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Construction of composition (m,n, k)-hyperrings

B. Davvaz, N. Rakhsh-Khorshid and K. P. Shum

Abstract

In this paper, our aim is to introduce the notion of a composi-
tion (m,n, k)-hyperring and to analyze its properties. We also consider
the algebraic structure of (m,n, k) hyperrings which is a generalization
of composition rings and composition hyperrings. Also, the isomor-
phism theorems of ring theory are derived in the context of composition
(m, n, k)-hyperrings.

1 Introduction

We first consider several definitions for a hyperring by replacing at least one
of the two operations by hyperoperations. A well known type of a hyper-
ring which is called the Krasner hyperring [8] is obtained by considering the
addition as a hyperoperation such that the structure (R,+) is a canonical
hypergroup. A comprehensive review of the theory of hyperrings appears in
[4]. Based on the notion of a composition ring introduced by Adler [1] in [2].
Crista and Janci¢-Rasovi¢ defined the concept of a composition hyperring as
a quadruple (R, +,-,0) such that (R, +,-) is a commutative hyperring in the
general sense and the composition hyperoperation o is an associative hyper-
operation which is distributive to the right side with respect to the addition
and multiplication.

A suitable generalization of a hypergroup which is called an n-hypergroup
was introduced and studied by Davvaz and Vougiouklis [6]. In [5], Davvaz
et al. further considered a class of algebraic hypersystems which represent
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a generalization of semigroups, hypersemiroups and n-semigroups. Then,
Leoreanu-Fotea in [9] continued to study the canonical n-hypergroups. Re-
cently, the Krasner (m,n)-hyperrings are introduced and analyzed by Mir-
vakili and Davvaz [11]. Iin fact, the Krasner (m,n)-hyperrings are suitable
generalizations of the Krasner hyperrings. The notion of (m,n)-ary hyperring
in the general form was introduced in [3, 10], as the strong distributive struc-
ture. Then, in [7], Jan¢ié¢-Rasovié and Dasié¢ further generalized such structure
by introducing the notion of (m, n)-hyperring with the inclusive distributivity.

In this paper, we introduce the notion of composition (m,n, k)-hyperring
as a generalization of the composition rings and composition hyperrings.

2 n-hypergroups and (m,n)-hyperrings

Let H be a non-empty set and f be a mapping from H™ to P*(H), where
P*(H) is the family of all non-empty subsets of H. Then, f is called an
n-hyperoperation. If f is an n-hyperoperation defined on H, then (H, f) is
called an n-hypergroupoid. 1If for all x1,...,z, € H the set f(x1,...,z,)
is a singleton, then f is called an n-operation We now calll (H, f) is called
an n-groupoid. The sequence w;,...,z; will be denoted by z]. For non-
empty subsets Aj,..., A, of H. Now, we define f(A4;,...,4,) = f(A}) =
U{f(«}) | «; € Aj;i =1,...,n}. The n-hyperoperation f is said to be as-
sociative if f(zi7", f(aPT 1), 2200t = f(x]l_l,f(x?ﬂ_l),xii;l) holds for
every i,j € {1,...,n} and all 22"~ € H. An n-hypergroupoid with the asso-
ciative hyperoperation is called an n-semihypergroup. An n-ary hypergroupoid
(H, f) in which the equation b € f(ali_l,xi,azﬁrl) has a solution x; € H for
every ai_l, al 1,b€ H and 1 < ¢ < n is called an n-quasihypergroup. An n-
semihypergroup which is an n-quasihypergroup, is called an n-hypergroup. An
n-hypergroupoid (H, f) is commutative if for all o € S,, and for every a} € H
we have f(ai,...,an) = f(ag@);-.-,00(n)). An element e of H is called an

identity element if x € f( (ngz)) forallz € Handall1 <7 <n. An
element 0 of an n-semihypergroup (H, f) is called a zero element if for every
xh € H we have f(0,25) = f(x2,0,2%) = --- = f(25,0) = 0. A commutative
n-hypergroup (H, f) is called an n-canonical hypergroup if the following three
conditions are satisfied:

(i—1)
e, x

9

(1) there exists a unique e € H such that for each z € H, f(z,e™ V) =2,
(2) forall z € H there exists a unique z~! € H such that e € f(x, 271, e(*~2)),
(3) if x € f(aT), then for all 1 < i < n, we have

-1 -1 -1 —1
T € flr, ], T, Ty, Ty ).
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Now, we recall the definition of (m,n)-hyperring.

Definition 2.1. [10] An (m,n)-hyperring is a hyperstructure (R, f, g), which
satisfies the following axioms: (1) (R, f) is an m-hypergroup, (2) (R,g) is
an n-semihypergroup, (3) the n-hyperoperation g is distributive with respect
to the m-hyperoperation f, i.e., for every ag_l,a?ﬂ,x’l" € Rand 1 <17 < n,
g(“?lila f(xin% a?—kl) = f(g(azlila L1, azn—&-l)’ e ag<a?lil7 Tm a?+1)). Ifthe (m’ n)'
hyperring R is commutative with respect to both m-hyperoperation f and
n-hyperoperation g, then it is called a commutative (m,n)-hyperring. A non-
empty subset S C R is called an (m,n)-subhyperring of R if (S, f,g) is an
(m,n)-hyperring. An element 0 is called a zero element of (R, f,g) if it is an
identity of (R, f) and for every z5* € R, we have f(0,25") = f(x2,0,2%") =
<o= f(x5,0) = 0.

Definition 2.2. [11] A Krasner (m,n)-hyperring is a hyperstructure (R, f, g)
which satisfies the following axioms: (1) (R, f) is a canonical m-hypergroup,
(2)(R, g) is an n-semigroup,(3) the n-operation g is distributive with respect
to the m-hyperoperation f, i.e., for every azfl,a;;l,xi” € Rand 1 <1 < n,
we have

g(ai_lv f(xan)va?+1) = f(g(avi_lvxlva?-i-l)a cee 7g(a§_1axmva?+1))a
(4) 0 is a zero element of the n-operation g, i.e., for every x5 € R we have
9(0,2%) = g(x2,0,2%) = --- = g(z%,0) = 0.

A non-empty subset I of a Krasner (m,n)-hyperring R is called an (m,n)-
hyperideal if (1) e € I, (2) for every x € I, —x € I, (3) for every ai* € I,
fla) C I, (4) for every 2} € Rand 1 <i < mn, g(xlfl,f,:c?_kl) CcI.

Lemma 2.3. [11] Let (R, f,g) be a Krasner (m,n)-hyperring. Then, the
following statements hold.

(1) For every x € R, we have —(—x) =z and —0 = 0.
(m—2)
(2) For everyx € R, 0 € f(x,—x,
(8) For every " € R, —f(x1,...,2m) = f(—21,...,—Tm), where —A =
{—alacA}.

Let (R1, f1,91) and (Ra, f2,92) be two (m,n)-hyperrings. Then, we de-
fine a homomorphism from R; to Ry be a mapping ¢ : Ry — Ry such that
O(f1(al") = f2(6(a1), ., H(am)) and B(gs (7)) = ga(@(ba), ..., 6(by)) hold,
for all a7, b} € R;. The map ¢ is an isomorphism if it is one to one and onto
too. In this case, we say R; is isomorphic to R, and we denote R; = Ry. The
kernel of ¢ is defined by ker(¢) = {(a,b) € R1 x Ry | ¢(a) = ¢(b)}. If ¢
is a homomorphism of Krasner (m,n)-hyperrings, then the kernel of ¢ is as
following ker(¢) = {x € R1 | ¢(x) =0g,}.
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3 Composition (m,n, k)-hyperrings

In this section, we present the notion of a composition (m,n, k)-hyperring
which is a generalization of the composition hyperring introduced by Crista
and Jancié-Rasovi¢[2]. Some examples of this new hyperstructure are found
and will be expressed.

Definition 3.1. A composition (m, n, k)-hyperringis an algebraic composition
hyperstructure (R, f, g, h), where (R, f,g) is a commutative (m,n)-hyperring
and k-hyperoperation h (called composition) satisfies the following properties:

(1) h is the right distributive with respect to f;
(2) h is the right distributive with respect to g,
(3) h is associative.

An element 0 of composition (m,n, k)-hyperring R is called a zero element
if it is a zero element of (m, n)-hyperring R and g(a{"',0,al,;) = 0, for every
a’fl,aﬁ_l € Rand 1 < i < n. An element ¢ € R is called a constant if
h(ai™", c,ak, ) = ¢, holds for all aj™',a¥,; € Rand 1 <i < k. If Ais an
arbitrary subset of R, then, the set of all constants in A is called a foundation
of A, denoted by Found(A).

EXAMPLE 1. Every composition hyperring is an composition (2, 2, 2)-hyperring.
One can see several examples of composition hyperrings in [2].

EXAMPLE 2. Let (R, +, -, 0) be a composition hyperring. If we define f(z]") =
T+ .+ T, g(@P) =21 ... 1, and h(2F) =21 0... 0z Then (R, f,g,h)
is a composition (m,n, k)-hyperring.

ExaMPLE 3. Let (R, f,g) be a commutative (m,n)-hyperring. If we define
the k-hyperoperation h by h(z¥) = 0, for all 2% € R, then (R, f,g,h) is a
composition (m, n, k)-hyperring. In this case, we shall call R a null composition
(m, n, k)-hyperring.

Throughout the rest of the paper, (R, f,g,h) is always a composition
(m,n, k)-hyperring such that (R, f, g) be a Krasner (m,n)-hyperring.

Definition 3.2. Let R be a composition (m,n, k)-hyperring and N be a non-
empty subset of R. Then, we call N a composition (m,n, k)-hyperideal of R if
the following conditions are satisfied:

(1) N is an (m,n)-hyperideal of Krasner (m, n)-hyperring R,
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(2) h(ri'n,rk ) C N, forallne N, ri™' vk € Rand 1 <i <k,
(3) if f(ri7t, —r™)N N # 0, then

j—1 j—1 j—1
f(h(tjl T, t?—i—l)v ) h(ltjl i1 t?—&-l) h(tjl » Ty t?+1)7
K h(tJ17 y T T'm, tj+1))
is a subset of V.

Let N be a composition (m,n, k)-hyperideal of R. Define on R the following

relation:
(m—2) (m—2)
zN*y< f(z,N, 0 )=f(y,N, 0 ),

for all x,y € R. Clearly, N* is an equivalence relation on R. Consider x € R.
The equivalence class of z is defined by N*[z] = {y € R | y N* z}. Then, we

(m=2)
have N*[z] = f(z, N, 0 ). The set of all equivalence classes of the elements
of R with respect to the equivalence relation N* is denoted by [R : N] and it
defined as follows: [R: N] = {N*[z] | z € R}.

Proposition 3.3. Let R be a composition (m,n,k)-hyperring and N be a
composition (m,n,k)-hyperideal of R. Then, we consider F, G and H as it

follows:

(m—2) (m—2)

FU@N ) fon 0 = 68,10 |2 € Ston )
G .0 o o N0 ) = (N ) | o)
Hr N0 Fan N0 ) = (N, 07 s e b)),
Then, the hyperoperations F', G and H are well defined.

Proof. The proof is is straightforward and is hence omited. O
Theorem 3.4. ([R: N|,F,G, H) is a composition (m,n, k)-hyperring.

Proof. The proof is straightforward. O

The above hyperstructure is called the quotient composition (m,n, k)-hyper-
ring related to the equivalence relation N*.

Definition 3.5. Let (Ry, f1,91,h1) and (Ra, f2, g2, h2) be two composition
(m,n, k)-hyperrings. A mapping ¢ : Ry — Rs is called a strong homomor-
phism if the following conditions are satisfied, for all 7, y7, 2F € R;:

(1) (b(fl(xh cee 7xm)) = f2(¢($1)7 ceey ¢($m)>7
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(2) d(g1(y1,--- yn)) = 92(0(Y1), - -+, &(Yn))s
(3) p(h1(21,---52k)) = ha(@(21),- -, d(2k)),
(4) ¢(Og,) = Or,.

A strong homomorphism ¢ is called an isomorphism if ¢ is one to one and
onto. We write Ry =& Ry if Ry is isomorphic with Rs.

Proposition 3.6. If ¢ : Ry — Ry is a strong homomorphism, then for all
x € Ry, it holds ¢p(—x) = —¢(x).

(m—2) (m—2)
Proof. Since 0 € f(x,—x, 0 ),it follows that ¢(0) € ¢(f(x,—x, 0 )). We
conclude that

m—2 (m—2)
0 = 00) €= 0 ) = Slote). o). 6" 0)
= f(¢(z),(=z), 0 )
Hence, 0 € f(¢(z), d(—x), (m6 )) and so ¢(—x) = —é(x). O

The kernel of ¢ is defined by ker(¢) = {x € Ry | ¢(x) = Og, }.

Proposition 3.7. Let ¢ : Ry — Ry be a strong homomorphism of(m,n)-
hyperrings. Then, ker(¢) is a hyperideal of R .

Proof. Set K := ker(¢). (1) ¢(0) = 0. Thus, 0 € K. (2) Let z € K be an
arbitrary element. Then, ¢(x) = 0 and by Proposition 3.6, we have ¢(—z) =
—¢(x). It follows that ¢(—z) = —0 = 0. So, —z € K. (3) Suppose that
al € K. We have ¢(a1) = é(az) = -+ = ¢(a,) = 0. Consider z € f(a]").
Then,
(m)

¢(z) € o(f(a")) = f(d(ar), ..., dlam)) = f(0) =0= 2z € K= f(af") C K.
(4) Let 247", 27, € Ry and 1 < i < n. Consider y € g(z}" ', K,z7,). Then,
there exists k € K such that y € g(:v’fl, k,x}, ;). Thus,

6(y) € B(g(@y " by wi)) = 9(@(21), s 6(@io), 6(k), d(wig), -, San))
= g(¢($1), ) ¢(xi*1)707 d)(xiJrl)v ceey d)(l'n)) =0.
It follows that y € K and so g(z} ', k,a?,,) C K. O

Notice that, in generally, ker(¢) is not a composition (m,n, k)-hyperideal.
In the following, we will state and prove the isomorphism theorems for
composition (m,n, k)-hyperrings.
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Theorem 3.8. Let (R1, f,g,h) and (Ra, f,g,h) be two composition (m,n,k)-
hyperrings. If ¢ : Ry — R is a strong homomorphism with the kernel K such
that K is composition(m, n, k)-hyperideal of Ry, then [Ry : K| = Im(¢).
(m=2)
Proof. We define ¥ : [Ry : K] — Im(¢) by U(f(z,K, 0 )) = ¢(x), for all
(m=2)
x € Ry. First, we prove that U is well defined. Suppose that f(z, K, 0 )=

(m—2) (m—2) (m—2)
f(y, K, 0 ).Itisobvious that x € f(z, K, 0 ). Thus,z € f(y,K, 0 ).

, , (m—2)
Hence, there exists k& € K such that x € f(y,k, 0 ). It follows that

(m—2) (m—2)

k/ef(xv_yv 0 ) ( ) (f(.’IJ Y, 0 ))
o(k') € f(¢(x),d(=y), 0 )

S 0 f(o(a),—oy), 0 )
= o(z) = o(1).

Obviously, ¥ is onto. Now, we show that ¥ is one to one. Suppose that
¢(z) = ¢(y). Then, we have

(m—2) (m—2)

0e f(¢($), _(b(y)a 0 ) = ¢(f($7 -y, 0 ))

(m—2)
Thus, there exists z € f(x,—y, 0 ) such that ¢(z) =0. So, z € K. There-
fore,

(m—2) (m-2)  (m-2) (m—2)
(f(z,y, 0 ),K, 0 )=f(y,K, 0 ),
(m—2) (m—2) (m—2)

f
f(vaa 0 )gf(f(‘T?Zv 0 )7K’ 0 ):f(z7K7 0

(m—2) (m—2)
It follows that f(z, K, 0 )= f(y,K, 0 ). Moreover, ¥ is a strong homo-
morphism, because

(m=2)

W K0 Y flam K, 0 )
)

{f(z, (0))|Z€f(:v1,...,xm)}
(f

(f
o (
& D
{O(f(2 0 ) lzeflz,... zm)}
{?( )Izef( )}
f(w

(1'1, ce xm)) = f(¢($1), ) ¢($m))
(m—2) (m—2)
( (xla 9 O ))’7q}(f(xm7K7 O )))a
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(m—2) (m—2)
\I/(G(f(xlaKv 0 )7"'7f(xn7K7 0 )))

{f(z,K,( 0 )|zeg(zr,....,azn)})

(
= (K0 ) 2 € glan, e}

(g(ﬂh, s ’xn)) = g(¢(l‘1)’ IR (b(xn))
, m—2) (m=2)

W(fn k07, (50,

WH K0 fan k0
o K70 ) | 2 € bz, a0}
(e k.0 | 5 € han . ai)}
={¢(2) | z € h(x1,...,21)}

= ¢(h(x17 cee 7‘%'16)) = h(¢(x1)7 ceey ¢(xk))
(k0 ek, 0 ),

(m=2)
and V(Org,.x]) = Y(f(0,K, 0 ))=¢(0r,) = Og,. Hence, it is clear that ¥
is isomorphism, i.e., [Ry : K] & Im(¢). O
Theorem 3.9. If I1,..., I, are composition (m,n,k)-hyperideals of a com-

position (m,n, k)-hyperring R and 1 < j < m, then
[f(Ii]_laOaI;'Tj,-l) : f(Ii]_1307I_;7-1|-1) n IJ] = [f(Iin) : I]]

Proof. For all 1 < j < m, I, is a composition (m,n, k)-hyperideal of f(I*)

and so [f(I7") : I;] is defined. Let us take W : f(If_l,O,I;-le) — [f7) : L]
(m=2)

by ¥(a) = f(a,I;, 0 ). Itis easy to verify that ¥ is well-defined. We prove

that U is a strong homomorphism.

U(flar,...,am)) = U )

vef(a)
(m—2)
= U f(’U7Ija 0 )
vef(al")
(m—2)
:f(f(alv"'ram)vljv 0 )

m—2 (m—2)

F(fan g "0 f a1, 0 7)
= f(¥(a1),...,V(anm)),
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\Il(g(ala"'van)) = U \IJ(U)

veg(al)
(m—2) (m—2)
= U f(vvjjv ):f(g(al,u'yan)a-[jv 0 )
veg(al)
(m—2) (m—2)

g(f(a171j7 0 )a"wf(anﬂlj 0 ))
:g(\Il(al),...,\I/(an))7
)

lIl(h(ala 7ak) = U ‘I’(’U)
veh(ak)
m—2)
= U f(Uana 0 )
vEh(ak)
m—2)
= f(h(a1,...,ax),L;, 0 )

= (a1, "0 S, 0)
=h(¥(ay),...,¥(ax)),

(m=2)
\Il(of(lffl,O,I]T’_j_l)) :f(Of(Iffl,O,I]T'}*_l)’Ij’ 0 )

m (m—2)
:f(f(o)ﬂ'[j’ 0 ):IJZO[f(Ilm)IJ]
Obviously, ¥ is onto. Suppose that a € ker(¥). Hence, we have

(m—2)

acKer(¥) < V(a)=1;< f(a,I;, 0 )=ILj<acljn f(If_l,O,I]’?j_l).
by Theorem 3.8, we get the isomorphism
[f(Iijilv()?Iﬂl) : f(Ii]7170aIﬁ1) ij] = [f(I{n) : Ij] 0

Theorem 3.10. If A and B are composition (m,n, k)-hyperideals of R such
that A C B, then [B : A] is a composition (m,n, k)-hyperideal of [R : A] and
[R:A]:[B:A]Z[R:B|.

Proof. First, we prove that [B : A] is a composition (m,n, k)-hyperideal of
(m—2) (m—2)
[R: A]l. We define ¢ : [R: A] = [R: B] by ¢(f(r,A, 0 ))=f(r,B, 0 ).
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Obviously, ¢ is well-defined. Moreover, ¢ is a strong homomorphism, because

(m—2) (m—2)
QS(F(f(TlaA, 0 )a"'af(rmaAa 0 )))
(m=2)
:¢({f(Z,A, 0 )|Z€f(7’1,...77"m)})

m—2)

(o7 A0 2 e frn )}

(m—2)

={f(z;B, 0 )|z€ f(r,....rm)}
(m—2) (m—2)

=F(f(r,B, 0 ),...,f(rm,B, 0 ))
(m—2) (m—2)

=F(o(f(ri; A, 0 )y 0(f(rm, A4, 0 ),

oG A, "0 7)o frn A, 0 )

— 67 A, 07 ) 2 € gl r)})

— (007,40 | 2 € glray )}

— B0 s e glr, . r))

— (B0 0
(m=2) (m—2)

:G(¢(f(T17Av 0 ))a"'vd)(f(TmAv 0 )))7

(m—2) (m—2)
¢(H(f(T1,A, 0 )a-._7f(/rk7Aa 0 )))
(m—2)
=o({f(z, 4, 02 Y] z€h(ry,...,m)})
(A0 2 € b))
— 80 | e hlr, )
(m—2) (m—2)
:H(f(T17B7 0 )a"'af(TTHBv 0 ))
(m—2) (m—2)

= H(¢(f(ri, A, 0 ), 0(f(re, A 0 ).
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(m—2) (m—2)
ker(6) = {f(r A, 0 ) € [R: A] | (f(r A, 0 ) =0}
m—2)

= A0 e r: A f8 "0 = By

m—2)

:{f(r,A,( 0 )e[R:A]|reB}=[B:A.

by Theorem 3.8, we conclude that [[R: A] : [B: A]] 2[R : BJ. O
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