — AeYr — Gy € Ny (2)
Hence, from (1) and (2) it follows that a.(zs 4+ yr) — aeyr — ey € N, NN, =
{0}, so
ae(xtf + Z/r) = QeXy + AeYr,

for all a. € Ne, x5, € N, and y, € N,.. Therefore, any homogeneous element
of degree e of N is e-distributive, so N is e-distributive. O

Proposition 1.14. Let N = P .o N, be a G-graded abelian near-ring. Then
N is o-distributive for all o € G if and only if N is a G-graded ring.

Proof. («<). This is clear.

(=). Let n =3} s € N, with ny € N, for all A € G. Tt is enough to prove
that n(zs +y,) = nxs + ny,, for any homogeneous elements z,,y, € N (with
0,7 € G). Since N is o-distributive for any o € G, from Proposition 1.5 it
follows that

n(zy +yr) = (Z n,\> (o +yr) = Z nx(zs + yr)
AEG

\EG
= Z(”A% +nayr) = Z NATo + Z nAYr
AEG \EG \EG
—(Z o+ (Zm o
AEG \eG
=NTs + NYr.

Hence, any n € N is distributive, so N is a G-graded ring. O
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Theorem 1.15. Let G be a finite group isomorphic to Zs and N = @ . N
be a G-graded abelian near-ring with identity 1. If n, Ny is an ideal in n N
for all o € G, then Ny is a G-graded subring of N.

Proof. Let a = dec as € Ny, with a, € N, for all 0 € G. We only have to
prove that a, € (Ny)s = NgN N, for all o € G, that is as(x+y) = asz+ asy,
for all z,y € N. It is enough to show that this equality holds when z and y
are two homogeneous elements of N, say x = x and y = y,, with A\, u € G.

Since a = ) . as € Ny, for any homogeneous elements xy,y, € N we have

a(zx +yu) = axy + ay,.
On the left-hand side we have
a(xk + y/t) = (Z aa) (IA + yu) = Z aa(IA + y#)'
ceCG oceG
On the right-hand side we have

azy + ay, = (Z ag)m + (Z ag)yu

ceG ceG

= Z AT + Z AolYpu

oeG ceG

= Z (aa‘r)\ + acryu)'

ceG

Hence, for any homogeneous elements zy,¥, € N we obtain

Z ag(a?)\ + yu) = Z(aoxx\ + aayu)- (3)

oceG P=te;
Let G = {e, 7}, where 7 # e. From Proposition 1.13, we have
e(Tx + Yu) = aex + aeypu- (4)
From (3) and (4), it follows that
ar(Tx + Yu) = arTx + ary,.
Hence aq (2 +y,) = @oxr+asYy,, for all zy,y, € N, which ends the proof. [

We end this section with some considerations about the category of graded
near-rings. Let N be the category of near-rings. If G is a monoid, we denote
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by G —N the category of G-graded near-rings, in which the objects are the G-
graded near-rings and the morphisms are the near-ring morphisms ¢ : N — N’
between G-graded near-rings N and N’ such that ¢(N,) C N/. Clearly, for
G = {e}, we have G — N = N. Note that N contains, as a full subcategory,
the category of rings Ring, and G — N contains, as a full subcategory, the
category of G-graded rings G — Ring.

Proposition 1.16. The category G — N has arbitrary direct products.

Proof. Let (N;)ier be afamily of G-graded near-rings, where N; = @, c(Ni)o,
for all i € I. For every o € G, we consider the direct product [],.;(N;)s of
additive subgroups (N;), of N; (i € I). Then

v = (T )

ceG Miel

is a G-graded near-ring, which is the direct product of the family (V;);c; in
the category G — N. O

We denote the G-graded near-ring N above by Hfé ; N; and call it the
direct product of the family of G-graded near-rings (N;)ics. Note that if G is
finite or I is a finite set, then [J72, N; = [];c; Ni.

2 Examples of graded near-rings

In this section, we give some examples of graded near-rings having various
interesting properties.

Example 2.1. Let R be a commutative ring with identity and R[X] be the
set of all polynomials in one indeterminate X with coefficients in R. Then
R[X] is a zero symmetric near-ring with identity X under addition 4" and
substitution ”o” of polynomials, i.e. fog = f(g(X)) for all f,g € R[X] (see
[5]). We denote by Ro[X] the set of all polynomials over R whose constant
term is zero. Ry[X] is a subnear-ring of (R[X],+,0) and Ro[X] = (R[X])o,
the zero-symmetric part of (R[X],+,0) (see [5, Chap. 7]). If N* is the
multiplicative monoid of nonzero natural numbers, then (Ro[X],+,0) is an
N*-graded near-ring with the grading defined by (Ro[X]), = RX™", for all
n € N*. In particular, the degree 1 component is RX. We clearly have
Ro[X] = @, e+ (Ro[X])n. Since RX™ o RX™ = RX™" for all n,m € N¥,
then (Ro[X])n o (Ro[X])m C (Ro[X])nm for all n,m € N*. Moreover, for all
f € Ro[X], bX™ € RX™, and aX € RX, we have

aXo(f(X)+bX")—aXo f(X)=a(f(X)+bX")—af(X)=abX"™ € RX",

hence every rxRX™ is an ideal of gxRo[X].
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Remark 2.2. Note that the direct sum decomposition R[X] = €p,~, RX"
does not define an N*-grading on the near-ring of polynomials (R[X], +, o) if
we consider R[X]o = R and R[X], = RX™ for all n > 1, because R[X]y o
R[X], = Ro RX" C R = R[X], for all n € N*.

Example 2.3. Let V be a finitely dimensional vector space over a field K.
Recall that a map f: V — V is affine if it is the sum of a linear map and a
constant map: f = u + a, where u € Endg (V) and a € V (We identify the
constant maps on V' with the elements of V). The set M,zs(V) of all affine
maps on V is a zero symmetric near-ring under pointwise addition of functions
and composition of functions (see [5, p. 9]).

Let G2 = {0,1} be a set with two elements endowed with an additive
operation defined by

0+0=0,0+1=1,14+0=1,and 1 +1=1.

It is easy to see that (G2, +) is a commutative monoid with identity 0 and that
G5 is not left (or right) cancellative. We define a Ga-grading on the near-ring
N = M,;7(V) as follows:

N = N() @Nh where N() = EHdK(V) and N1 =V.

Clearly, Ny and N are additive subgroups of N and N = Ny + N;. Moreover,
if f € NonNNp, then f =u € Endg (V) and f =a € V, so u = a, and thus
u(z) = a for all z € V. Hence u(0) = a and, since u(0) = 0, we obtain a = 0,
which implies © = 0. Therefore, f = 0, so Ng N Ny = 0, and thus we have the
direct sum decomposition of additive groups My ss(V) = Endg (V) & V, that
is N = Ng @ N;. Let us check now that N, o N C N, ., for all o,7 € Gs.
Indeed:

o Ifu,v € Endg(V), then it is clear that uov € End(V), so Ngo Ny C Np.

e If u € Endg (V) and a € V, then (uoca)(z) =u(a) € V, for all x € V,
souoa=u(a) €V, and thus Ny o N; C Nj.

e Ifa eV and u € Endg(V), then (aou)(x) =aou(x) =a €V, for all
reV,soaou=a€V, hence Ny o Ng C Nj.

e Ifa,beV,thenaob=a€V,so NyoN; C Ny.

Therefore, N = Myr5(V) is a Ga-graded near-ring. Moreover, N = Ny & Ny
has the following properties:

(i) No = Endg (V) is a subring of N and Ny = Ny, the distributive part of
N.
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(ii) Ny =V is a subnear-ring of N and N; = N, the constant part of N.

For (i), just use the known fact that Ny = Endg (V) (see [5, Examples 1.12]).
Let us prove (ii). Since a o0 = a, for all a € V, we have V' C N.. Conversely,
if f=u+aeN=Ms(V) with v € Endg (V) and a € V, then

feN. = fol0=f = (ut+a)ol=u+a
= wuol4+aocl0=u+a
= 0O+ta=u+a
= u=0 = f=a€V,

so N. CV. Hence N. =V, and so N; = N,.

Example 2.4. Let R be a commutative ring with identity and (R[X], +, o)
be the near-ring of polynomials over R. Let (Ry[X],+,0) be the near-ring
of polynomials over R whose constant term is zero (see Example 2.1). Let
(G = {0,1},+) be the additive monoid from Example 2.3. We define a
Go-grading on the near-ring N = R[X] by

N = Ny & Ny, where Ny = Ro[X] and N; = R.
We clearly have the direct sum decomposition of additive subgroups
R[X] = Ro[X] @ R.
We check now that N, o N C Ny, for all 0,7 € Ga:
e If f=a, X"+ - +a1X,g=bn X™+ -+ b X € Ry[X], then

fog=(anX"+ - +a1X)o (b, X™+ - +bX)
=ap(bpn X"+ 0 X)" 4+ + a1 (b X"+ + 01 X) € Ro[X],

so Ng o Ng C Np.
o If f=a, X"+ - 4+ a1X € Ry[X] and r € R, then
(an X"+ +arX)or=a,m" + -+ a7 € R,
so for € R, and thus Nygo Ny C V.
e If r € Rand f € Ro[X], then 7o f =7 € R, hence Ny o Ny C Nj.
e Ifr,s€ R,thenros=1¢€ R,so Ny o N] C Nj.

Therefore, N = R[X] is a Ga-graded near-ring. Moreover, N = Ny @ N; has
the following properties:
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(i) No = Ry[X] is a subnear-ring of N and (Np)q is a ring containing (R[X])4
as a subring.

(ii) N1 = R is a subnear-ring of N and N; = N,, the constant part of N.

For the first part of (i), see [5, Chapter 7-78]); the second part of (i) is [2,
Proposition 1.1(ii)]. In [2], one can also find a description of the distribu-
tive elements of the near-rings of polynomials over a commutative ring with
identity.

We now prove (ii). Since r o0 = r, for all » € R, we have R C N.,.
Conversely, if f =a, X"+ -4+ a1 X € N = R[X], then

fEN., = fol=Ff
= (an X"+ -+ X+a)o0=a, X"+ - +a1X +ag
= aq=a, X"+ - +a1X +ag
= n=0 = f=uag€R,

so N. C R. Hence N. = R, and so N; = N..

Remark 2.5. As Examples 2.3 and 2.4 show, the condition that the nontrivial
monoid G is left cancellative is essential in Proposition 1.9. Indeed, both afore-
mentioned examples are of near-rings graded by a nontrivial monoid which is
not left (or right) cancellative, and both near-rings have nonzero constant part.

Example 2.6. Let (Zs,+) be the additive abelian group with two elements,
i.e. Zs = {0,1} with addition defined by 0+0=0,04+1=14+0=1, and
1+ 1 = 0. We shall construct a Z,-graded near-ring as follows. Let Hy and
H; be two nonzero abelian groups, and G = Hy x H; be their direct product,
which is also an abelian group. Let M(G) = {f : G — G} be the near-ring of
all maps from G to G with pointwise addition and composition of functions
(see [5, p. 8]). We consider the sets

No={f:G— G| f(xo,21) € Hy x 0}
and

Ny ={f:G— G |f(,0) €0 x Hy, f(0,z1)=(0,0),
and f(zo,z1) = f(x0,0) + f(0,21)},

which are, clearly, additive subgroups of (M (G),+). Then the sum Ny + Ny
is direct. Indeed, if f € Ny N Ny, then, for all zo € Hy and 7 € Hy, we have:

f(zo,m1) € Hyg x 0, f(x0,0) € 0x Hy, f(0,21) = (0,0),
f(zo,21) = f(20,0) + f(0,27).
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From f(xg,z1) € Hy x 0, it follows that f(z0,0) € Hy x 0. But we also have
f(x0,0) € 0 x Hy, so we obtain f(z,0) € (Hyp x0)N(0x H;) =0 x0, so
f(x0,0) = (0,0). Therefore,

f(zo,21) = f(x0,0) + f(0,21) = (0,0), for all (xg,z1) € G,

and thus f = 0. Hence Ny N Ny = 0.
Let N = Ny @ N;. Clearly, (N,+) is a subgroup of the abelian group
(M(G),+). For any f+g,f 4+ ¢ € No @ Ny, we may write

(f+g)o(f'+g)=Ffo(f +d)+go(f +4). (5)
For all (zg,21) € G = Hy x Hy, we have:
(fo(f' +9) (o, x1) = F((f' + g') (o, 21))

/(330,901 )+g (950,901))

=f(f
( Y0,0) + (0 yl))
f(yo,y ) € Hy x 0,

where f'(z0,71) = (40,0) € Ho x 0 and ¢'(zo,21) = ¢'(20,0) + ¢'(0,21) =
(0,91) 4+ (0,0) = (0,y1) € 0 x Hy. Therefore,

fo(f'+4)=he Ny, (6)
where h : G — G is defined by h(zo,z1) = f(yo,y1), for all (zq,z1) € G.
Similarly, for all (zg, 1) € G = Hp x Hy, we also have:
(g0 (f +9) (o, x1) = g((f' + ¢') (w0, 71))
=g(f'(zo, 1) + ¢ (z0,21))

= 9((40,0) + (0,31))
= g(yo,y1) € 0 x Hy,

where f/(z9,21) = (y0,0) € Hyx0and ¢’ (29, z1) = (0,y1) € 0x Hy. Therefore,

go(f'+g')=ke N, (7)

where k : G — G is defined by k(xo,x1) = g(yo,y1), for all (zg,z1) € G.
Hence, from (5), (6) and (7), it follows that (f+g)o(f'+g’) € No@ Ny, for
all f+g,f +4 € Ng® Ny, which shows that N = Ny @ N; is a subnear-ring
of M(G).
We prove now that N, o N, C Ny, for all o,7 € Zs:
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If f, f' € Ny, then, for all (zg,21) € G, we have

f(f' (o0, 21)) = f(yo,0) € Ho x 0,

where f'(x0,21) = (y0,0) € Hgx0. Hence, fof" € Ny, and so Nyo Ny
No.

N

e If f € Ny and g € Ny, then, for all (zg,21) € G, we have

Fg(wo,21)) = f(9(0,0) + g(0,21))
= f((oayl) + (050)) = f(07y1) = (070)7

where g(x0,0) = (0,y1) € 0 x Hy. Hence, fog =0, and so Ny o Ny
0C N;.

e If g € Ny and f € Ny, then, for all (zg,z1) € G, we have
9(f(zo,21)) = g(y0,0) € 0 x Hy,
where f(zo,z1) = (y0,0) € Hyx0. Thus gof € Ny, and so NyoNy C Nj.
e If g,g' € Ny, then, for all (zg,z1) € G, we have

9(d' (w0, 21)) = g(g'(0,0) + ¢'(0,21))
= g((ovyl) + (07 0)) = 9(07 yl) = (07 O)a
where ¢'(20,0) = (0,y1) € 0 x Hy. Hence, go g’ =0, and so Nj o Nj =
0C N,.
Therefore, N = Ny & N; is a Zs-graded near-ring.

Moreover, Ny is a subnear-ring of N which is not a ring, because the left
distributivity law does not hold: fo(f'+f") # fof'+fof”, for f, ', f" € Ny.
Indeed, if (zg,z1) € G is arbitrary, and if f'(zo,z1) = (y§,0) € Hp x 0 and
" (xo,21) = (y{,0) € Hy x 0, then we may write:

(f o(f'+ f”))(ﬂﬂowl) = f((fl + f”)(fo»%))
= f(f' (w0, 1) + [ (w0, 21))
= f((4,0) + (45, 0))

and

(fof + fof ) wo,z1) = f(f (zo,21)) + f(f" (20, 21))
= f(y(/)70) + f(y(’)’,O).

Since f is not an endomorphism, we have f((y},0) + (v5,0)) # f(y,0) +

f(yg,0).
Hence N = Ny ® N; is a Zs-graded near-ring which is not a Zs-graded
ring.
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3 The graded ring associated to a graded near-ring

Let N be an abelian near-ring and P = {p, | n € N} be the subset of the
ring End(N) of endomorphisms of (N, +), consisting of all right multiplication
maps on N, that is p, : N = N, p,(a) = an, for all a € N. We clearly have
that p,opm = pmn, for alln,m € N, hence P is closed under map composition.

Let A(N) be the associated ring of N, i.e. the subring of End(V) generated
by P (see [6]). Any element of A(N) is a finite sum of right multiplication
maps from P. If N has identity 1, then p, o p1 = p1 0 pp, = pp, for all n € N,
and so p; is the identity of the ring A(N).

Let G be a left cancellative monoid and N =
abelian near-ring. For any o € G, let

A(N)a:{aneP‘neNg},

finite

seq No be a G-graded

which is an additive subgroup of A(N). The sum } .

Indeed, if we consider a finite sum Y p, € A(N)s N > A(N)T), then,
n T€G, T#0
for any homogeneous element a € Ny, we may write

an(a) = Z pl’(a)a

TEN,, T#0

A(N), is direct.

and thus

;an = Z ax.

zEN,, T#0

Since the left-hand side is an element of N,, and the right-hand side is an

element of Y>> N),,, we obtain that > p,(a) =0, for all « € N,. Hence
AT, ATH#No n
> pn(a) =0, for all a € N. Therefore, > p, =0, so

A(N), N ( > A(N)T) =0, forall o € G,

TEG, T#0
hence the sum . A(N), is direct.

Theorem 3.1. If G is a left cancellative monoid and N = @
G-graded abelian near-ring, then the set

AN = @D AN,

ceG

veaNo 15 a

18 a G°P-graded ring, where G°P is the opposite monoid of G.
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Proof. We have proved above that the sum is direct. Let us consider two
finite sums Y pn € A(N), (with all n € Ny) and Y, pm € A(N)- (with all
m € N;). Then:

(Zon)o (T on) =X oo
Since for any n € N, and m € N, we have mn € N,,, it follows that
A(N), 0o A(N); C A(N),o, for all o,7 € G.

Therefore, A(N)9" is a G°P-graded ring. O

Definition 3.2. Let N = @, ., No be a G-graded abelian near-ring, where
G is a left cancellative monoid. The ring A(N)" = @ . A(N)o, from The-
orem 3.1 is called the associated graded ring of N.

Remark 3.3. The following assertions are clearly true:
(i) A(N)9" is a subring of A(N).
(ii) If N is a G-graded ring, then A(N)9" = A(N).

Let N =& N, be a G-graded abelian near-ring. For any o € G, let

oeG
END(N,+), = {f € End(N) | f(N;) € N,., for any 7 € G}

which is an additive subgroup of End(N,+). The sum . END(N,+), is
direct, and we denote it by

END(N, +) = @) END(N, +),,
e

which is a G-graded ring. Note that if G is finite, then END(N, +) = End(N, +).
We have the following inclusions (as subrings):

END(N,+) C End(N,+)
U @]
ANy < AN)

Moreover, if G is finite, then A(N)9" C A(N) N END(N, +).
, 0

Example 3.4. Consider the near-ring N = (Ro[X], ) from Example 2.1.
The associated graded ring of N is A(Ro[X])9" = €D,,~; A(Ro[X])n, with
A(Ro[X])n = {pn | n € RX"™}, where B

pn(ar X+-- ~—|—aka) = X+-- ~+aka)oX" = X" +a X+ Fap X,
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for any k > 1 and a1 X +- - +ax X* € Ro[X]. Tt follows easily that A(Ro[X])x
is isomorphic to Ro[X"], for any n > 1, where we consider X™ as an indeter-
minate. Therefore, we obtain the isomorphisms

A(Ro[X])9" =~ @RO[XH] ~ RolY]™,

n>1

where Y is an indeterminate and Ro[Y]™") denotes a direct sum of copies of
R[Y] indexed by the set of nonzero positive integers.
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