

VERSITA Vol. 24(1),2016, 201–216

Graded near-rings

Mariana Dumitru, Laura Năstăsescu and Bogdan Toader

Abstract

In this paper, we consider graded near-rings over a monoid G as generalizations of graded rings over groups, and study some of their basic properties. We give some examples of graded near-rings having various interesting properties, and we define and study the G^{op} -graded ring associated to a G-graded abelian near-ring, where G is a left cancellative monoid and G^{op} is its opposite monoid. We also compute the graded ring associated to the graded near-ring of polynomials (over a commutative ring R) whose constant term is zero.

Introduction

Near-rings are generalizations of rings: addition is not necessarily abelian and only one distributive law holds. They arise in a natural way in the study of mappings on groups: the set M(G) of all maps of a group (G, +) into itself endowed with pointwise addition and composition of functions is a near-ring. Another classic example of a near-ring is the set R[X] of all polynomials over a commutative ring R with respect to addition and substitution of polynomials.

The concept of a ring graded by a group is well-known in the mathematical literature (see, e.g., [4]). The idea of writing this paper came to us from noticing that some important near-rings, such as the near-ring of polynomials over a commutative ring R or the near-ring of affine maps on a vector space V over a field K, can be naturally graded by a monoid (see Section 2 below).

Key Words: near-ring, graded near-ring, graded ring associated to a graded abelian near-ring.

²⁰¹⁰ Mathematics Subject Classification: 16Y30.

Received: 12.08.2014

Accepted: 10.09.2014

Therefore, we were lead to considering graded near-rings over a monoid as generalizations of graded rings over groups.

The paper is organized as follows. In Section 1, we present some basic properties of near-rings graded by a monoid. In Section 2, we give some interesting examples of graded near-rings. In Section 3, we associate to any G-graded abelian near-ring a G^{op} -graded ring, where G is a left cancellative monoid, and we compute the graded ring associated to the graded near-ring of polynomials (over a commutative ring R) whose constant term is zero.

For general background on the theory of near-rings we refer the reader to the monographs written by Pilz [5], Meldrum [3] and Clay [1]. We only briefly recall some basic definitions and notations which will be used throughout the paper.

A (right) near-ring is a set N with two binary operations + and \cdot such that:

- (1) (N, +) is a group (not necessarily abelian), with the neutral element denoted by 0;
- (2) (N, \cdot) is a semigroup;
- (3) $(a+b) \cdot c = a \cdot c + b \cdot c$, for all $a, b, c \in N$ ("the right distributive law").

If (N, \cdot) is a monoid, we say that N is a near-ring with identity. A subnear-ring of a near-ring N is a subgroup M of (N, +) such that $a \cdot b \in M$ for all $a, b \in M$. Any near-ring N has two important subnear-rings: $N_0 = \{n \in N \mid n \cdot 0 = 0\}$, called the zero symmetric part of N, and $N_c = \{n \in N \mid n \cdot 0 = n\} = \{n \in N \mid \forall a \in N, n \cdot a = n\}$, called the constant part of N. We say that a nearring N is zero symmetric if $N = N_0$, and constant if $N = N_c$. A near-ring N is called abelian if the additive group (N, +) is abelian, and commutative if the semigroup (N, \cdot) is abelian. If N is a near-ring, then we denote by $N_d = \{d \in N \mid d(r + s) = dr + ds$, for all $r, s \in N\}$ the set of distributive elements of N. If N is an abelian near-ring, then N_d is a subring of N.

If N and N' are near-rings, then a map $\varphi : N \to N'$ is a *near-ring morphism* in case for all $m, n \in N$ we have $\varphi(m+n) = \varphi(m) + \varphi(n)$ and $\varphi(m \cdot n) = \varphi(m) \cdot \varphi(n)$. A morphism $\varphi : N \to N'$ of near-rings with identity is also required to be unitary, i.e. $\varphi(1_N) = 1_{N'}$.

If N is a near-ring, then a normal subgroup I of (N, +) is called an *ideal* of N if:

- (a) $an \in I$, for all $a \in I$ and $n \in N$;
- (b) $m(n+a) mn \in I$, for all $a \in I$ and $m, n \in N$.

Normal subgroups I of (N, +) with (a) are called *right ideals* of N, and normal subgroups I of (N, +) with (b) are called *left ideals* of N.

If N is a near-ring, a group $(\Gamma, +)$ is called an N-group (or an N-nearmodule) if there exists an external multiplication $\mu : N \times \Gamma \to \Gamma$, $(n, g) \mapsto ng$ such that for all $g \in \Gamma$ an $m, n \in N$ we have

$$(m+n)g = mg + ng$$
 and $(mn)g = m(ng)$.

We usually denote the N-group above as ${}_{N}\Gamma$. An N-subgroup of ${}_{N}\Gamma$ is a subgroup Δ of Γ with $nh \in \Delta$ for all $n \in N$ and $h \in \Delta$. An *ideal* of ${}_{N}\Gamma$ is a normal subgroup Δ of Γ such that for all $n \in N$, $g \in \Gamma$, and $\delta \in \Delta$, we have $n(g + \delta) - ng \in \Delta$.

1 Graded near-rings

Unless otherwise stated, G denotes a multiplicatively written monoid with identity element e. If $\{N_{\sigma}\}_{\sigma \in G}$ is a family of additive normal subgroups of a near-ring N, then we may consider their sum $\sum_{\sigma \in G} N_{\sigma}$, i.e. the set of all finite sums of elements of different N_{σ} 's. The sum $\sum_{\sigma \in G} N_{\sigma}$ is called an *internal direct sum* and we write $\bigoplus_{\sigma \in G} N_{\sigma}$ if each element of $\sum_{\sigma \in G} N_{\sigma}$ has a unique representation as a finite sum of elements of different N_{σ} 's.

Definition 1.1. We say that a near-ring N is *G*-graded if there exists a family $\{N_{\sigma}\}_{\sigma \in G}$ of additive normal subgroups of N such that

- 1) $N = \bigoplus_{\sigma \in G} N_{\sigma}$ (internal direct sum);
- 2) $N_{\sigma}N_{\tau} \subseteq N_{\sigma\tau}$, for all $\sigma, \tau \in G$.

The set $h(N) = \bigcup_{\sigma \in G} N_{\sigma}$ is the set of homogeneous elements of N. A nonzero element $n \in N_{\sigma}$ is said to be homogeneous of degree σ and we write $\deg(n) = \sigma$. An element $n \in N$ has a unique decomposition as $n = \sum_{\sigma \in G} n_{\sigma}$, with $n_{\sigma} \in N_{\sigma}$ for all $\sigma \in G$, where the sum is finite, i.e. almost all n_{σ} are zero.

Remark 1.2. Since $N_e N_e \subseteq N_e$, we have that N_e is a subnear-ring of N.

Remark 1.3. Since $N_e N_{\sigma} \subseteq N_{\sigma}$ for all $\sigma \in G$, it follows that N_{σ} is an N_e -subgroup of $N_e N$ for all $\sigma \in G$.

Definition 1.4. Let $N = \bigoplus_{\lambda \in G} N_{\lambda}$ be a *G*-graded near-ring and $\sigma \in G$.

1) An element $x \in N_{\sigma}$ is called σ -distributive in case for any family $(y_{\tau})_{\tau \in G}$ of finite support of homogeneous elements in N (with $y_{\tau} \in N_{\tau}$, for all $\tau \in G$),

the following distributivity condition is satisfied:

$$x\left(\sum_{\tau\in G} y_{\tau}\right) = \sum_{\tau\in G} xy_{\tau}.$$

2) The G-graded near-ring N is called σ -distributive if any homogeneous element in N of degree σ is σ -distributive.

Proposition 1.5. If $x \in N_{\sigma}$ is σ -distributive for any $\sigma \in G$, then x is distributive (i.e. $x \in N_d$).

Proof. Let $y = \sum_{\tau \in G} y_{\tau}$ and $z = \sum_{\tau \in G} z_{\tau}$ be two arbitrary elements in N (with $y_{\tau}, z_{\tau} \in N_{\tau}$, for all $\tau \in G$). If $x \in N_{\sigma}$ is σ -distributive for any $\sigma \in G$, then we may write

$$\begin{aligned} x(y+z) &= x \left(\sum_{\tau \in G} (y_\tau + z_\tau) \right) = \sum_{\tau \in G} x(y_\tau + z_\tau) \\ &= \sum_{\tau \in G} xy_\tau + \sum_{\tau \in G} xz_\tau = x \left(\sum_{\tau \in G} y_\tau \right) + x \left(\sum_{\tau \in G} z_\tau \right) \\ &= xy + xz. \end{aligned}$$

Hence $x \in N_d$.

If X is a nontrivial additive subgroup of N, then we write $X_{\sigma} = X \cap N_{\sigma}$ for $\sigma \in G$. We say that X is *G*-graded in case $X = \sum_{\sigma \in G} X_{\sigma}$. In particular, when X is a subnear-ring, a left ideal, a right ideal, an ideal, respectively, we obtain the notions of *G*-graded subnear-ring, *G*-graded left ideal, *G*-graded right ideal, *G*-graded ideal, respectively. If I is a graded ideal of N, then the factor near-ring N/I is a *G*-graded near-ring $N/I = \bigoplus_{\sigma \in G} (N/I)_{\sigma}$ with gradation defined by $(N/I)_{\sigma} = N_{\sigma} + I/I$, for all $\sigma \in G$.

Remark 1.6. Let $N = \bigoplus_{\sigma \in G} N_{\sigma}$ be a *G*-graded near-ring and *I* be a normal subgroup of (N, +). Then it is easy to see that the following assertions hold:

- (a) I is a graded right ideal of N if and only if $an_{\sigma} \in I$, for all $a \in I$, $n_{\sigma} \in N_{\sigma}$, and $\sigma \in G$;
- (b) I is a graded left ideal of N if and only if $m_{\sigma}(n+a) m_{\sigma}n \in I$, for all $a \in I, n \in N, m_{\sigma} \in N_{\sigma}$, and $\sigma \in G$.
- (c) I is a graded ideal of N if and only if conditions (a) and (b) from above are satisfied.

Remark 1.7. Let G be a group and N be a ring. Clearly, if N is a G-graded near-ring, then N is simply a G-graded ring (see [4]).

Proposition 1.8. If N is a G-graded near-ring, then N_0 is a G-graded subnearring of N.

Proof. Let $n \in N_0$, $n = \sum_{\sigma \in G} n_\sigma$ with $n_\sigma \in N_\sigma$ for all $\sigma \in G$. Since n0 = 0, we have $\sum_{\sigma \in G} n_\sigma 0 = 0$, so $n_\sigma 0 = 0$ for all $\sigma \in G$. Hence $n_\sigma \in N_0$ for all $\sigma \in G$. Therefore, $n_\sigma \in N_0 \cap N_\sigma = (N_0)_\sigma$ for all $\sigma \in G$. Clearly, $N_0 = \sum_{\sigma \in G} (N_0)_\sigma$, so N_0 is a G-graded subnear-ring of N.

Proposition 1.9. If G is a nontrivial left cancellative monoid and N is a G-graded near-ring, then $N_c = 0$.

Proof. Let $n \in N_c$, $n = \sum_{\sigma \in G} n_{\sigma}$ with $n_{\sigma} \in N_{\sigma}$ for all $\sigma \in G$. Since n0 = n, we have $\sum_{\sigma \in G} n_{\sigma} 0 = \sum_{\sigma} n_{\sigma}$, and thus $n_{\sigma} 0 = n_{\sigma}$ for all $\sigma \in G$. Hence $n_{\sigma} \in N_c$ for all $\sigma \in G$.

Let $\sigma, \tau \in G$, $\sigma \neq \tau$. Since $0 \in N_{\tau}$, it follows that $n_{\sigma}0 \in N_{\sigma\tau}$, so $n_{\sigma}0 = n_{\sigma\tau}$. If $\tau' \in G$, $\tau' \neq \tau$, then $n_{\sigma}0 = n_{\sigma\tau} = n_{\sigma\tau'} \in N_{\sigma\tau} \cap N_{\sigma\tau'} = 0$, so $n_{\sigma}0 = 0$. But $n_{\sigma}0 = n_{\sigma}$, hence $n_{\sigma} = 0$ for all $\sigma \in G$. Therefore, n = 0, and thus $N_c = 0$. \Box

Remark 1.10. It is easy to see that any ring R may be viewed as a G-graded ring, for any monoid G, by considering the so-called trivial grading on R, i.e. $R_e = R$ and $R_{\sigma} = 0$ for all $\sigma \neq e$ in G. For near-rings, this is not necessarily true. Indeed, if (N, +, *) is the near-ring with multiplication defined by a * b = a, for all $a, b \in N$ (see [5, p. 8]), then $N = N_c$ and from Proposition 1.9 it follows that there is no nontrivial grading on N by any nontrivial monoid G.

Proposition 1.11. Let G be a nontrivial left cancellative monoid and $N = \bigoplus_{\sigma \in G} N_{\sigma}$ be a G-graded near-ring with identity 1. If every homogeneous component of degree σ of 1 is σ -distributive, then $1 \in N_e$.

Proof. Let $1 = \sum_{\sigma \in G} n_{\sigma}$ be the decomposition of 1 with $n_{\sigma} \in N_{\sigma}$. Then for any $a_{\lambda} \in N_{\lambda}$ ($\lambda \in G$), we have that $a_{\lambda} = 1 \cdot a_{\lambda} = \sum_{\sigma \in G} n_{\sigma} a_{\lambda}$ and $n_{\sigma} a_{\lambda} \in N_{\sigma\lambda}$. For $\sigma \neq e$, we have $n_{\sigma} a_{\lambda} = 0$, and for $\sigma = e$, we have $n_e a_{\lambda} = a_{\lambda}$. Therefore, if $\sigma \neq e$, we have $n_{\sigma} (\sum_{\lambda \in G} a_{\lambda}) = \sum_{\lambda \in G} n_{\sigma} a_{\lambda} = 0$. Hence, if $a = \sum_{\lambda \in G} a_{\lambda}$, it follows that $n_{\sigma} a = 0$ for $\sigma \neq e$. For a = 1, we obtain that $n_{\sigma} = 0$ for all $\sigma \neq e$. Hence $1 = n_e \in N_e$.

Proposition 1.12. Let G be a nontrivial left cancellative monoid and $N = \bigoplus_{\sigma \in G} N_{\sigma}$ be a G-graded near-ring with identity 1. Then the homogeneous component of degree e of 1 is an idempotent in N_e .

Proof. Let $1 = \sum_{\sigma \in G} n_{\sigma}$ be the decomposition of 1 with $n_{\sigma} \in N_{\sigma}$. Then $n_e = 1 \cdot n_e = \sum_{\sigma \in G} n_{\sigma} n_e$ with $n_{\sigma} n_e \in N_{\sigma}$ for all $\sigma \in G$. Then $n_{\sigma} n_e = 0$, for all $\sigma \neq e$, and $n_e = n_e^2$. Thus n_e is an idempotent in N_e .

Proposition 1.13. Let $N = \bigoplus_{\sigma \in G} N_{\sigma}$ be a *G*-graded abelian near-ring with identity 1. If $N_e N_{\sigma}$ is an ideal in $N_e N$ for all $\sigma \in G$, then N is e-distributive.

Proof. Let $a_e \in N_e, x_\sigma \in N_\sigma$ and $y_\tau \in N_\tau$ be arbitrary homogeneous elements, where $\sigma, \tau \in G$ with $\sigma \neq \tau$. Since $N_e N_\sigma$ is an ideal in $N_e N$, we have $a_e(x_\sigma + n) - a_e n \in N_\sigma$ for all $n \in N$. In particular, for $n = y_\tau$, we obtain $a_e(x_\sigma + y_\tau) - a_e y_\tau \in N_\sigma$. Since N_σ is an N_e -subgroup of $N_e N$ (Remark 1.3), we also have $-a_e x_\sigma \in N_\sigma$. Therefore,

$$a_e(x_\sigma + y_\tau) - a_e y_\tau - a_e x_\sigma \in N_\sigma.$$
(1)

Since $_{N_e}N_{\tau}$ is an ideal of $_{N_e}N$ and an N_e -subgroup of $_{N_e}N$, we similarly obtain

$$a_e(x_\sigma + y_\tau) - a_e y_\tau - a_e x_\sigma \in N_\tau.$$
⁽²⁾

Hence, from (1) and (2) it follows that $a_e(x_{\sigma} + y_{\tau}) - a_e y_{\tau} - a_e x_{\sigma} \in N_{\sigma} \cap N_{\tau} = \{0\}$, so

$$a_e(x_\sigma + y_\tau) = a_e x_\sigma + a_e y_\tau,$$

for all $a_e \in N_e$, $x_\sigma \in N_\sigma$ and $y_\tau \in N_\tau$. Therefore, any homogeneous element of degree *e* of *N* is *e*-distributive, so *N* is *e*-distributive.

Proposition 1.14. Let $N = \bigoplus_{\sigma \in G} N_{\sigma}$ be a *G*-graded abelian near-ring. Then N is σ -distributive for all $\sigma \in G$ if and only if N is a *G*-graded ring.

Proof. (\Leftarrow). This is clear.

 (\Rightarrow) . Let $n = \sum_{\lambda \in G} \in N$, with $n_{\lambda} \in N_{\lambda}$ for all $\lambda \in G$. It is enough to prove that $n(x_{\sigma} + y_{\tau}) = nx_{\sigma} + ny_{\tau}$, for any homogeneous elements $x_{\sigma}, y_{\tau} \in N$ (with $\sigma, \tau \in G$). Since N is σ -distributive for any $\sigma \in G$, from Proposition 1.5 it follows that

$$n(x_{\sigma} + y_{\tau}) = \left(\sum_{\lambda \in G} n_{\lambda}\right)(x_{\sigma} + y_{\tau}) = \sum_{\lambda \in G} n_{\lambda}(x_{\sigma} + y_{\tau})$$
$$= \sum_{\lambda \in G} (n_{\lambda}x_{\sigma} + n_{\lambda}y_{\tau}) = \sum_{\lambda \in G} n_{\lambda}x_{\sigma} + \sum_{\lambda \in G} n_{\lambda}y_{\tau}$$
$$= \left(\sum_{\lambda \in G} n_{\lambda}\right)x_{\sigma} + \left(\sum_{\lambda \in G} n_{\lambda}\right)y_{\tau}$$
$$= nx_{\sigma} + ny_{\tau}.$$

Hence, any $n \in N$ is distributive, so N is a G-graded ring.

Theorem 1.15. Let G be a finite group isomorphic to \mathbb{Z}_2 and $N = \bigoplus_{\sigma \in G} N_{\sigma}$ be a G-graded abelian near-ring with identity 1. If $N_e N_\sigma$ is an ideal in $N_e N_\sigma$ for all $\sigma \in G$, then N_d is a G-graded subring of N.

Proof. Let $a = \sum_{\sigma \in G} a_{\sigma} \in N_d$, with $a_{\sigma} \in N_{\sigma}$ for all $\sigma \in G$. We only have to prove that $a_{\sigma} \in (N_d)_{\sigma} = N_d \cap N_{\sigma}$ for all $\sigma \in G$, that is $a_{\sigma}(x+y) = a_{\sigma}x + a_{\sigma}y$, for all $x, y \in N$. It is enough to show that this equality holds when x and y are two homogeneous elements of N, say $x = x_{\lambda}$ and $y = y_{\mu}$, with $\lambda, \mu \in G$. Since $a = \sum_{\sigma \in G} a_{\sigma} \in N_d$, for any homogeneous elements $x_{\lambda}, y_{\mu} \in N$ we have

$$a(x_{\lambda} + y_{\mu}) = ax_{\lambda} + ay_{\mu}.$$

On the left-hand side we have

$$a(x_{\lambda} + y_{\mu}) = \left(\sum_{\sigma \in G} a_{\sigma}\right)(x_{\lambda} + y_{\mu}) = \sum_{\sigma \in G} a_{\sigma}(x_{\lambda} + y_{\mu}).$$

On the right-hand side we have

$$ax_{\lambda} + ay_{\mu} = \left(\sum_{\sigma \in G} a_{\sigma}\right) x_{\lambda} + \left(\sum_{\sigma \in G} a_{\sigma}\right) y_{\mu}$$
$$= \sum_{\sigma \in G} a_{\sigma} x_{\lambda} + \sum_{\sigma \in G} a_{\sigma} y_{\mu}$$
$$= \sum_{\sigma \in G} (a_{\sigma} x_{\lambda} + a_{\sigma} y_{\mu}).$$

Hence, for any homogeneous elements $x_{\lambda}, y_{\mu} \in N$ we obtain

$$\sum_{\sigma \in G} a_{\sigma}(x_{\lambda} + y_{\mu}) = \sum_{\sigma \in G} (a_{\sigma}x_{\lambda} + a_{\sigma}y_{\mu}).$$
(3)

Let $G = \{e, \tau\}$, where $\tau \neq e$. From Proposition 1.13, we have

$$a_e(x_\lambda + y_\mu) = a_e x_\lambda + a_e y_\mu. \tag{4}$$

From (3) and (4), it follows that

$$a_{\tau}(x_{\lambda} + y_{\mu}) = a_{\tau}x_{\lambda} + a_{\tau}y_{\mu}.$$

Hence $a_{\sigma}(x_{\lambda}+y_{\mu}) = a_{\sigma}x_{\lambda}+a_{\sigma}y_{\mu}$, for all $x_{\lambda}, y_{\mu} \in N$, which ends the proof. \Box

We end this section with some considerations about the category of graded near-rings. Let \mathcal{N} be the category of near-rings. If G is a monoid, we denote

by $G - \mathbb{N}$ the category of G-graded near-rings, in which the objects are the Ggraded near-rings and the morphisms are the near-ring morphisms $\varphi : \mathbb{N} \to \mathbb{N}'$ between G-graded near-rings \mathbb{N} and \mathbb{N}' such that $\varphi(\mathbb{N}_{\sigma}) \subseteq \mathbb{N}'_{\sigma}$. Clearly, for $G = \{e\}$, we have $G - \mathbb{N} = \mathbb{N}$. Note that \mathbb{N} contains, as a full subcategory, the category of rings **Ring**, and $G - \mathbb{N}$ contains, as a full subcategory, the category of G-graded rings $G - \mathbf{Ring}$.

Proposition 1.16. The category G - N has arbitrary direct products.

Proof. Let $(N_i)_{i \in I}$ be a family of *G*-graded near-rings, where $N_i = \bigoplus_{\sigma \in G} (N_i)_{\sigma}$, for all $i \in I$. For every $\sigma \in G$, we consider the direct product $\prod_{i \in I} (N_i)_{\sigma}$ of additive subgroups $(N_i)_{\sigma}$ of N_i $(i \in I)$. Then

$$N = \bigoplus_{\sigma \in G} \left(\prod_{i \in I} (N_i)_{\sigma} \right)$$

is a G-graded near-ring, which is the direct product of the family $(N_i)_{i \in I}$ in the category $G - \mathcal{N}$.

We denote the G-graded near-ring N above by $\prod_{i \in I}^{gr} N_i$ and call it the direct product of the family of G-graded near-rings $(N_i)_{i \in I}$. Note that if G is finite or I is a finite set, then $\prod_{i \in I}^{gr} N_i = \prod_{i \in I} N_i$.

2 Examples of graded near-rings

In this section, we give some examples of graded near-rings having various interesting properties.

Example 2.1. Let R be a commutative ring with identity and R[X] be the set of all polynomials in one indeterminate X with coefficients in R. Then R[X] is a zero symmetric near-ring with identity X under addition "+" and substitution " \circ " of polynomials, i.e. $f \circ g = f(g(X))$ for all $f, g \in R[X]$ (see [5]). We denote by $R_0[X]$ the set of all polynomials over R whose constant term is zero. $R_0[X]$ is a subnear-ring of $(R[X], +, \circ)$ and $R_0[X] = (R[X])_0$, the zero-symmetric part of $(R[X], +, \circ)$ (see [5, Chap. 7]). If \mathbb{N}^* is the multiplicative monoid of nonzero natural numbers, then $(R_0[X], +, \circ)$ is an \mathbb{N}^* -graded near-ring with the grading defined by $(R_0[X])_n = RX^n$, for all $n \in \mathbb{N}^*$. In particular, the degree 1 component is RX. We clearly have $R_0[X] = \bigoplus_{n \in \mathbb{N}^*} (R_0[X])_n$. Since $RX^n \circ RX^m = RX^{nm}$ for all $n, m \in \mathbb{N}^*$, then $(R_0[X])_n \circ (R_0[X])_m \subseteq (R_0[X])_{nm}$ for all $n, m \in \mathbb{N}^*$. Moreover, for all $f \in R_0[X]$, $bX^n \in RX^n$, and $aX \in RX$, we have

 $aX \circ (f(X) + bX^n) - aX \circ f(X) = a(f(X) + bX^n) - af(X) = abX^n \in RX^n$, hence every $_{RX}RX^n$ is an ideal of $_{RX}R_0[X]$. **Remark 2.2.** Note that the direct sum decomposition $R[X] = \bigoplus_{n\geq 0} RX^n$ does *not* define an \mathbb{N}^* -grading on the near-ring of polynomials $(R[X], +, \circ)$ if we consider $R[X]_0 = R$ and $R[X]_n = RX^n$ for all $n \geq 1$, because $R[X]_0 \circ$ $R[X]_n = R \circ RX^n \subseteq R = R[X]_0$ for all $n \in \mathbb{N}^*$.

Example 2.3. Let V be a finitely dimensional vector space over a field K. Recall that a map $f: V \to V$ is *affine* if it is the sum of a linear map and a constant map: f = u + a, where $u \in \text{End}_K(V)$ and $a \in V$ (We identify the constant maps on V with the elements of V). The set $M_{aff}(V)$ of all affine maps on V is a zero symmetric near-ring under pointwise addition of functions and composition of functions (see [5, p. 9]).

Let $G_2 = \{0, 1\}$ be a set with two elements endowed with an additive operation defined by

$$0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, \text{ and } 1 + 1 = 1.$$

It is easy to see that $(G_2, +)$ is a commutative monoid with identity 0 and that G_2 is not left (or right) cancellative. We define a G_2 -grading on the near-ring $N = M_{aff}(V)$ as follows:

$$N = N_0 \oplus N_1$$
, where $N_0 = \operatorname{End}_K(V)$ and $N_1 = V$.

Clearly, N_0 and N_1 are additive subgroups of N and $N = N_0 + N_1$. Moreover, if $f \in N_0 \cap N_1$, then $f = u \in \operatorname{End}_K(V)$ and $f = a \in V$, so u = a, and thus u(x) = a for all $x \in V$. Hence u(0) = a and, since u(0) = 0, we obtain a = 0, which implies u = 0. Therefore, f = 0, so $N_0 \cap N_1 = 0$, and thus we have the direct sum decomposition of additive groups $M_{aff}(V) = \operatorname{End}_K(V) \oplus V$, that is $N = N_0 \oplus N_1$. Let us check now that $N_\sigma \circ N_\tau \subseteq N_{\sigma+\tau}$, for all $\sigma, \tau \in G_2$. Indeed:

- If $u, v \in \operatorname{End}_K(V)$, then it is clear that $u \circ v \in \operatorname{End}(V)$, so $N_0 \circ N_0 \subseteq N_0$.
- If $u \in \operatorname{End}_K(V)$ and $a \in V$, then $(u \circ a)(x) = u(a) \in V$, for all $x \in V$, so $u \circ a = u(a) \in V$, and thus $N_0 \circ N_1 \subseteq N_1$.
- If $a \in V$ and $u \in \operatorname{End}_K(V)$, then $(a \circ u)(x) = a \circ u(x) = a \in V$, for all $x \in V$, so $a \circ u = a \in V$, hence $N_1 \circ N_0 \subseteq N_1$.
- If $a, b \in V$, then $a \circ b = a \in V$, so $N_1 \circ N_1 \subseteq N_1$.

Therefore, $N = M_{aff}(V)$ is a G_2 -graded near-ring. Moreover, $N = N_0 \oplus N_1$ has the following properties:

(i) $N_0 = \operatorname{End}_K(V)$ is a subring of N and $N_0 = N_d$, the distributive part of N.

(ii) $N_1 = V$ is a subnear-ring of N and $N_1 = N_c$, the constant part of N.

For (i), just use the known fact that $N_d = \operatorname{End}_K(V)$ (see [5, Examples 1.12]). Let us prove (ii). Since $a \circ 0 = a$, for all $a \in V$, we have $V \subseteq N_c$. Conversely, if $f = u + a \in N = M_{aff}(V)$ with $u \in \operatorname{End}_K(V)$ and $a \in V$, then

$$f \in N_c \quad \Rightarrow \quad f \circ 0 = f \quad \Rightarrow \quad (u+a) \circ 0 = u+a$$

$$\Rightarrow \quad u \circ 0 + a \circ 0 = u + a$$

$$\Rightarrow \quad 0 + a = u + a$$

$$\Rightarrow \quad u = 0 \quad \Rightarrow \quad f = a \in V,$$

so $N_c \subseteq V$. Hence $N_c = V$, and so $N_1 = N_c$.

Example 2.4. Let R be a commutative ring with identity and $(R[X], +, \circ)$ be the near-ring of polynomials over R. Let $(R_0[X], +, \circ)$ be the near-ring of polynomials over R whose constant term is zero (see Example 2.1). Let $(G_2 = \{0, 1\}, +)$ be the additive monoid from Example 2.3. We define a G_2 -grading on the near-ring N = R[X] by

$$N = N_0 \oplus N_1$$
, where $N_0 = R_0[X]$ and $N_1 = R$.

We clearly have the direct sum decomposition of additive subgroups

$$R[X] = R_0[X] \oplus R.$$

We check now that $N_{\sigma} \circ N_{\tau} \subseteq N_{\sigma+\tau}$, for all $\sigma, \tau \in G_2$:

• If $f = a_n X^n + \dots + a_1 X, g = b_m X^m + \dots + b_1 X \in R_0[X]$, then $f \circ g = (a_n X^n + \dots + a_1 X) \circ (b_m X^m + \dots + b_1 X)$ $= a_n (b_m X^m + \dots + b_1 X)^n + \dots + a_1 (b_m X^m + \dots + b_1 X) \in R_0[X],$

so $N_0 \circ N_0 \subseteq N_0$.

• If $f = a_n X^n + \dots + a_1 X \in R_0[X]$ and $r \in R$, then

$$(a_n X^n + \dots + a_1 X) \circ r = a_n r^n + \dots + a_1 r \in R,$$

so $f \circ r \in R$, and thus $N_0 \circ N_1 \subseteq N_1$.

- If $r \in R$ and $f \in R_0[X]$, then $r \circ f = r \in R$, hence $N_1 \circ N_0 \subseteq N_1$.
- If $r, s \in R$, then $r \circ s = r \in R$, so $N_1 \circ N_1 \subseteq N_1$.

Therefore, N = R[X] is a G_2 -graded near-ring. Moreover, $N = N_0 \oplus N_1$ has the following properties:

- (i) $N_0 = R_0[X]$ is a subnear-ring of N and $(N_0)_d$ is a ring containing $(R[X])_d$ as a subring.
- (ii) $N_1 = R$ is a subnear-ring of N and $N_1 = N_c$, the constant part of N.

For the first part of (i), see [5, Chapter 7-78]); the second part of (i) is [2, Proposition 1.1(ii)]. In [2], one can also find a description of the distributive elements of the near-rings of polynomials over a commutative ring with identity.

We now prove (ii). Since $r \circ 0 = r$, for all $r \in R$, we have $R \subseteq N_c$. Conversely, if $f = a_n X^n + \cdots + a_1 X \in N = R[X]$, then

$$\begin{aligned} f \in N_c &\Rightarrow f \circ 0 = f \\ &\Rightarrow (a_n X^n + \dots + a_1 X + a_0) \circ 0 = a_n X^n + \dots + a_1 X + a_0 \\ &\Rightarrow a_0 = a_n X^n + \dots + a_1 X + a_0 \\ &\Rightarrow n = 0 \Rightarrow f = a_0 \in R, \end{aligned}$$

so $N_c \subseteq R$. Hence $N_c = R$, and so $N_1 = N_c$.

Remark 2.5. As Examples 2.3 and 2.4 show, the condition that the nontrivial monoid G is left cancellative is essential in Proposition 1.9. Indeed, both aforementioned examples are of near-rings graded by a nontrivial monoid which is not left (or right) cancellative, and both near-rings have nonzero constant part.

Example 2.6. Let $(\mathbb{Z}_2, +)$ be the additive abelian group with two elements, i.e. $\mathbb{Z}_2 = \{0, 1\}$ with addition defined by 0 + 0 = 0, 0 + 1 = 1 + 0 = 1, and 1 + 1 = 0. We shall construct a \mathbb{Z}_2 -graded near-ring as follows. Let H_0 and H_1 be two nonzero abelian groups, and $G = H_0 \times H_1$ be their direct product, which is also an abelian group. Let $M(G) = \{f : G \to G\}$ be the near-ring of all maps from G to G with pointwise addition and composition of functions (see [5, p. 8]). We consider the sets

$$N_0 = \{ f : G \to G \mid f(x_0, x_1) \in H_0 \times 0 \}$$

and

$$N_1 = \{ f : G \to G \mid f(x_0, 0) \in 0 \times H_1, \ f(0, x_1) = (0, 0), \\ \text{and} \ f(x_0, x_1) = f(x_0, 0) + f(0, x_1) \},$$

which are, clearly, additive subgroups of (M(G), +). Then the sum $N_0 + N_1$ is direct. Indeed, if $f \in N_0 \cap N_1$, then, for all $x_0 \in H_0$ and $x_1 \in H_1$, we have:

$$f(x_0, x_1) \in H_0 \times 0, \quad f(x_0, 0) \in 0 \times H_1, \quad f(0, x_1) = (0, 0),$$

$$f(x_0, x_1) = f(x_0, 0) + f(0, x_1).$$

From $f(x_0, x_1) \in H_0 \times 0$, it follows that $f(x_0, 0) \in H_0 \times 0$. But we also have $f(x_0, 0) \in 0 \times H_1$, so we obtain $f(x_0, 0) \in (H_0 \times 0) \cap (0 \times H_1) = 0 \times 0$, so $f(x_0, 0) = (0, 0)$. Therefore,

$$f(x_0, x_1) = f(x_0, 0) + f(0, x_1) = (0, 0)$$
, for all $(x_0, x_1) \in G$,

and thus f = 0. Hence $N_0 \cap N_1 = 0$.

Let $N = N_0 \oplus N_1$. Clearly, (N, +) is a subgroup of the abelian group (M(G), +). For any $f + g, f' + g' \in N_0 \oplus N_1$, we may write

$$(f+g) \circ (f'+g') = f \circ (f'+g') + g \circ (f'+g').$$
(5)

For all $(x_0, x_1) \in G = H_0 \times H_1$, we have:

$$(f \circ (f' + g'))(x_0, x_1) = f((f' + g')(x_0, x_1)) = f(f'(x_0, x_1) + g'(x_0, x_1)) = f((y_0, 0) + (0, y_1)) = f(y_0, y_1) \in H_0 \times 0,$$

where $f'(x_0, x_1) = (y_0, 0) \in H_0 \times 0$ and $g'(x_0, x_1) = g'(x_0, 0) + g'(0, x_1) = (0, y_1) + (0, 0) = (0, y_1) \in 0 \times H_1$. Therefore,

$$f \circ (f' + g') = h \in N_0, \tag{6}$$

where $h: G \to G$ is defined by $h(x_0, x_1) = f(y_0, y_1)$, for all $(x_0, x_1) \in G$. Similarly, for all $(x_0, x_1) \in G = H_0 \times H_1$, we also have:

$$(g \circ (f' + g'))(x_0, x_1) = g((f' + g')(x_0, x_1)) = g(f'(x_0, x_1) + g'(x_0, x_1)) = g((y_0, 0) + (0, y_1)) = g(y_0, y_1) \in 0 \times H_1,$$

where $f'(x_0, x_1) = (y_0, 0) \in H_0 \times 0$ and $g'(x_0, x_1) = (0, y_1) \in 0 \times H_1$. Therefore,

$$g \circ (f' + g') = k \in N_1, \tag{7}$$

where $k: G \to G$ is defined by $k(x_0, x_1) = g(y_0, y_1)$, for all $(x_0, x_1) \in G$.

Hence, from (5), (6) and (7), it follows that $(f+g) \circ (f'+g') \in N_0 \oplus N_1$, for all $f+g, f'+g' \in N_0 \oplus N_1$, which shows that $N = N_0 \oplus N_1$ is a subnear-ring of M(G).

We prove now that $N_{\sigma} \circ N_{\tau} \subseteq N_{\sigma+\tau}$, for all $\sigma, \tau \in \mathbb{Z}_2$:

• If $f, f' \in N_0$, then, for all $(x_0, x_1) \in G$, we have

$$f(f'(x_0, x_1)) = f(y_0, 0) \in H_0 \times 0,$$

where $f'(x_0, x_1) = (y_0, 0) \in H_0 \times 0$. Hence, $f \circ f' \in N_0$, and so $N_0 \circ N_0 \subseteq N_0$.

• If $f \in N_0$ and $g \in N_1$, then, for all $(x_0, x_1) \in G$, we have

$$f(g(x_0, x_1)) = f(g(x_0, 0) + g(0, x_1))$$

= $f((0, y_1) + (0, 0)) = f(0, y_1) = (0, 0),$

where $g(x_0, 0) = (0, y_1) \in 0 \times H_1$. Hence, $f \circ g = 0$, and so $N_0 \circ N_1 = 0 \subseteq N_1$.

• If $g \in N_1$ and $f \in N_0$, then, for all $(x_0, x_1) \in G$, we have

$$g(f(x_0, x_1)) = g(y_0, 0) \in 0 \times H_1,$$

where $f(x_0, x_1) = (y_0, 0) \in H_0 \times 0$. Thus $g \circ f \in N_1$, and so $N_1 \circ N_0 \subseteq N_1$.

• If $g, g' \in N_1$, then, for all $(x_0, x_1) \in G$, we have

$$g(g'(x_0, x_1)) = g(g'(x_0, 0) + g'(0, x_1))$$

= $g((0, y_1) + (0, 0)) = g(0, y_1) = (0, 0),$

where $g'(x_0, 0) = (0, y_1) \in 0 \times H_1$. Hence, $g \circ g' = 0$, and so $N_1 \circ N_1 = 0 \subseteq N_0$.

Therefore, $N = N_0 \oplus N_1$ is a \mathbb{Z}_2 -graded near-ring.

Moreover, N_0 is a subnear-ring of N which is not a ring, because the left distributivity law does not hold: $f \circ (f' + f'') \neq f \circ f' + f \circ f''$, for $f, f', f'' \in N_0$. Indeed, if $(x_0, x_1) \in G$ is arbitrary, and if $f'(x_0, x_1) = (y'_0, 0) \in H_0 \times 0$ and $f''(x_0, x_1) = (y''_0, 0) \in H_0 \times 0$, then we may write:

$$(f \circ (f' + f''))(x_0, x_1) = f((f' + f'')(x_0, x_1)) = f(f'(x_0, x_1) + f''(x_0, x_1)) = f((y'_0, 0) + (y''_0, 0))$$

and

$$(f \circ f' + f \circ f'')(x_0, x_1) = f(f'(x_0, x_1)) + f(f''(x_0, x_1))$$

= $f(y'_0, 0) + f(y''_0, 0).$

Since f is not an endomorphism, we have $f((y'_0, 0) + (y''_0, 0)) \neq f(y'_0, 0) + f(y''_0, 0)$.

Hence $N = N_0 \oplus N_1$ is a \mathbb{Z}_2 -graded near-ring which is not a \mathbb{Z}_2 -graded ring.

3 The graded ring associated to a graded near-ring

Let N be an abelian near-ring and $P = \{\rho_n \mid n \in N\}$ be the subset of the ring $\operatorname{End}(N)$ of endomorphisms of (N, +), consisting of all right multiplication maps on N, that is $\rho_n : N \to N$, $\rho_n(a) = an$, for all $a \in N$. We clearly have that $\rho_n \circ \rho_m = \rho_{mn}$, for all $n, m \in N$, hence P is closed under map composition.

Let A(N) be the associated ring of N, i.e. the subring of End(N) generated by P (see [6]). Any element of A(N) is a finite sum of right multiplication maps from P. If N has identity 1, then $\rho_n \circ \rho_1 = \rho_1 \circ \rho_n = \rho_n$, for all $n \in N$, and so ρ_1 is the identity of the ring A(N).

Let G be a left cancellative monoid and $N = \bigoplus_{\sigma \in G} N_{\sigma}$ be a G-graded abelian near-ring. For any $\sigma \in G$, let

$$A(N)_{\sigma} = \left\{ \sum_{\text{finite}} \rho_n \in P \mid n \in N_{\sigma} \right\},\$$

which is an additive subgroup of A(N). The sum $\sum_{\sigma \in G} A(N)_{\sigma}$ is direct. Indeed, if we consider a finite sum $\sum_{n} \rho_n \in A(N)_{\sigma} \cap \left(\sum_{\tau \in G, \tau \neq \sigma} A(N)_{\tau}\right)$, then, for any homogeneous element $a \in N_{\lambda}$, we may write

$$\sum_{n} \rho_n(a) = \sum_{x \in N_\tau, \ \tau \neq \sigma} \rho_x(a),$$

and thus

$$\sum_{n} an = \sum_{x \in N_{\tau}, \, \tau \neq \sigma} ax.$$

Since the left-hand side is an element of $N_{\lambda\sigma}$ and the right-hand side is an element of $\sum_{\substack{\lambda\tau, \ \lambda\tau \neq \lambda\sigma}} N_{\lambda\tau}$, we obtain that $\sum_{n} \rho_n(a) = 0$, for all $a \in N_{\lambda}$. Hence $\sum_{n} \rho_n(a) = 0$, for all $a \in N$. Therefore, $\sum_{n} \rho_n = 0$, so $A(N)_{\sigma} \cap \left(\sum_{\tau \in G, \ \tau \neq \sigma} A(N)_{\tau}\right) = 0$, for all $\sigma \in G$,

hence the sum $\sum_{\sigma \in G} A(N)_{\sigma}$ is direct.

Theorem 3.1. If G is a left cancellative monoid and $N = \bigoplus_{\sigma \in G} N_{\sigma}$ is a G-graded abelian near-ring, then the set

$$A(N)^{gr} = \bigoplus_{\sigma \in G} A(N)_{\sigma}$$

is a G^{op} -graded ring, where G^{op} is the opposite monoid of G.

Proof. We have proved above that the sum is direct. Let us consider two finite sums $\sum_{n} \rho_n \in A(N)_{\sigma}$ (with all $n \in N_{\sigma}$) and $\sum_{m} \rho_m \in A(N)_{\tau}$ (with all $m \in N_{\tau}$). Then:

$$\left(\sum_{n} \rho_{n}\right) \circ \left(\sum_{m} \rho_{m}\right) = \sum_{m} \sum_{n} \rho_{mn}.$$

Since for any $n \in N_{\sigma}$ and $m \in N_{\tau}$ we have $mn \in N_{\tau\sigma}$, it follows that

 $A(N)_{\sigma} \circ A(N)_{\tau} \subseteq A(N)_{\tau\sigma}$, for all $\sigma, \tau \in G$.

Therefore, $A(N)^{gr}$ is a G^{op} -graded ring.

Definition 3.2. Let $N = \bigoplus_{\sigma \in G} N_{\sigma}$ be a *G*-graded abelian near-ring, where *G* is a left cancellative monoid. The ring $A(N)^{gr} = \bigoplus_{\sigma \in G} A(N)_{\sigma}$ from Theorem 3.1 is called *the associated graded ring* of *N*.

Remark 3.3. The following assertions are clearly true:

- (i) $A(N)^{gr}$ is a subring of A(N).
- (ii) If N is a G-graded ring, then $A(N)^{gr} = A(N)$.
 - Let $N = \bigoplus_{\sigma \in G} N_{\sigma}$ be a *G*-graded abelian near-ring. For any $\sigma \in G$, let

$$\mathrm{END}(N, +)_{\sigma} = \{ f \in \mathrm{End}(N) \mid f(N_{\tau}) \subseteq N_{\sigma\tau}, \text{ for any } \tau \in G \}$$

which is an additive subgroup of $\operatorname{End}(N, +)$. The sum $\sum_{\sigma \in G} \operatorname{END}(N, +)_{\sigma}$ is direct, and we denote it by

$$\operatorname{END}(N,+) = \bigoplus_{\sigma \in G} \operatorname{END}(N,+)_{\sigma},$$

which is a G-graded ring. Note that if G is finite, then END(N, +) = End(N, +). We have the following inclusions (as subrings):

$$\begin{array}{rcl} \mathrm{END}(N,+) & \subseteq & \mathrm{End}(N,+) \\ \cup & & \cup \\ A(N)^{gr} & \subseteq & A(N) \end{array}$$

Moreover, if G is finite, then $A(N)^{gr} \subseteq A(N) \cap \text{END}(N, +)$.

Example 3.4. Consider the near-ring $N = (R_0[X], +, \circ)$ from Example 2.1. The associated graded ring of N is $A(R_0[X])^{gr} = \bigoplus_{n\geq 1} A(R_0[X])_n$, with $A(R_0[X])_n = \{\rho_n \mid n \in RX^n\}$, where

$$\rho_n(a_1X + \dots + a_kX^k) = (a_1X + \dots + a_kX^k) \circ X^n = a_1X^n + a_2X^{2n} + \dots + a_kX^{kn},$$

for any $k \ge 1$ and $a_1X + \cdots + a_kX^k \in R_0[X]$. It follows easily that $A(R_0[X])_n$ is isomorphic to $R_0[X^n]$, for any $n \ge 1$, where we consider X^n as an indeterminate. Therefore, we obtain the isomorphisms

$$A(R_0[X])^{gr} \simeq \bigoplus_{n>1} R_0[X^n] \simeq R_0[Y]^{(\mathbb{N}^*)},$$

where Y is an indeterminate and $R_0[Y]^{(\mathbb{N}^*)}$ denotes a direct sum of copies of R[Y] indexed by the set of nonzero positive integers.

Acknowledgement. The work of Laura Năstăsescu was supported by grant ID_0635 (contract no. 253/15.10.2011) of the Romanian National Authority for Scientific Research (CNCS-UEFISCDI).

References

- J.R. Clay, Nearrings: Geneses and Applications, Oxford University Press, Oxford, 1992.
- [2] J. Gutierrez, C. Ruiz De Velasco Y Bellas, Distributive elements in the near-rings of polynomials, Proc. Edinburgh Math. Soc. 32 (1989), 73–80.
- [3] J.D.P. Meldrum, Near-Rings and Their Links with Groups, Pitman Publishing Co., London, 1985.
- [4] C. Năstăsescu, F. Van Oystaeyen, Methods of Graded Rings, Springer-Verlag, Berlin-Heidelberg, 2004.
- [5] G. Pilz, Near-Rings: The Theory and Its Applications, Revised Edition, North Holland Publishing Co., Amsterdam, 1983.
- [6] K.C. Smith, A ring associated with a near-ring, J. Algebra 182 (1996), 329–339.

Mariana DUMITRU, Faculty of Navigation and Naval Transport, Maritime University of Constanța, Str. Mircea cel Bătrân 104, RO–900663 Constanța, Romania. E-mail: darianax@gmail.com

Laura NĂSTĂSESCU, Algebra and Number Theory Research Center, University of Bucharest, Str. Academiei 14, RO–010014 Bucharest 1, Romania. E-mail: lauranastasescu@gmail.com

Bogdan TOADER, Faculty of Tourism and Commercial Management, "Dimitrie Cantemir" Christian University, Splaiul Unirii 176, RO–030134 Bucharest 4, Romania. E-mail: bogdantd@yahoo.com