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Graded near-rings

Mariana Dumitru, Laura Năstăsescu and Bogdan Toader

Abstract

In this paper, we consider graded near-rings over a monoid G as
generalizations of graded rings over groups, and study some of their basic
properties. We give some examples of graded near-rings having various
interesting properties, and we define and study the Gop-graded ring
associated to a G-graded abelian near-ring, where G is a left cancellative
monoid and Gop is its opposite monoid. We also compute the graded ring
associated to the graded near-ring of polynomials (over a commutative
ring R) whose constant term is zero.

Introduction

Near-rings are generalizations of rings: addition is not necessarily abelian and
only one distributive law holds. They arise in a natural way in the study of
mappings on groups: the set M(G) of all maps of a group (G,+) into itself
endowed with pointwise addition and composition of functions is a near-ring.
Another classic example of a near-ring is the set R[X] of all polynomials over a
commutative ring R with respect to addition and substitution of polynomials.

The concept of a ring graded by a group is well-known in the mathematical
literature (see, e.g., [4]). The idea of writing this paper came to us from
noticing that some important near-rings, such as the near-ring of polynomials
over a commutative ring R or the near-ring of affine maps on a vector space
V over a field K, can be naturally graded by a monoid (see Section 2 below).

Key Words: near-ring, graded near-ring, graded ring associated to a graded abelian
near-ring.
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Therefore, we were lead to considering graded near-rings over a monoid as
generalizations of graded rings over groups.

The paper is organized as follows. In Section 1, we present some basic
properties of near-rings graded by a monoid. In Section 2, we give some
interesting examples of graded near-rings. In Section 3, we associate to any
G-graded abelian near-ring a Gop-graded ring, where G is a left cancellative
monoid, and we compute the graded ring associated to the graded near-ring
of polynomials (over a commutative ring R) whose constant term is zero.

For general background on the theory of near-rings we refer the reader to
the monographs written by Pilz [5], Meldrum [3] and Clay [1]. We only briefly
recall some basic definitions and notations which will be used throughout the
paper.

A (right) near-ring is a set N with two binary operations + and · such
that:

(1) (N,+) is a group (not necessarily abelian), with the neutral element de-
noted by 0;

(2) (N, ·) is a semigroup;

(3) (a+ b) · c = a · c+ b · c, for all a, b, c ∈ N (”the right distributive law”).

If (N, ·) is a monoid, we say that N is a near-ring with identity. A subnear-ring
of a near-ring N is a subgroup M of (N,+) such that a ·b ∈M for all a, b ∈M .
Any near-ring N has two important subnear-rings: N0 = {n ∈ N | n · 0 = 0},
called the zero symmetric part of N , and Nc = {n ∈ N | n · 0 = n} = {n ∈
N | ∀ a ∈ N, n · a = n}, called the constant part of N . We say that a near-
ring N is zero symmetric if N = N0, and constant if N = Nc. A near-ring
N is called abelian if the additive group (N,+) is abelian, and commutative
if the semigroup (N, ·) is abelian. If N is a near-ring, then we denote by
Nd = {d ∈ N | d(r + s) = dr + ds, for all r, s ∈ N} the set of distributive
elements of N . If N is an abelian near-ring, then Nd is a subring of N .

IfN andN ′ are near-rings, then a map ϕ : N → N ′ is a near-ring morphism
in case for all m,n ∈ N we have ϕ(m + n) = ϕ(m) + ϕ(n) and ϕ(m · n) =
ϕ(m) · ϕ(n). A morphism ϕ : N → N ′ of near-rings with identity is also
required to be unitary, i.e. ϕ(1N ) = 1N ′ .

If N is a near-ring, then a normal subgroup I of (N,+) is called an ideal
of N if:

(a) an ∈ I, for all a ∈ I and n ∈ N ;

(b) m(n+ a)−mn ∈ I, for all a ∈ I and m,n ∈ N .
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Normal subgroups I of (N,+) with (a) are called right ideals of N , and normal
subgroups I of (N,+) with (b) are called left ideals of N .

If N is a near-ring, a group (Γ,+) is called an N -group (or an N -near-
module) if there exists an external multiplication µ : N × Γ→ Γ, (n, g) 7→ ng
such that for all g ∈ Γ an m,n ∈ N we have

(m+ n)g = mg + ng and (mn)g = m(ng).

We usually denote the N -group above as NΓ. An N -subgroup of NΓ is a
subgroup ∆ of Γ with nh ∈ ∆ for all n ∈ N and h ∈ ∆. An ideal of NΓ is a
normal subgroup ∆ of Γ such that for all n ∈ N , g ∈ Γ, and δ ∈ ∆, we have
n(g + δ)− ng ∈ ∆.

1 Graded near-rings

Unless otherwise stated, G denotes a multiplicatively written monoid with
identity element e. If {Nσ}σ∈G is a family of additive normal subgroups of a
near-ring N , then we may consider their sum

∑
σ∈GNσ, i.e. the set of all finite

sums of elements of different Nσ’s. The sum
∑
σ∈GNσ is called an internal

direct sum and we write
⊕

σ∈GNσ if each element of
∑
σ∈GNσ has a unique

representation as a finite sum of elements of different Nσ’s.

Definition 1.1. We say that a near-ring N is G-graded if there exists a family
{Nσ}σ∈G of additive normal subgroups of N such that

1) N =
⊕

σ∈GNσ (internal direct sum);

2) NσNτ ⊆ Nστ , for all σ, τ ∈ G.

The set h(N) =
⋃
σ∈GNσ is the set of homogeneous elements of N . A

nonzero element n ∈ Nσ is said to be homogeneous of degree σ and we write
deg(n) = σ. An element n ∈ N has a unique decomposition as n =

∑
σ∈G nσ,

with nσ ∈ Nσ for all σ ∈ G, where the sum is finite, i.e. almost all nσ are
zero.

Remark 1.2. Since NeNe ⊆ Ne, we have that Ne is a subnear-ring of N .

Remark 1.3. Since NeNσ ⊆ Nσ for all σ ∈ G, it follows that Nσ is an
Ne-subgroup of NeN for all σ ∈ G.

Definition 1.4. Let N =
⊕

λ∈GNλ be a G-graded near-ring and σ ∈ G.

1) An element x ∈ Nσ is called σ-distributive in case for any family (yτ )τ∈G of
finite support of homogeneous elements in N (with yτ ∈ Nτ , for all τ ∈ G),
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the following distributivity condition is satisfied:

x

(∑
τ∈G

yτ

)
=
∑
τ∈G

xyτ .

2) The G-graded near-ring N is called σ-distributive if any homogeneous ele-
ment in N of degree σ is σ-distributive.

Proposition 1.5. If x ∈ Nσ is σ-distributive for any σ ∈ G, then x is dis-
tributive (i.e. x ∈ Nd).

Proof. Let y =
∑
τ∈G yτ and z =

∑
τ∈G zτ be two arbitrary elements in N

(with yτ , zτ ∈ Nτ , for all τ ∈ G). If x ∈ Nσ is σ-distributive for any σ ∈ G,
then we may write

x(y + z) = x

(∑
τ∈G

(yτ + zτ )

)
=
∑
τ∈G

x(yτ + zτ )

=
∑
τ∈G

xyτ +
∑
τ∈G

xzτ = x

(∑
τ∈G

yτ

)
+ x

(∑
τ∈G

zτ

)
= xy + xz.

Hence x ∈ Nd.

If X is a nontrivial additive subgroup of N , then we write Xσ = X ∩Nσ
for σ ∈ G. We say that X is G-graded in case X =

∑
σ∈GXσ. In particular,

when X is a subnear-ring, a left ideal, a right ideal, an ideal, respectively, we
obtain the notions of G-graded subnear-ring, G-graded left ideal, G-graded
right ideal, G-graded ideal, respectively. If I is a graded ideal of N , then
the factor near-ring N/I is a G-graded near-ring N/I =

⊕
σ∈G(N/I)σ with

gradation defined by (N/I)σ = Nσ + I/I, for all σ ∈ G.

Remark 1.6. Let N =
⊕

σ∈GNσ be a G-graded near-ring and I be a normal
subgroup of (N,+). Then it is easy to see that the following assertions hold:

(a) I is a graded right ideal of N if and only if anσ ∈ I, for all a ∈ I, nσ ∈ Nσ,
and σ ∈ G;

(b) I is a graded left ideal of N if and only if mσ(n + a) −mσn ∈ I, for all
a ∈ I, n ∈ N , mσ ∈ Nσ, and σ ∈ G.

(c) I is a graded ideal of N if and only if conditions (a) and (b) from above
are satisfied.



GRADED NEAR-RINGS 205

Remark 1.7. Let G be a group and N be a ring. Clearly, if N is a G-graded
near-ring, then N is simply a G-graded ring (see [4]).

Proposition 1.8. If N is a G-graded near-ring, then N0 is a G-graded subnear-
ring of N .

Proof. Let n ∈ N0, n =
∑
σ∈G nσ with nσ ∈ Nσ for all σ ∈ G. Since n0 = 0,

we have
∑
σ∈G nσ0 = 0, so nσ0 = 0 for all σ ∈ G. Hence nσ ∈ N0 for all σ ∈ G.

Therefore, nσ ∈ N0 ∩Nσ = (N0)σ for all σ ∈ G. Clearly, N0 =
∑
σ∈G(N0)σ,

so N0 is a G-graded subnear-ring of N .

Proposition 1.9. If G is a nontrivial left cancellative monoid and N is a
G-graded near-ring, then Nc = 0.

Proof. Let n ∈ Nc, n =
∑
σ∈G nσ with nσ ∈ Nσ for all σ ∈ G. Since n0 = n,

we have
∑
σ∈G nσ0 =

∑
σ nσ, and thus nσ0 = nσ for all σ ∈ G. Hence nσ ∈ Nc

for all σ ∈ G.
Let σ, τ ∈ G, σ 6= τ . Since 0 ∈ Nτ , it follows that nσ0 ∈ Nστ , so nσ0 = nστ .

If τ ′ ∈ G, τ ′ 6= τ , then nσ0 = nστ = nστ ′ ∈ Nστ ∩Nστ ′ = 0, so nσ0 = 0. But
nσ0 = nσ, hence nσ = 0 for all σ ∈ G. Therefore, n = 0, and thus Nc = 0.

Remark 1.10. It is easy to see that any ring R may be viewed as a G-
graded ring, for any monoid G, by considering the so-called trivial grading
on R, i.e. Re = R and Rσ = 0 for all σ 6= e in G. For near-rings, this is
not necessarily true. Indeed, if (N,+, ∗) is the near-ring with multiplication
defined by a ∗ b = a, for all a, b ∈ N (see [5, p. 8]), then N = Nc and from
Proposition 1.9 it follows that there is no nontrivial grading on N by any
nontrivial monoid G.

Proposition 1.11. Let G be a nontrivial left cancellative monoid and N =⊕
σ∈GNσ be a G-graded near-ring with identity 1. If every homogeneous com-

ponent of degree σ of 1 is σ-distributive, then 1 ∈ Ne.

Proof. Let 1 =
∑
σ∈G nσ be the decomposition of 1 with nσ ∈ Nσ. Then for

any aλ ∈ Nλ (λ ∈ G), we have that aλ = 1·aλ =
∑
σ∈G nσaλ and nσaλ ∈ Nσλ.

For σ 6= e, we have nσaλ = 0, and for σ = e, we have neaλ = aλ. Therefore,
if σ 6= e, we have nσ(

∑
λ∈G aλ) =

∑
λ∈G nσaλ = 0. Hence, if a =

∑
λ∈G aλ,

it follows that nσa = 0 for σ 6= e. For a = 1, we obtain that nσ = 0 for all
σ 6= e. Hence 1 = ne ∈ Ne.

Proposition 1.12. Let G be a nontrivial left cancellative monoid and N =⊕
σ∈GNσ be a G-graded near-ring with identity 1. Then the homogeneous

component of degree e of 1 is an idempotent in Ne.
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Proof. Let 1 =
∑
σ∈G nσ be the decomposition of 1 with nσ ∈ Nσ. Then

ne = 1 · ne =
∑
σ∈G nσne with nσne ∈ Nσ for all σ ∈ G. Then nσne = 0, for

all σ 6= e, and ne = n2
e. Thus ne is an idempotent in Ne.

Proposition 1.13. Let N =
⊕

σ∈GNσ be a G-graded abelian near-ring with
identity 1. If NeNσ is an ideal in NeN for all σ ∈ G, then N is e-distributive.

Proof. Let ae ∈ Ne, xσ ∈ Nσ and yτ ∈ Nτ be arbitrary homogeneous elements,
where σ, τ ∈ G with σ 6= τ . Since Ne Nσ is an ideal in Ne N , we have
ae(xσ + n) − aen ∈ Nσ for all n ∈ N . In particular, for n = yτ , we obtain
ae(xσ + yτ )− aeyτ ∈ Nσ. Since Nσ is an Ne-subgroup of NeN (Remark 1.3),
we also have −aexσ ∈ Nσ. Therefore,

ae(xσ + yτ )− aeyτ − aexσ ∈ Nσ. (1)

Since NeNτ is an ideal of NeN and an Ne-subgroup of NeN , we similarly
obtain

ae(xσ + yτ )− aeyτ − aexσ ∈ Nτ . (2)

Hence, from (1) and (2) it follows that ae(xσ +yτ )−aeyτ −aexσ ∈ Nσ ∩Nτ =
{0}, so

ae(xσ + yτ ) = aexσ + aeyτ ,

for all ae ∈ Ne, xσ ∈ Nσ and yτ ∈ Nτ . Therefore, any homogeneous element
of degree e of N is e-distributive, so N is e-distributive.

Proposition 1.14. Let N =
⊕

σ∈GNσ be a G-graded abelian near-ring. Then
N is σ-distributive for all σ ∈ G if and only if N is a G-graded ring.

Proof. (⇐). This is clear.

(⇒). Let n =
∑
λ∈G ∈ N , with nλ ∈ Nλ for all λ ∈ G. It is enough to prove

that n(xσ + yτ ) = nxσ +nyτ , for any homogeneous elements xσ, yτ ∈ N (with
σ, τ ∈ G). Since N is σ-distributive for any σ ∈ G, from Proposition 1.5 it
follows that

n(xσ + yτ ) =

(∑
λ∈G

nλ

)
(xσ + yτ ) =

∑
λ∈G

nλ(xσ + yτ )

=
∑
λ∈G

(nλxσ + nλyτ ) =
∑
λ∈G

nλxσ +
∑
λ∈G

nλyτ

=

(∑
λ∈G

nλ

)
xσ +

(∑
λ∈G

nλ

)
yτ

= nxσ + nyτ .

Hence, any n ∈ N is distributive, so N is a G-graded ring.
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Theorem 1.15. Let G be a finite group isomorphic to Z2 and N =
⊕

σ∈GNσ
be a G-graded abelian near-ring with identity 1. If NeNσ is an ideal in NeN
for all σ ∈ G, then Nd is a G-graded subring of N .

Proof. Let a =
∑
σ∈G aσ ∈ Nd, with aσ ∈ Nσ for all σ ∈ G. We only have to

prove that aσ ∈ (Nd)σ = Nd∩Nσ for all σ ∈ G, that is aσ(x+y) = aσx+aσy,
for all x, y ∈ N . It is enough to show that this equality holds when x and y
are two homogeneous elements of N , say x = xλ and y = yµ, with λ, µ ∈ G.
Since a =

∑
σ∈G aσ ∈ Nd, for any homogeneous elements xλ, yµ ∈ N we have

a(xλ + yµ) = axλ + ayµ.

On the left-hand side we have

a(xλ + yµ) =

(∑
σ∈G

aσ

)
(xλ + yµ) =

∑
σ∈G

aσ(xλ + yµ).

On the right-hand side we have

axλ + ayµ =

(∑
σ∈G

aσ

)
xλ +

(∑
σ∈G

aσ

)
yµ

=
∑
σ∈G

aσxλ +
∑
σ∈G

aσyµ

=
∑
σ∈G

(aσxλ + aσyµ).

Hence, for any homogeneous elements xλ, yµ ∈ N we obtain∑
σ∈G

aσ(xλ + yµ) =
∑
σ∈G

(aσxλ + aσyµ). (3)

Let G = {e, τ}, where τ 6= e. From Proposition 1.13, we have

ae(xλ + yµ) = aexλ + aeyµ. (4)

From (3) and (4), it follows that

aτ (xλ + yµ) = aτxλ + aτyµ.

Hence aσ(xλ+yµ) = aσxλ+aσyµ, for all xλ, yµ ∈ N , which ends the proof.

We end this section with some considerations about the category of graded
near-rings. Let N be the category of near-rings. If G is a monoid, we denote
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by G−N the category of G-graded near-rings, in which the objects are the G-
graded near-rings and the morphisms are the near-ring morphisms ϕ : N → N ′

between G-graded near-rings N and N ′ such that ϕ(Nσ) ⊆ N ′σ. Clearly, for
G = {e}, we have G − N = N. Note that N contains, as a full subcategory,
the category of rings Ring, and G − N contains, as a full subcategory, the
category of G-graded rings G−Ring.

Proposition 1.16. The category G−N has arbitrary direct products.

Proof. Let (Ni)i∈I be a family ofG-graded near-rings, whereNi =
⊕

σ∈G(Ni)σ,
for all i ∈ I. For every σ ∈ G, we consider the direct product

∏
i∈I(Ni)σ of

additive subgroups (Ni)σ of Ni (i ∈ I). Then

N =
⊕
σ∈G

(∏
i∈I

(Ni)σ

)
is a G-graded near-ring, which is the direct product of the family (Ni)i∈I in
the category G−N.

We denote the G-graded near-ring N above by
∏gr
i∈I Ni and call it the

direct product of the family of G-graded near-rings (Ni)i∈I . Note that if G is
finite or I is a finite set, then

∏gr
i∈I Ni =

∏
i∈I Ni.

2 Examples of graded near-rings

In this section, we give some examples of graded near-rings having various
interesting properties.

Example 2.1. Let R be a commutative ring with identity and R[X] be the
set of all polynomials in one indeterminate X with coefficients in R. Then
R[X] is a zero symmetric near-ring with identity X under addition ”+” and
substitution ”◦” of polynomials, i.e. f ◦ g = f(g(X)) for all f, g ∈ R[X] (see
[5]). We denote by R0[X] the set of all polynomials over R whose constant
term is zero. R0[X] is a subnear-ring of (R[X],+, ◦) and R0[X] = (R[X])0,
the zero-symmetric part of (R[X],+, ◦) (see [5, Chap. 7]). If N∗ is the
multiplicative monoid of nonzero natural numbers, then (R0[X],+, ◦) is an
N∗-graded near-ring with the grading defined by (R0[X])n = RXn, for all
n ∈ N∗. In particular, the degree 1 component is RX. We clearly have
R0[X] =

⊕
n∈N∗(R0[X])n. Since RXn ◦ RXm = RXnm for all n,m ∈ N∗,

then (R0[X])n ◦ (R0[X])m ⊆ (R0[X])nm for all n,m ∈ N∗. Moreover, for all
f ∈ R0[X], bXn ∈ RXn, and aX ∈ RX, we have

aX ◦ (f(X) + bXn)− aX ◦ f(X) = a(f(X) + bXn)− af(X) = abXn ∈ RXn,

hence every RXRX
n is an ideal of RXR0[X].
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Remark 2.2. Note that the direct sum decomposition R[X] =
⊕

n≥0RX
n

does not define an N∗-grading on the near-ring of polynomials (R[X],+, ◦) if
we consider R[X]0 = R and R[X]n = RXn for all n ≥ 1, because R[X]0 ◦
R[X]n = R ◦RXn ⊆ R = R[X]0 for all n ∈ N∗.

Example 2.3. Let V be a finitely dimensional vector space over a field K.
Recall that a map f : V → V is affine if it is the sum of a linear map and a
constant map: f = u + a, where u ∈ EndK(V ) and a ∈ V (We identify the
constant maps on V with the elements of V ). The set Maff (V ) of all affine
maps on V is a zero symmetric near-ring under pointwise addition of functions
and composition of functions (see [5, p. 9]).

Let G2 = {0, 1} be a set with two elements endowed with an additive
operation defined by

0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, and 1 + 1 = 1.

It is easy to see that (G2,+) is a commutative monoid with identity 0 and that
G2 is not left (or right) cancellative. We define a G2-grading on the near-ring
N = Maff (V ) as follows:

N = N0 ⊕N1, where N0 = EndK(V ) and N1 = V .

Clearly, N0 and N1 are additive subgroups of N and N = N0 +N1. Moreover,
if f ∈ N0 ∩ N1, then f = u ∈ EndK(V ) and f = a ∈ V , so u = a, and thus
u(x) = a for all x ∈ V . Hence u(0) = a and, since u(0) = 0, we obtain a = 0,
which implies u = 0. Therefore, f = 0, so N0 ∩N1 = 0, and thus we have the
direct sum decomposition of additive groups Maff (V ) = EndK(V )⊕ V , that
is N = N0 ⊕ N1. Let us check now that Nσ ◦ Nτ ⊆ Nσ+τ , for all σ, τ ∈ G2.
Indeed:

• If u, v ∈ EndK(V ), then it is clear that u◦v ∈ End(V ), so N0 ◦N0 ⊆ N0.

• If u ∈ EndK(V ) and a ∈ V , then (u ◦ a)(x) = u(a) ∈ V , for all x ∈ V ,
so u ◦ a = u(a) ∈ V , and thus N0 ◦N1 ⊆ N1.

• If a ∈ V and u ∈ EndK(V ), then (a ◦ u)(x) = a ◦ u(x) = a ∈ V , for all
x ∈ V , so a ◦ u = a ∈ V , hence N1 ◦N0 ⊆ N1.

• If a, b ∈ V , then a ◦ b = a ∈ V , so N1 ◦N1 ⊆ N1.

Therefore, N = Maff (V ) is a G2-graded near-ring. Moreover, N = N0 ⊕N1

has the following properties:

(i) N0 = EndK(V ) is a subring of N and N0 = Nd, the distributive part of
N .
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(ii) N1 = V is a subnear-ring of N and N1 = Nc, the constant part of N .

For (i), just use the known fact that Nd = EndK(V ) (see [5, Examples 1.12]).
Let us prove (ii). Since a ◦ 0 = a, for all a ∈ V , we have V ⊆ Nc. Conversely,
if f = u+ a ∈ N = Maff (V ) with u ∈ EndK(V ) and a ∈ V , then

f ∈ Nc ⇒ f ◦ 0 = f ⇒ (u+ a) ◦ 0 = u+ a

⇒ u ◦ 0 + a ◦ 0 = u+ a

⇒ 0 + a = u+ a

⇒ u = 0 ⇒ f = a ∈ V,

so Nc ⊆ V . Hence Nc = V , and so N1 = Nc.

Example 2.4. Let R be a commutative ring with identity and (R[X],+, ◦)
be the near-ring of polynomials over R. Let (R0[X],+, ◦) be the near-ring
of polynomials over R whose constant term is zero (see Example 2.1). Let
(G2 = {0, 1},+) be the additive monoid from Example 2.3. We define a
G2-grading on the near-ring N = R[X] by

N = N0 ⊕N1, where N0 = R0[X] and N1 = R.

We clearly have the direct sum decomposition of additive subgroups

R[X] = R0[X]⊕R.

We check now that Nσ ◦Nτ ⊆ Nσ+τ , for all σ, τ ∈ G2:

• If f = anX
n + · · ·+ a1X, g = bmX

m + · · ·+ b1X ∈ R0[X], then

f ◦ g = (anX
n + · · ·+ a1X) ◦ (bmX

m + · · ·+ b1X)

= an(bmX
m + · · ·+ b1X)n + · · ·+ a1(bmX

m + · · ·+ b1X) ∈ R0[X],

so N0 ◦N0 ⊆ N0.

• If f = anX
n + · · ·+ a1X ∈ R0[X] and r ∈ R, then

(anX
n + · · ·+ a1X) ◦ r = anr

n + · · ·+ a1r ∈ R,

so f ◦ r ∈ R, and thus N0 ◦N1 ⊆ N1.

• If r ∈ R and f ∈ R0[X], then r ◦ f = r ∈ R, hence N1 ◦N0 ⊆ N1.

• If r, s ∈ R, then r ◦ s = r ∈ R, so N1 ◦N1 ⊆ N1.

Therefore, N = R[X] is a G2-graded near-ring. Moreover, N = N0 ⊕N1 has
the following properties:
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(i) N0 = R0[X] is a subnear-ring of N and (N0)d is a ring containing (R[X])d
as a subring.

(ii) N1 = R is a subnear-ring of N and N1 = Nc, the constant part of N .

For the first part of (i), see [5, Chapter 7-78]); the second part of (i) is [2,
Proposition 1.1(ii)]. In [2], one can also find a description of the distribu-
tive elements of the near-rings of polynomials over a commutative ring with
identity.

We now prove (ii). Since r ◦ 0 = r, for all r ∈ R, we have R ⊆ Nc.
Conversely, if f = anX

n + · · ·+ a1X ∈ N = R[X], then

f ∈ Nc ⇒ f ◦ 0 = f

⇒ (anX
n + · · ·+ a1X + a0) ◦ 0 = anX

n + · · ·+ a1X + a0

⇒ a0 = anX
n + · · ·+ a1X + a0

⇒ n = 0 ⇒ f = a0 ∈ R,

so Nc ⊆ R. Hence Nc = R, and so N1 = Nc.

Remark 2.5. As Examples 2.3 and 2.4 show, the condition that the nontrivial
monoid G is left cancellative is essential in Proposition 1.9. Indeed, both afore-
mentioned examples are of near-rings graded by a nontrivial monoid which is
not left (or right) cancellative, and both near-rings have nonzero constant part.

Example 2.6. Let (Z2,+) be the additive abelian group with two elements,
i.e. Z2 = {0, 1} with addition defined by 0 + 0 = 0, 0 + 1 = 1 + 0 = 1, and
1 + 1 = 0. We shall construct a Z2-graded near-ring as follows. Let H0 and
H1 be two nonzero abelian groups, and G = H0 ×H1 be their direct product,
which is also an abelian group. Let M(G) = {f : G→ G} be the near-ring of
all maps from G to G with pointwise addition and composition of functions
(see [5, p. 8]). We consider the sets

N0 = {f : G→ G | f(x0, x1) ∈ H0 × 0}

and

N1 = {f : G→ G |f(x0, 0) ∈ 0×H1, f(0, x1) = (0, 0),

and f(x0, x1) = f(x0, 0) + f(0, x1)},

which are, clearly, additive subgroups of (M(G),+). Then the sum N0 + N1

is direct. Indeed, if f ∈ N0 ∩N1, then, for all x0 ∈ H0 and x1 ∈ H1, we have:

f(x0, x1) ∈ H0 × 0, f(x0, 0) ∈ 0×H1, f(0, x1) = (0, 0),

f(x0, x1) = f(x0, 0) + f(0, x1).
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From f(x0, x1) ∈ H0 × 0, it follows that f(x0, 0) ∈ H0 × 0. But we also have
f(x0, 0) ∈ 0 × H1, so we obtain f(x0, 0) ∈ (H0 × 0) ∩ (0 × H1) = 0 × 0, so
f(x0, 0) = (0, 0). Therefore,

f(x0, x1) = f(x0, 0) + f(0, x1) = (0, 0), for all (x0, x1) ∈ G,

and thus f = 0. Hence N0 ∩N1 = 0.
Let N = N0 ⊕ N1. Clearly, (N,+) is a subgroup of the abelian group

(M(G),+). For any f + g, f ′ + g′ ∈ N0 ⊕N1, we may write

(f + g) ◦ (f ′ + g′) = f ◦ (f ′ + g′) + g ◦ (f ′ + g′). (5)

For all (x0, x1) ∈ G = H0 ×H1, we have:(
f ◦ (f ′ + g′)

)
(x0, x1) = f

(
(f ′ + g′)(x0, x1)

)
= f

(
f ′(x0, x1) + g′(x0, x1)

)
= f

(
(y0, 0) + (0, y1)

)
= f(y0, y1) ∈ H0 × 0,

where f ′(x0, x1) = (y0, 0) ∈ H0 × 0 and g′(x0, x1) = g′(x0, 0) + g′(0, x1) =
(0, y1) + (0, 0) = (0, y1) ∈ 0×H1. Therefore,

f ◦ (f ′ + g′) = h ∈ N0, (6)

where h : G→ G is defined by h(x0, x1) = f(y0, y1), for all (x0, x1) ∈ G.
Similarly, for all (x0, x1) ∈ G = H0 ×H1, we also have:(

g ◦ (f ′ + g′)
)
(x0, x1) = g

(
(f ′ + g′)(x0, x1)

)
= g
(
f ′(x0, x1) + g′(x0, x1)

)
= g
(
(y0, 0) + (0, y1)

)
= g(y0, y1) ∈ 0×H1,

where f ′(x0, x1) = (y0, 0) ∈ H0×0 and g′(x0, x1) = (0, y1) ∈ 0×H1. Therefore,

g ◦ (f ′ + g′) = k ∈ N1, (7)

where k : G→ G is defined by k(x0, x1) = g(y0, y1), for all (x0, x1) ∈ G.
Hence, from (5), (6) and (7), it follows that (f+g)◦(f ′+g′) ∈ N0⊕N1, for

all f + g, f ′ + g′ ∈ N0 ⊕N1, which shows that N = N0 ⊕N1 is a subnear-ring
of M(G).

We prove now that Nσ ◦Nτ ⊆ Nσ+τ , for all σ, τ ∈ Z2:
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• If f, f ′ ∈ N0, then, for all (x0, x1) ∈ G, we have

f
(
f ′(x0, x1)

)
= f(y0, 0) ∈ H0 × 0,

where f ′(x0, x1) = (y0, 0) ∈ H0×0. Hence, f ◦f ′ ∈ N0, and so N0◦N0 ⊆
N0.

• If f ∈ N0 and g ∈ N1, then, for all (x0, x1) ∈ G, we have

f
(
g(x0, x1)

)
= f

(
g(x0, 0) + g(0, x1)

)
= f

(
(0, y1) + (0, 0)

)
= f(0, y1) = (0, 0),

where g(x0, 0) = (0, y1) ∈ 0 ×H1. Hence, f ◦ g = 0, and so N0 ◦ N1 =
0 ⊆ N1.

• If g ∈ N1 and f ∈ N0, then, for all (x0, x1) ∈ G, we have

g
(
f(x0, x1)

)
= g(y0, 0) ∈ 0×H1,

where f(x0, x1) = (y0, 0) ∈ H0×0. Thus g◦f ∈ N1, and so N1◦N0 ⊆ N1.

• If g, g′ ∈ N1, then, for all (x0, x1) ∈ G, we have

g
(
g′(x0, x1)

)
= g
(
g′(x0, 0) + g′(0, x1)

)
= g
(
(0, y1) + (0, 0)

)
= g(0, y1) = (0, 0),

where g′(x0, 0) = (0, y1) ∈ 0×H1. Hence, g ◦ g′ = 0, and so N1 ◦N1 =
0 ⊆ N0.

Therefore, N = N0 ⊕N1 is a Z2-graded near-ring.
Moreover, N0 is a subnear-ring of N which is not a ring, because the left

distributivity law does not hold: f ◦(f ′+f ′′) 6= f ◦f ′+f ◦f ′′, for f, f ′, f ′′ ∈ N0.
Indeed, if (x0, x1) ∈ G is arbitrary, and if f ′(x0, x1) = (y′0, 0) ∈ H0 × 0 and
f ′′(x0, x1) = (y′′0 , 0) ∈ H0 × 0, then we may write:(

f ◦ (f ′ + f ′′)
)
(x0, x1) = f

(
(f ′ + f ′′)(x0, x1)

)
= f

(
f ′(x0, x1) + f ′′(x0, x1)

)
= f

(
(y′0, 0) + (y′′0 , 0)

)
and

(f ◦ f ′ + f ◦ f ′′)(x0, x1) = f
(
f ′(x0, x1)

)
+ f

(
f ′′(x0, x1)

)
= f(y′0, 0) + f(y′′0 , 0).

Since f is not an endomorphism, we have f
(
(y′0, 0) + (y′′0 , 0)

)
6= f(y′0, 0) +

f(y′′0 , 0).
Hence N = N0 ⊕ N1 is a Z2-graded near-ring which is not a Z2-graded

ring.



GRADED NEAR-RINGS 214

3 The graded ring associated to a graded near-ring

Let N be an abelian near-ring and P = {ρn | n ∈ N} be the subset of the
ring End(N) of endomorphisms of (N,+), consisting of all right multiplication
maps on N , that is ρn : N → N , ρn(a) = an, for all a ∈ N . We clearly have
that ρn◦ρm = ρmn, for all n,m ∈ N , hence P is closed under map composition.

Let A(N) be the associated ring of N , i.e. the subring of End(N) generated
by P (see [6]). Any element of A(N) is a finite sum of right multiplication
maps from P . If N has identity 1, then ρn ◦ ρ1 = ρ1 ◦ ρn = ρn, for all n ∈ N ,
and so ρ1 is the identity of the ring A(N).

Let G be a left cancellative monoid and N =
⊕

σ∈GNσ be a G-graded
abelian near-ring. For any σ ∈ G, let

A(N)σ =

{∑
finite

ρn ∈ P
∣∣∣ n ∈ Nσ},

which is an additive subgroup of A(N). The sum
∑
σ∈GA(N)σ is direct.

Indeed, if we consider a finite sum
∑
n
ρn ∈ A(N)σ ∩

( ∑
τ∈G,τ 6=σ

A(N)τ

)
, then,

for any homogeneous element a ∈ Nλ, we may write∑
n

ρn(a) =
∑

x∈Nτ , τ 6=σ

ρx(a),

and thus ∑
n

an =
∑

x∈Nτ , τ 6=σ

ax.

Since the left-hand side is an element of Nλσ and the right-hand side is an
element of

∑
λτ, λτ 6=λσ

Nλτ , we obtain that
∑
n
ρn(a) = 0, for all a ∈ Nλ. Hence∑

n
ρn(a) = 0, for all a ∈ N . Therefore,

∑
n
ρn = 0, so

A(N)σ ∩
( ∑
τ∈G,τ 6=σ

A(N)τ

)
= 0, for all σ ∈ G,

hence the sum
∑
σ∈GA(N)σ is direct.

Theorem 3.1. If G is a left cancellative monoid and N =
⊕

σ∈GNσ is a
G-graded abelian near-ring, then the set

A(N)gr =
⊕
σ∈G

A(N)σ

is a Gop-graded ring, where Gop is the opposite monoid of G.
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Proof. We have proved above that the sum is direct. Let us consider two
finite sums

∑
n ρn ∈ A(N)σ (with all n ∈ Nσ) and

∑
m ρm ∈ A(N)τ (with all

m ∈ Nτ ). Then: (∑
n

ρn

)
◦
(∑

m

ρm

)
=
∑
m

∑
n

ρmn.

Since for any n ∈ Nσ and m ∈ Nτ we have mn ∈ Nτσ, it follows that

A(N)σ ◦A(N)τ ⊆ A(N)τσ, for all σ, τ ∈ G.

Therefore, A(N)gr is a Gop-graded ring.

Definition 3.2. Let N =
⊕

σ∈GNσ be a G-graded abelian near-ring, where
G is a left cancellative monoid. The ring A(N)gr =

⊕
σ∈GA(N)σ from The-

orem 3.1 is called the associated graded ring of N .

Remark 3.3. The following assertions are clearly true:

(i) A(N)gr is a subring of A(N).

(ii) If N is a G-graded ring, then A(N)gr = A(N).

Let N =
⊕

σ∈GNσ be a G-graded abelian near-ring. For any σ ∈ G, let

END(N,+)σ = {f ∈ End(N) | f(Nτ ) ⊆ Nστ , for any τ ∈ G}

which is an additive subgroup of End(N,+). The sum
∑
σ∈G END(N,+)σ is

direct, and we denote it by

END(N,+) =
⊕
σ∈G

END(N,+)σ,

which is aG-graded ring. Note that ifG is finite, then END(N,+) = End(N,+).
We have the following inclusions (as subrings):

END(N,+) ⊆ End(N,+)
∪ ∪

A(N)gr ⊆ A(N)

Moreover, if G is finite, then A(N)gr ⊆ A(N) ∩ END(N,+).

Example 3.4. Consider the near-ring N = (R0[X],+, ◦) from Example 2.1.
The associated graded ring of N is A(R0[X])gr =

⊕
n≥1A(R0[X])n, with

A(R0[X])n = {ρn | n ∈ RXn}, where

ρn(a1X+· · ·+akXk) = (a1X+· · ·+akXk)◦Xn = a1X
n+a2X

2n+· · ·+akXkn,



GRADED NEAR-RINGS 216

for any k ≥ 1 and a1X+ · · ·+akX
k ∈ R0[X]. It follows easily that A(R0[X])n

is isomorphic to R0[Xn], for any n ≥ 1, where we consider Xn as an indeter-
minate. Therefore, we obtain the isomorphisms

A(R0[X])gr '
⊕
n≥1

R0[Xn] ' R0[Y ](N
∗),

where Y is an indeterminate and R0[Y ](N
∗) denotes a direct sum of copies of

R[Y ] indexed by the set of nonzero positive integers.
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