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Construction of composition (m,n, k)-hyperrings

B. Davvaz, N. Rakhsh-Khorshid and K. P. Shum

Abstract

In this paper, our aim is to introduce the notion of a composi-
tion (m,n, k)-hyperring and to analyze its properties. We also consider
the algebraic structure of (m,n, k) hyperrings which is a generalization
of composition rings and composition hyperrings. Also, the isomor-
phism theorems of ring theory are derived in the context of composition
(m,n, k)-hyperrings.

1 Introduction

We first consider several definitions for a hyperring by replacing at least one
of the two operations by hyperoperations. A well known type of a hyper-
ring which is called the Krasner hyperring [8] is obtained by considering the
addition as a hyperoperation such that the structure (R,+) is a canonical
hypergroup. A comprehensive review of the theory of hyperrings appears in
[4]. Based on the notion of a composition ring introduced by Adler [1] in [2].
Crista and Jančić-Rašović defined the concept of a composition hyperring as
a quadruple (R,+, ·, ◦) such that (R,+, ·) is a commutative hyperring in the
general sense and the composition hyperoperation ◦ is an associative hyper-
operation which is distributive to the right side with respect to the addition
and multiplication.

A suitable generalization of a hypergroup which is called an n-hypergroup
was introduced and studied by Davvaz and Vougiouklis [6]. In [5], Davvaz
et al. further considered a class of algebraic hypersystems which represent
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a generalization of semigroups, hypersemiroups and n-semigroups. Then,
Leoreanu-Fotea in [9] continued to study the canonical n-hypergroups. Re-
cently, the Krasner (m,n)-hyperrings are introduced and analyzed by Mir-
vakili and Davvaz [11]. Iin fact, the Krasner (m,n)-hyperrings are suitable
generalizations of the Krasner hyperrings. The notion of (m,n)-ary hyperring
in the general form was introduced in [3, 10], as the strong distributive struc-
ture. Then, in [7], Jančić-Rašović and Dašić further generalized such structure
by introducing the notion of (m,n)-hyperring with the inclusive distributivity.

In this paper, we introduce the notion of composition (m,n, k)-hyperring
as a generalization of the composition rings and composition hyperrings.

2 n-hypergroups and (m,n)-hyperrings

Let H be a non-empty set and f be a mapping from Hn to P∗(H), where
P∗(H) is the family of all non-empty subsets of H. Then, f is called an
n-hyperoperation. If f is an n-hyperoperation defined on H, then (H, f) is
called an n-hypergroupoid. If for all x1, . . . , xn ∈ H the set f(x1, . . . , xn)
is a singleton, then f is called an n-operation We now calll (H, f) is called
an n-groupoid. The sequence xi, . . . , xj will be denoted by xji . For non-
empty subsets A1, . . . , An of H. Now, we define f(A1, . . . , An) = f(An1 ) =
∪{f(xn1 ) | xi ∈ Ai, i = 1, . . . , n}. The n-hyperoperation f is said to be as-
sociative if f(xi−11 , f(xn+i−1i ), x2n−1n+i ) = f(xj−11 , f(xn+j−1j ), x2n−1n+j ) holds for

every i, j ∈ {1, . . . , n} and all x2n−11 ∈ H. An n-hypergroupoid with the asso-
ciative hyperoperation is called an n-semihypergroup. An n-ary hypergroupoid
(H, f) in which the equation b ∈ f(ai−11 , xi, a

n
i+1) has a solution xi ∈ H for

every ai−11 , ani+1, b ∈ H and 1 ≤ i ≤ n is called an n-quasihypergroup. An n-
semihypergroup which is an n-quasihypergroup, is called an n-hypergroup. An
n-hypergroupoid (H, f) is commutative if for all σ ∈ Sn and for every an1 ∈ H
we have f(a1, . . . , an) = f(aσ(1), . . . , aσ(n)). An element e of H is called an

identity element if x ∈ f(
(i−1)
e , x,

(n−i)
e ) for all x ∈ H and all 1 ≤ i ≤ n. An

element 0 of an n-semihypergroup (H, f) is called a zero element if for every
xn2 ∈ H we have f(0, xn2 ) = f(x2, 0, x

n
3 ) = · · · = f(xn2 , 0) = 0. A commutative

n-hypergroup (H, f) is called an n-canonical hypergroup if the following three
conditions are satisfied:

(1) there exists a unique e ∈ H such that for each x ∈ H, f(x, e(n−1)) = x,

(2) for all x ∈ H there exists a unique x−1 ∈ H such that e ∈ f(x, x−1, e(n−2)),

(3) if x ∈ f(xn1 ), then for all 1 ≤ i ≤ n, we have

xi ∈ f(x, x−11 , . . . , x−1i−1, x
−1
i+1, . . . , x

−1
n ).
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Now, we recall the definition of (m,n)-hyperring.

Definition 2.1. [10] An (m,n)-hyperring is a hyperstructure (R, f, g), which
satisfies the following axioms: (1) (R, f) is an m-hypergroup, (2) (R, g) is
an n-semihypergroup, (3) the n-hyperoperation g is distributive with respect
to the m-hyperoperation f , i.e., for every ai−11 , ani+1, x

m
1 ∈ R and 1 ≤ i ≤ n,

g(ai−11 , f(xm1 ), ani+1) = f(g(ai−11 , x1, a
n
i+1), . . . , g(ai−11 , xm, a

n
i+1)). If the (m,n)-

hyperring R is commutative with respect to both m-hyperoperation f and
n-hyperoperation g, then it is called a commutative (m,n)-hyperring. A non-
empty subset S ⊆ R is called an (m,n)-subhyperring of R if (S, f, g) is an
(m,n)-hyperring. An element 0 is called a zero element of (R, f, g) if it is an
identity of (R, f) and for every xm2 ∈ R, we have f(0, xm2 ) = f(x2, 0, x

m
3 ) =

· · · = f(xm2 , 0) = 0.

Definition 2.2. [11] A Krasner (m,n)-hyperring is a hyperstructure (R, f, g)
which satisfies the following axioms: (1) (R, f) is a canonical m-hypergroup,
(2)(R, g) is an n-semigroup,(3) the n-operation g is distributive with respect
to the m-hyperoperation f , i.e., for every ai−11 , ani+1, x

m
1 ∈ R and 1 ≤ i ≤ n,

we have

g(ai−11 , f(xm1 ), ani+1) = f(g(ai−11 , x1, a
n
i+1), . . . , g(ai−11 , xm, a

n
i+1)),

(4) 0 is a zero element of the n-operation g, i.e., for every xn2 ∈ R we have
g(0, xn2 ) = g(x2, 0, x

n
3 ) = · · · = g(xn2 , 0) = 0.

A non-empty subset I of a Krasner (m,n)-hyperring R is called an (m,n)-
hyperideal if (1) e ∈ I, (2) for every x ∈ I, −x ∈ I, (3) for every am1 ∈ I,
f(am1 ) ⊆ I, (4) for every xn1 ∈ R and 1 ≤ i ≤ n, g(xi−11 , I, xni+1) ⊆ I.

Lemma 2.3. [11] Let (R, f, g) be a Krasner (m,n)-hyperring. Then, the
following statements hold.

(1) For every x ∈ R, we have −(−x) = x and −0 = 0.

(2) For every x ∈ R, 0 ∈ f(x,−x,
(m−2)

0 ).

(3) For every xm1 ∈ R, −f(x1, . . . , xm) = f(−x1, . . . ,−xm), where −A =
{−a | a ∈ A}.

Let (R1, f1, g1) and (R2, f2, g2) be two (m,n)-hyperrings. Then, we de-
fine a homomorphism from R1 to R2 be a mapping φ : R1 → R2 such that
φ(f1(am1 )) = f2(φ(a1), . . . , φ(am)) and φ(g1(bn1 )) = g2(φ(b1), . . . , φ(bn)) hold,
for all am1 , b

n
1 ∈ R1. The map φ is an isomorphism if it is one to one and onto

too. In this case, we say R1 is isomorphic to R2 and we denote R1
∼= R2. The

kernel of φ is defined by ker(φ) = {(a, b) ∈ R1 × R1 | φ(a) = φ(b)}. If φ
is a homomorphism of Krasner (m,n)-hyperrings, then the kernel of φ is as
following ker(φ) = {x ∈ R1 | φ(x) = 0R2

}.
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3 Composition (m,n, k)-hyperrings

In this section, we present the notion of a composition (m,n, k)-hyperring
which is a generalization of the composition hyperring introduced by Crista
and Jančić-Rašović[2]. Some examples of this new hyperstructure are found
and will be expressed.

Definition 3.1. A composition (m,n, k)-hyperring is an algebraic composition
hyperstructure (R, f, g, h), where (R, f, g) is a commutative (m,n)-hyperring
and k-hyperoperation h (called composition) satisfies the following properties:

(1) h is the right distributive with respect to f ;

(2) h is the right distributive with respect to g,

(3) h is associative.

An element 0 of composition (m,n, k)-hyperring R is called a zero element
if it is a zero element of (m,n)-hyperring R and g(ai−11 , 0, ani+1) = 0, for every

ai−11 , ani+1 ∈ R and 1 ≤ i ≤ n. An element c ∈ R is called a constant if

h(ai−11 , c, aki+1) = c, holds for all ai−11 , aki+1 ∈ R and 1 ≤ i ≤ k. If A is an
arbitrary subset of R, then, the set of all constants in A is called a foundation
of A, denoted by Found(A).

Example 1. Every composition hyperring is an composition (2, 2, 2)-hyperring.

One can see several examples of composition hyperrings in [2].

Example 2. Let (R,+, ·, ◦) be a composition hyperring. If we define f(xm1 ) =
x1 + . . .+ xm, g(xn1 ) = x1 · . . . · xn and h(xk1) = x1 ◦ . . . ◦ xk. Then (R, f, g, h)
is a composition (m,n, k)-hyperring.

Example 3. Let (R, f, g) be a commutative (m,n)-hyperring. If we define
the k-hyperoperation h by h(xk1) = 0, for all xk1 ∈ R, then (R, f, g, h) is a
composition (m,n, k)-hyperring. In this case, we shall callR a null composition
(m,n, k)-hyperring.

Throughout the rest of the paper, (R, f, g, h) is always a composition
(m,n, k)-hyperring such that (R, f, g) be a Krasner (m,n)-hyperring.

Definition 3.2. Let R be a composition (m,n, k)-hyperring and N be a non-
empty subset of R. Then, we call N a composition (m,n, k)-hyperideal of R if
the following conditions are satisfied:

(1) N is an (m,n)-hyperideal of Krasner (m,n)-hyperring R,
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(2) h(ri−11 , n, rki+1) ⊆ N , for all n ∈ N , ri−11 , rki+1 ∈ R and 1 ≤ i ≤ k,

(3) if f(ri−11 ,−rmi ) ∩N 6= ∅, then

f(h(tj−11 , r1, t
k
j+1), . . . , h(tj−11 , ri−1, t

k
j+1), h(tj−11 ,−ri, tkj+1),

. . . , h(tj−11 ,−rm, tkj+1))

is a subset of N .

LetN be a composition (m,n, k)-hyperideal ofR. Define onR the following
relation:

x N∗ y ⇔ f(x,N,
(m−2)

0 ) = f(y,N,
(m−2)

0 ),

for all x, y ∈ R. Clearly, N∗ is an equivalence relation on R. Consider x ∈ R.
The equivalence class of x is defined by N∗[x] = {y ∈ R | y N∗ x}. Then, we

have N∗[x] = f(x,N,
(m−2)

0 ). The set of all equivalence classes of the elements
of R with respect to the equivalence relation N∗ is denoted by [R : N ] and it
defined as follows: [R : N ] = {N∗[x] | x ∈ R}.

Proposition 3.3. Let R be a composition (m,n, k)-hyperring and N be a
composition (m,n, k)-hyperideal of R. Then, we consider F , G and H as it
follows:

F (f(x1, N,
(m−2)

0 ), . . . , f(xm, N,
(m−2)

0 )) = {f(z,N,
(m−2)

0 ) | z ∈ f(x1, . . . , xm)},

G(f(x1, N,
(m−2)

0 ), . . . , f(xn, N,
(m−2)

0 )) = {f(z,N,
(m−2)

0 ) | z ∈ g(x1, . . . , xn)},

H(f(x1, N,
(m−2)

0 ), . . . , f(xk, N,
(m−2)

0 )) = {f(z,N,
(m−2)

0 ) | z ∈ h(x1, . . . , xk)}.

Then, the hyperoperations F , G and H are well defined.

Proof. The proof is is straightforward and is hence omited.

Theorem 3.4. ([R : N ], F,G,H) is a composition (m,n, k)-hyperring.

Proof. The proof is straightforward.

The above hyperstructure is called the quotient composition (m,n, k)-hyper-
ring related to the equivalence relation N∗.

Definition 3.5. Let (R1, f1, g1, h1) and (R2, f2, g2, h2) be two composition
(m,n, k)-hyperrings. A mapping φ : R1 → R2 is called a strong homomor-
phism if the following conditions are satisfied, for all xm1 , y

n
1 , z

k
1 ∈ R1:

(1) φ(f1(x1, . . . , xm)) = f2(φ(x1), . . . , φ(xm)),
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(2) φ(g1(y1, . . . , yn)) = g2(φ(y1), . . . , φ(yn)),

(3) φ(h1(z1, . . . , zk)) = h2(φ(z1), . . . , φ(zk)),

(4) φ(0R1
) = 0R2

.

A strong homomorphism φ is called an isomorphism if φ is one to one and
onto. We write R1

∼= R2 if R1 is isomorphic with R2.

Proposition 3.6. If φ : R1 → R2 is a strong homomorphism, then for all
x ∈ R1, it holds φ(−x) = −φ(x).

Proof. Since 0 ∈ f(x,−x,
(m−2)

0 ), it follows that φ(0) ∈ φ(f(x,−x,
(m−2)

0 )). We
conclude that

0 = φ(0) ∈ φ(f(x,−x,
(m−2)

0 )) = f(φ(x), φ(−x),
(m−2)
φ (0))

= f(φ(x), φ(−x),
(m−2)

0 )

Hence, 0 ∈ f(φ(x), φ(−x),
(m−2)

0 ) and so φ(−x) = −φ(x).

The kernel of φ is defined by ker(φ) = {x ∈ R1 | φ(x) = 0R2
}.

Proposition 3.7. Let φ : R1 → R2 be a strong homomorphism of(m,n)-
hyperrings. Then, ker(φ) is a hyperideal of R1.

Proof. Set K := ker(φ). (1) φ(0) = 0. Thus, 0 ∈ K. (2) Let x ∈ K be an
arbitrary element. Then, φ(x) = 0 and by Proposition 3.6, we have φ(−x) =
−φ(x). It follows that φ(−x) = −0 = 0. So, −x ∈ K. (3) Suppose that
am1 ∈ K. We have φ(a1) = φ(a2) = · · · = φ(am) = 0. Consider x ∈ f(am1 ).
Then,

φ(x) ∈ φ(f(am1 )) = f(φ(a1), . . . , φ(am)) = f(
(m)

0 ) = 0⇒ x ∈ K ⇒ f(am1 ) ⊆ K.

(4) Let xi−11 , xni+1 ∈ R1 and 1 ≤ i ≤ n. Consider y ∈ g(xi−11 ,K, xni+1). Then,

there exists k ∈ K such that y ∈ g(xi−11 , k, xni+1). Thus,

φ(y) ∈ φ(g(xi−11 , k, xni+1)) = g(φ(x1), . . . , φ(xi−1), φ(k), φ(xi+1), . . . , φ(xn))

= g(φ(x1), . . . , φ(xi−1), 0, φ(xi+1), . . . , φ(xn)) = 0.

It follows that y ∈ K and so g(xi−11 , k, xni+1) ⊆ K.

Notice that, in generally, ker(φ) is not a composition (m,n, k)-hyperideal.
In the following, we will state and prove the isomorphism theorems for

composition (m,n, k)-hyperrings.
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Theorem 3.8. Let (R1, f, g, h) and (R2, f, g, h) be two composition (m,n, k)-
hyperrings. If φ : R1 → R2 is a strong homomorphism with the kernel K such
that K is composition(m,n, k)-hyperideal of R1, then [R1 : K] ∼= Im(φ).

Proof. We define Ψ : [R1 : K] → Im(φ) by Ψ(f(x,K,
(m−2)

0 )) = φ(x), for all

x ∈ R1. First, we prove that Ψ is well defined. Suppose that f(x,K,
(m−2)

0 ) =

f(y,K,
(m−2)

0 ). It is obvious that x ∈ f(x,K,
(m−2)

0 ). Thus, x ∈ f(y,K,
(m−2)

0 ).

Hence, there exists k
′ ∈ K such that x ∈ f(y, k

′
,
(m−2)

0 ). It follows that

k
′ ∈ f(x,−y,

(m−2)
0 ) ⇒ φ(k

′
) ∈ φ(f(x,−y,

(m−2)
0 ))

⇒ φ(k
′
) ∈ f(φ(x), φ(−y),

(m−2)
0 )

⇒ 0 ∈ f(φ(x),−φ(y),
(m−2)

0 )
⇒ φ(x) = φ(y).

Obviously, Ψ is onto. Now, we show that Ψ is one to one. Suppose that
φ(x) = φ(y). Then, we have

0 ∈ f(φ(x),−φ(y),
(m−2)

0 ) = φ(f(x,−y,
(m−2)

0 )).

Thus, there exists z ∈ f(x,−y,
(m−2)

0 ) such that φ(z) = 0. So, z ∈ K. There-
fore,

f(x,K,
(m−2)

0 ) ⊆ f(f(z, y,
(m−2)

0 ),K,
(m−2)

0 ) = f(y,K,
(m−2)

0 ),

f(y,K,
(m−2)

0 ) ⊆ f(f(x, z,
(m−2)

0 ),K,
(m−2)

0 ) = f(x,K,
(m−2)

0 ).

It follows that f(x,K,
(m−2)

0 ) = f(y,K,
(m−2)

0 ). Moreover, Ψ is a strong homo-
morphism, because

Ψ(F (f(x1,K,
(m−2)

0 ), . . . , f(xm,K,
(m−2)

0 )))

= Ψ({f(z,K,
(m−2)

0 ) | z ∈ f(x1, . . . , xm)})

= {Ψ(f(z,K,
(m−2)

0 )) | z ∈ f(x1, . . . , xm)}
= {φ(z) | z ∈ f(x1, . . . , xm)}
= φ(f(x1, . . . , xm)) = f(φ(x1), . . . , φ(xm))

= f(Ψ(f(x1,K,
(m−2)

0 )), . . . ,Ψ(f(xm,K,
(m−2)

0 ))),
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Ψ(G(f(x1,K,
(m−2)

0 ), . . . , f(xn,K,
(m−2)

0 )))

= Ψ({f(z,K,
(m−2)

0 ) | z ∈ g(x1, . . . , xn)})

= {Ψ(f(z,K,
(m−2)

0 )) | z ∈ g(x1, . . . , xn)}
= {φ(z) | z ∈ g(x1, . . . , xn)}
= φ(g(x1, . . . , xn)) = g(φ(x1), . . . , φ(xn))

= g(Ψ(f(x1,K,
(m−2)

0 )), . . . ,Ψ(f(xn,K,
(m−2)

0 ))),

Ψ(H(f(x1,K,
(m−2)

0 ), . . . , f(xk,K,
(m−2)

0 )))

= Ψ({f(z,K,
(m−2)

0 ) | z ∈ h(x1, . . . , xk)})

= {Ψ(f(z,K,
(m−2)

0 )) | z ∈ h(x1, . . . , xk)}
= {φ(z) | z ∈ h(x1, . . . , xk)}
= φ(h(x1, . . . , xk)) = h(φ(x1), . . . , φ(xk))

= h(Ψ(f(x1,K,
(m−2)

0 )), . . . ,Ψ(f(xk,K,
(m−2)

0 ))),

and Ψ(0[R1:K]) = Ψ(f(0,K,
(m−2)

0 )) = φ(0R1
) = 0R2

. Hence, it is clear that Ψ
is isomorphism, i.e., [R1 : K] ∼= Im(φ).

Theorem 3.9. If I1, . . . , Im are composition (m,n, k)-hyperideals of a com-
position (m,n, k)-hyperring R and 1 ≤ j ≤ m, then

[f(IJ−11 , 0, Imj+1) : f(IJ−11 , 0, Imj+1) ∩ Ij ] ∼= [f(Im1 ) : Ij ].

Proof. For all 1 ≤ j ≤ m, Ij is a composition (m,n, k)-hyperideal of f(Im1 )

and so [f(Im1 ) : Ij ] is defined. Let us take Ψ : f(Ij−11 , 0, Imj+1) → [f(Im1 ) : Ij ]

by Ψ(a) = f(a, Ij ,
(m−2)

0 ). It is easy to verify that Ψ is well-defined. We prove
that Ψ is a strong homomorphism.

Ψ(f(a1, . . . , am)) =
⋃

v∈f(am1 )

Ψ(v)

=
⋃

v∈f(am1 )

f(v, Ij ,
(m−2)

0 )

= f(f(a1, . . . , am), Ij ,
(m−2)

0 )

= f(f(a1, Ij ,
(m−2)

0 ), . . . , f(am, Ij ,
(m−2)

0 ))
= f(Ψ(a1), . . . ,Ψ(am)),
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Ψ(g(a1, . . . , an)) =
⋃

v∈g(an1 )
Ψ(v)

=
⋃

v∈g(an1 )
f(v, Ij ,

(m−2)
0 ) = f(g(a1, . . . , an), Ij ,

(m−2)
0 )

= g(f(a1, Ij ,
(m−2)

0 ), . . . , f(an, Ij ,
(m−2)

0 ))
= g(Ψ(a1), . . . ,Ψ(an)),

Ψ(h(a1, . . . , ak)) =
⋃

v∈h(ak1 )
Ψ(v)

=
⋃

v∈h(ak1 )
f(v, Ij ,

(m−2)
0 )

= f(h(a1, . . . , ak), Ij ,
(m−2)

0 )

= h(f(a1, Ij ,
(m−2)

0 ), . . . , f(ak, Ij ,
(m−2)

0 ))
= h(Ψ(a1), . . . ,Ψ(ak)),

Ψ(0f(Ij−1
1 ,0,Imj+1)

) = f(0f(Ij−1
1 ,0,Imj+1)

, Ij ,
(m−2)

0 )

= f(f(
m
0), Ij ,

(m−2)
0 ) = Ij = 0[f(Im1 ):Ij ].

Obviously, Ψ is onto. Suppose that a ∈ ker(Ψ). Hence, we have

a ∈ Ker(Ψ)⇔ Ψ(a) = Ij ⇔ f(a, Ij ,
(m−2)

0 ) = Ij ⇔ a ∈ Ij ∩ f(Ij−11 , 0, Imj+1).

by Theorem 3.8, we get the isomorphism

[f(IJ−11 , 0, Imj+1) : f(IJ−11 , 0, Imj+1) ∩ Ij ] ∼= [f(Im1 ) : Ij ]

Theorem 3.10. If A and B are composition (m,n, k)-hyperideals of R such
that A ⊆ B, then [B : A] is a composition (m,n, k)-hyperideal of [R : A] and
[[R : A] : [B : A]] ∼= [R : B].

Proof. First, we prove that [B : A] is a composition (m,n, k)-hyperideal of

[R : A]. We define φ : [R : A]→ [R : B] by φ(f(r,A,
(m−2)

0 )) = f(r,B,
(m−2)

0 ).
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Obviously, φ is well-defined. Moreover, φ is a strong homomorphism, because

φ(F (f(r1, A,
(m−2)

0 ), . . . , f(rm, A,
(m−2)

0 )))

= φ({f(z,A,
(m−2)

0 ) | z ∈ f(r1, . . . , rm)})

= {φ(f(z,A,
(m−2)

0 )) | z ∈ f(r1, . . . , rm)}

= {f(z,B,
(m−2)

0 ) | z ∈ f(r1, . . . , rm)}

= F (f(r1, B,
(m−2)

0 ), . . . , f(rm, B,
(m−2)

0 ))

= F (φ(f(r1, A,
(m−2)

0 )), . . . , φ(f(rm, A,
(m−2)

0 ))),

φ(G(f(r1, A,
(m−2)

0 ), . . . , f(rn, A,
(m−2)

0 )))

= φ({f(z,A,
(m−2)

0 ) | z ∈ g(r1, . . . , rn)})

= {φ(f(z,A,
(m−2)

0 )) | z ∈ g(r1, . . . , rn)}

= {f(z,B,
(m−2)

0 ) | z ∈ g(r1, . . . , rn)}

= G(f(r1, B,
(m−2)

0 ), . . . , f(rn, B,
(m−2)

0 ))

= G(φ(f(r1, A,
(m−2)

0 )), . . . , φ(f(rn, A,
(m−2)

0 ))),

φ(H(f(r1, A,
(m−2)

0 ), . . . , f(rk, A,
(m−2)

0 )))

= φ({f(z,A,
(m−2)

0 ) | z ∈ h(r1, . . . , rk)})

= {φ(f(z,A,
(m−2)

0 )) | z ∈ h(r1, . . . , rk)}

= {f(z,B,
(m−2)

0 ) | z ∈ h(r1, . . . , rk)}

= H(f(r1, B,
(m−2)

0 ), . . . , f(rn, B,
(m−2)

0 ))

= H(φ(f(r1, A,
(m−2)

0 )), . . . , φ(f(rk, A,
(m−2)

0 ))).
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ker(φ) = {f(r,A,
(m−2)

0 ) ∈ [R : A] | φ(f(r,A,
(m−2)

0 )) = 0[R:B]}

= {f(r,A,
(m−2)

0 ) ∈ [R : A] | f(r,B,
(m−2)

0 ) = B}

= {f(r,A,
(m−2)

0 ) ∈ [R : A] | r ∈ B} = [B : A].

by Theorem 3.8, we conclude that [[R : A] : [B : A]] ∼= [R : B].
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Ovidius Constanţa, 21(2) (2013), 81–94.

[3] B. Davvaz, A new view of fundamental relations on hyperrings, Proceed-
ings of 10th Int. Congress on Algebraic Hyperstructures and Applications,
AHA 2008, pp. 43-55.

[4] B. Davvaz and V. Leoreanu-Fotea, Hyperring Theory and Applications,
International Academic Press, USA, 2007.

[5] B. Davvaz, W.A. Dudek and T. Vougiouklis, A generalization of n-ary
algebraic systems, Comm. Algebra, 37(4) (2009), 1248–1263.

[6] B. Davvaz and T. Vougiouklis, n-ary hypergroups, Iran. J. Sci. Technol.
Trans. A, 30(2) (2006), 165–174.
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