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Existence and uniqueness of solutions for
certain functional equations and system of

functional equations arising in dynamic
programming

Deepmala, Ravi P. Agarwal

Abstract

This paper deals with the existence, uniqueness and iterative ap-
proximations of solutions for the functional equations and system of
functional equations arising in dynamic programming of multistage de-
cision making processes in Banach spaces and complete metric space,
respectively. The results presented in this paper unify and generalize
many known results in the literature. Some examples which dwell upon
the importance of our results are also illustrated.

1 Introduction

Bellman [1, 2] introduced and studied the existence of solutions for a class
of functional equations arising in dynamic programming. Since then many
authors (see, [3] - [15]) have established the existence and uniqueness of solu-
tions of functional equations by modifying the conditions of Bellman equations
arising in dynamic programming. In this paper, we introduce and study the
existence and uniqueness of solutions for the following functional equations and
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system of functional equations arising in dynamic programming of multistage
decision processes:

f(x) = opty∈D{u(x, y)+opt{v(x, y), pi(x, y)+Ai(x, y, f(ai(x, y))) : i = 1, 2, 3}}
(1)

f(x) = opty∈D{u(x, y) + r(x, y)f(c(x, y))

+ opt{v(x, y), p(x, y)f(s(x, y)), ti(x, y) + qi(x, y)f(ai(x, y)) : i = 1, 2, 3}}
(2)

and

f(x) = opty∈D{p(x, y) + opt{ui(x, y) +Ai(x, y, g(ai(x, y))) : i = 1, 2, 3}}
g(x) = opty∈D{q(x, y) + opt{vi(x, y) +Bi(x, y, f(bi(x, y))) : i = 1, 2, 3}}

(3)

where “opt” denotes the “ sup ” or “ inf ”, x and y stand for the state and de-
cision vectors respectively, s, c and ai, i = 1, 2, 3 represent the transformation
of the processes, f(x) and g(x) denote the optimal return function with initial
state x.

We note that (1), (2) and (3) include many functional equations and system
of functional equations as special cases. For example, the functional equations

f(x)= inf
y∈D

max{r(x, y), s(x, y), f(b(x, y))}, x ∈ S. (4)

f(x)= inf
y∈D

max{r(x, y), f(b(x, y))}, x ∈ S. (5)

f(x)= opty∈D max{u(x, y), f(T (x, y))}, x ∈ S. (6)

f(x)= sup
y∈D
{p(x, y) +A(x, y, f(a(x, y)))}, x ∈ S. (7)

f(x)= sup
y∈D
{p(x, y) + f(a(x, y))}, x ∈ S. (8)

f(x)= opty∈D{a [u(x, y) + f(T (x, y))] + b opt[v(x, y), f(T (x, y))]},
x ∈ S, a+ b = 1. (9)

f(x)= opty∈D{u(x, y) + opt{pi(x, y) + qi(x, y)fi(ai(x, y)) : i = 1, 2}},
x ∈ S. (10)

f(x)= opty∈D{p(x, y) + q(x, y)f(a(x, y)) + opt{r(x, y), s(x, y)f(b(x, y)),
t(x, y)f(c(x, y))}}, ∀ x ∈ S. (11)

f(x)= inf
y∈D

max{p(x, y), f(a(x, y)), q(x, y) + f(b(x, y))}, ∀ x ∈ S. (12)

f(x)= opty∈Dopt{p(x, y), q(x, y)f(a(x, y)), r(x, y)f(b(x, y)), s(x, y)f(c(x, y))}(13)
f(x)= opty∈D{p(x, y) +A(x, y)f(a(x, y)) +

opt{q(x, y) +B(x, y)f(b(x, y)), r(x, y) + C(x, y)f(c(x, y))}}. (14)

f(x)= opty∈D opt{u(x, y), pi(x, y) +Ai(x, y, f(ai(x, y))) : i = 1, 2}, and

f(x)= opty∈D opt{u(x, y), pi(x, y) + qi(x, y)f(ai(x, y)) : i = 1, 2, 3}, ∀x ∈ S.(15)
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These equations have been studied by Bellman [2], Bhakta and Mitra [3],
Bhakta and Chuodhary [4], Liu and Ume [11], Liu et al. [12, 16], Liu and
Kang [10], Jiang et al. [8], Liu [9], Liu et al. [14], Liu et al. [13], and Pathak
and Deepmala [17], respectively. They established the existence of solutions
of functional equations (4)-(15) in the spaces BC(S), B(S) or BB(S) (defined
in Section 2), respectively. The systems of functional equations

f(x) = sup
y∈D
{u(x, y) +G(x, y, g(a(x, y)))}

g(x) = sup
y∈D
{u(x, y) + F (x, y, f(a(x, y)))}

(16)

f(x) = sup
y∈D
{v(x, y) +G(x, y, g(a(x, y)))}

g(x) = sup
y∈D
{u(x, y) + F (x, y, f(b(x, y)))}

(17)

f(x) = sup
y∈D

opt{p(x, y), A(x, y, g(a(x, y))), q(x, y) +B(x, y, g(b(x, y)))}, ∀x ∈ S,

g(x) = sup
y∈D

opt{u(x, y), C(x, y, g(a(x, y))), v(x, y) +H(x, y, f(h(x, y)))}, ∀x ∈ S,

(18)

have been studied by Chang [6], Chang and Ma [7] and Liu et al. [15].

The plan of our paper is as follows: In Section 2, we recall some basic
concepts, notations, and Lemmas. In Section 3, we apply the fixed point theo-
rem of Boyd and Wong [5] to establish the existence, uniqueness, and iterative
approximation of solutions for the generalized type of system of functional
equations (3) in BB(S). In Section 4, we establish the existence, uniqueness,
and iterative approximations of solutions of functional equation (1) in BC(S)
and B(S). In Section 5, we obtain the existence, uniqueness, and iterative ap-
proximations of solutions of functional equation (2) in BB(S). To show how
our results can be used in practice we also illustrate some nontrivial examples.
The results presented here generalize and unify the results of Bellman [1],
Bhakta and Mitra [3], Bhakta and Choudhury [4], Liu and Ume [11], Liu et
al. [12], Liu et al. [16], Liu and Kang [10], Jiang et al. [8], Liu [9], Liu et
al. [14], Liu et al. [13], Pathak and Deepmala [17] Chang [6], Chang and Ma
[7], and Liu et al. [15].

2 Preliminaries

In this section, we introduce notations, definitions, and some results that will
be used in the remainder of the paper. Let R = (−∞,+∞), R+ = [0,+∞)
and R− = (−∞, 0]. For any t ∈ R, [t] denotes the largest integer not exceeding
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t and (X, ‖.‖) and (Y, ‖.‖′) be real Banach spaces. S ⊆ X be the state space
and D ⊆ Y be the decision space. Define

Φ1 = {ϕ|ϕ : R+ → R+ is right continuous at t = 0},
Φ2 = {ϕ|ϕ : R+ → R+ is nondecreasing},
Φ3 = {ϕ|ϕ ∈ Φ1 and ϕ(0) = 0},
Φ4 = {ϕ|ϕ ∈ Φ1 ∩ Φ2 and ϕ(t) < t for t > 0},
Φ5 = {(ϕ,ψ)|ϕ and ψ : R+ → R+ are nondecreasing and

∑∞
n=0 ψ(ϕn(t)) <

∞ for t > 0},
Φ6 = {(ϕ,ψ)|(ϕ,ψ) ∈ Φ5 and ψ(t) > 0,∀t > 0},
Φ7 = {ϕ|ϕ ∈ Φ2 and ϕ(t) < t for t > 0},
Φ8 = {(ϕ,ψ)|ϕ and ψ : R+ → R+ are nondecreasing ψ(t) > 0 and

limn→∞ ψ(ϕn(t)) = 0 for t > 0},
Φ9 = {ϕ|ϕ : R+ → R+ is nondecreasing and

∑∞
n=0 ϕ

n(t) <∞ for t > 0},
B(S) = {f |f : S −→ R is bounded},
BC(S) = {f |f ∈ B(S) is continuous},
BB(S) = {f |f : S −→ R is bounded on bounded subsets of S}.
Clearly, (B(S), ‖.‖1) and (BC(S), ‖.‖1) are Banach spaces with the norm

‖f‖1 = supx∈S |f(x)|. For any positive integer k and f, g ∈ BB(S), let

dk(f, g) = sup {|f(x)− g(x)| : x ∈ B(0, k)},

d(f, g) =

∞∑
k=1

1

2k
.
dk(f, g)

1 + dk(f, g)
,

where B(0, k) = {x : x ∈ S and ‖x‖ ≤ k}. Then {dk}k≥1 is a countable
family of pseudometrices on BB(S). A sequence {xn}n≥1 in BB(S) is said
to converge to a point x ∈ BB(S) if for any k ≥ 1, dk(xn, xm) −→ 0 as
n,m −→ ∞. It is clear that (BB(S), d) is a complete metric space. A metric
space (M,ρ) is said to be metrically convex if for each x, y ∈ M, there is a
z 6= x, y for which ρ(x, y) = ρ(x, z) + ρ(z, y). Clearly, any Banach space is
metrically convex.

Lemma 2.1. [5] Suppose that (M,ρ) is a completely metrically convex metric
space and f : M −→M satisfies

ρ(f(x), f(y)) ≤ ϕ(ρ(x, y)) for x, y ∈M, (19)

where ϕ : P −→ R+ satisfies ϕ(t) < t for t ∈ P − {0}, where P = {ρ(x, y) :
x, y ∈ M} and P denotes the closure of P . Then f has a fixed point u ∈ M
and limn−→∞f

n(x) = u for each x ∈M.

Lemma 2.2. [8] Let {ai, bi : 1 ≤ i ≤ n} ⊆ R. Then

|opt{ai : 1 ≤ i ≤ n} − opt{bi : 1 ≤ i ≤ n}| ≤ max {|ai − bi| : 1 ≤ i ≤ n}.
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Lemma 2.3. [8] (i) Assume that A : S × D → R is a mapping such that
opty∈DA(x0, y) is bounded for some x0 ∈ S. Then

|opty∈DA(x0, y)| ≤ supy∈D |A(x0, y)|;
(ii) Assume that A,B : S × D → R is a mapping such that opty∈DA(x1, y)
and opty∈DB(x2, y) are bounded for some x1, x2 ∈ S. Then

|opty∈DA(x1, y)− opty∈DB(x2, y)| ≤ supy∈D |A(x1, y)−B(x2, y)|.
To prove our results we also need the following lemma:

Lemma 2.4. Let ai, bi, i = 1, 2, 3 be in R. Then

max{|ai + bi| : i = 1, 2, 3} ≤ max{|ai| : i = 1, 2, 3}+ max{|bi| : i = 1, 2, 3}

Proof. The proof of this lemma is based on some geometrical properties.

Algorithm 1. For any f0 ∈ BB(S), compute {fn}n≥0 by

fn+1(x) = (1− αn)fn(x) + αn opty∈D{u(x, y) + r(x, y)fn(c(x, y))

+ opt{v(x, y), p(x, y)fn(s(x, y)), ti(x, y) + qi(x, y)fn(ai(x, y)) : i = 1, 2, 3}},
∀x ∈ S, n ≥ 0,

(20)

where

{αn}n≥0 is any sequence in [0, 1] such that

∞∑
n=0

αn = +∞. (21)

Algorithm 2. For any w0 ∈ BB(S), compute {wn}n≥0 by

wn+1(x) = opty∈D{u(x, y) + r(x, y)wn(c(x, y))

+ opt{v(x, y), p(x, y)wn(s(x, y)), ti(x, y) + qi(x, y)wn(ai(x, y)) : i = 1, 2, 3}},
∀x ∈ S, n ≥ 0,

(22)

3 Existence of coincidence solutions
for system of functional equations

f and g are said to be coincidence solutions of the system of functional equa-
tions (3) if they satisfy the following condition

f(x) = opty∈D{p(x, y) + opt{ui(x, y) +Ai(x, y, g(ai(x, y))) : i = 1, 2, 3}}
g(x) = opty∈D{q(x, y) + opt{vi(x, y) +Bi(x, y, f(bi(x, y))) : i = 1, 2, 3}}.

(23)
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Theorem 3.1. Let ai, bi : S × D → S, ui, vi : S × D → R and Ai, Bi :
S × D × R → R for i = 1, 2, 3, and (ϕ,ψ) be in Φ5 satisfying the following
conditions:

(D1) max{|p(x, y)| + max{|ui(x, y)| : i = 1, 2, 3}, |q(x, y)| + max{|vi(x, y)| :
i = 1, 2, 3}} ≤ ψ(‖x‖), for all (x, y) ∈ S ×D,

(D2) max{‖ai(x, y)‖, ‖bi(x, y)‖ : i = 1, 2, 3} ≤ ϕ(‖x‖), for all (x, y) ∈ S×D,

(D3) opt {vi(x, y) +Bi(x, y, z) : i = 1, 2, 3} ≥ 0 and
max{|Ai(x, y, z)|, |Bi(x, y, z)| : i = 1, 2, 3} ≤ |z|, for all (x, y, z) ∈
S ×D × R,

(D4) for (x, y) ∈ S ×D,Ai(x, y, .) and Bi(x, y, .) are both left continuous and
nondecreasing with respect to the third argument on R for i = 1, 2, 3.

Then the system of functional equations

f(x) = sup
y∈D
{p(x, y) + opt{ui(x, y) +Ai(x, y, g(ai(x, y))) : i = 1, 2, 3}}

g(x) = sup
y∈D
{q(x, y) + opt{vi(x, y) +Bi(x, y, f(bi(x, y))) : i = 1, 2, 3}}

(24)

possesses coincidence solutions f and g in BB(S).

Proof. Let
g0(x) = sup

y∈D
q(x, y) ∀x ∈ S, (25)

g2n(x) = sup
x∈D
{q(x, y) + opt{vi(x, y) +Bi(x, y, f2n−1(bi(x, y)) : i = 1, 2, 3)}},

n ≥ 1, (26)

and

f2n+1(x) = sup
y∈D
{p(x, y) + opt{ui(x, y) +Ai(x, y, g2n(ai(x, y)) : i = 1, 2, 3)}},

n ≥ 0. (27)

It follows from (D4) that for any x ∈ S,

g0(x) ≤ g2(x) ≤ . . . ≤ g2n(x) ≤ g2n+2(x) ≤ . . . (28)

f1(x) ≤ f3(x) ≤ . . . ≤ f2n−1(x) ≤ f2n+1(x) ≤ . . . . (29)
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Let x ∈ S and k be a positive integer with x ∈ B(0, k). Then by Lemma 2.2,
Lemma 2.3, and (D1), we find

|g0(x)| = | sup
y∈D

q(x, y)| ≤ ψ(||x||) (30)

According to Lemma 2.4 and (D1)− (D3), we have

|f1(x)|
= | supy∈D{p(x, y) + opt{ui(x, y) +Ai(x, y, g0(ai(x, y)) : i = 1, 2, 3}}|
≤ supy∈D{|p(x, y)|+ max{|ui(x, y) +Ai(x, y, g0(ai(x, y)))| : i = 1, 2, 3}}
≤ supy∈D{|p(x, y)|+ max{|ui(x, y)| : i = 1, 2, 3}
+ max{|Ai(x, y, g0(ai(x, y)))| : i = 1, 2, 3}}

≤
1∑
i=0

ψ(ϕi(‖x‖))

By using a similar argument, we obtain

|g2n(x)| ≤
2n∑
i=0

ψ(ϕi(‖x‖)) ≤
∞∑
i=0

ψ(ϕi(k)), ∀n ≥ 0, (31)

|f2n+1(x)| ≤
2n+1∑
i=0

ψ(ϕi(‖x‖)) ≤
∞∑
i=0

ψ(ϕi(k)), ∀n ≥ 0. (32)

Thus (31) and (32) ensure that {g2n(x)}n≥0 and {f2n+1(x)}n≥0 are both
bounded.
By virtue of (28)− (32), we conclude that

lim
n→∞

g2n(x) = g(x), lim
n→∞

f2n+1(x) = f(x),∀x ∈ B(0, k), (33)

and

max{|f(x)|, |g(x)|} ≤
∞∑
i=0

ψ(ϕi(k)), ∀x ∈ B(0, k). (34)

It is easy to see that (34) yields that f, g ∈ BB(S). Set

M(x) = sup
y∈D
{p(x, y) + opt{ui(x, y) +Ai(x, y, g(ai(x, y))) : i = 1, 2, 3}}, x ∈ S,

N(x) = sup
y∈D
{q(x, y) + opt{vi(x, y) +Bi(x, y, f(bi(x, y))) : i = 1, 2, 3}}, x ∈ S.

(35)
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Notice that (25) - (27) and (35) imply that for any (x, y) ∈ S ×D,

p(x, y) + opt{ui(x, y) +Ai(x, y, g2n(ai(x, y)) : i = 1, 2, 3)} ≤ f2n+1(x) ≤M(x),

q(x, y) + opt{vi(x, y) +Bi(x, y, f2n−1(bi(x, y)) : i = 1, 2, 3)} ≤ g2n(x) ≤ N(x).

(36)

Letting n→∞ in (36), (D4), (28) - (29) and (33), we find

p(x, y) + opt{ui(x, y) +Ai(x, y, g(ai(x, y)) : i = 1, 2, 3)} ≤ f(x) ≤M(x),

q(x, y) + opt{vi(x, y) +Bi(x, y, f(bi(x, y)) : i = 1, 2, 3)} ≤ g(x) ≤ N(x),

(37)

Which yields that

M(x) ≤ f(x) ≤M(x),

N(x) ≤ g(x) ≤ N(x).
(38)

That is, M(x) = f(x) and N(x) = g(x), for x ∈ S. Therefore, f and g
are coincidence solutions of the system of functional equations (24). This
completes the proof.

Remark 3.2. 1. It we put ui = vi = 0 for i = 1, 2, 3, then Theorem 3.1
reduces to Theorem 3.1 of Liu et al. [12].

2. Theorem 3.2 and Theorem 3.3 of Liu et al. [12] and Theorem 4.1 of Liu
[9] are the special cases of Theorem 3.1.

3. In case ui = vi = 0, ψ = I, Ai = Bi and ai = bi for i = 1, 2, 3, then
Theorem 3.1 reduces to Theorem 4.2 of Liu [9], which in turn, generalizes
Theorem 2.3 of Bhakta and Mitra [3] and Theorem 4 of Chang [6].

4. If we replace opt = sup, A1 = B1 = p = q = u2 = v2 = 0, then Theorem
3.1 reduces to Theorem 3.1 of Liu et al. [15].

5. Theorem 3.2 and Theorem 3.3 of Liu et al. [15] are the special cases of
Theorem 3.1.

The following example demonstrates that Theorem 3.1 generalizes and
unify the works of [3, 6, 9, 12, 15].

Example 3.1. Let X = Y = R, S = D = [1,∞). Define ai, bi : S ×D → S,
ui, vi : S × D → R and Ai, Bi : S × D × R → R for i = 1, 2, 3, and ϕ,ψ :
R+ → R+ by
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ψ(t) = 2t2, ϕ(t) =
t

2
, p(x, y) =

x2

1 + x+ 3y
, q(x, y) =

x2

1 + xy
,

u1(x, y) =
x2

1 + x+ y2
, u2(x, y) =

x2 sin(x+ y)

1 + y2
, u3(x, y) =

x2 cos(2x3y)

1 + y
,

v1(x, y) =

{
x2| sin(3y + 1)|, if x < 2
x2

1+y2 if x ≥ 2,
a1(x, y) =

{ x
2 sin(3x2y), if x < 3
x+y

2+x+y if x ≥ 3,

v2(x, y) = x2

∣∣∣∣sin(x2 + 1

1 + y2

)∣∣∣∣, v3(x, y) =
x2

1 + | sin(2x+ 7y + 1)|
,

a2(x, y) =
x cos2(2x+ y)

3 + y
, a3(x, y) =

x

2 + y2
, b1(x, y) =

x cos(x3y)

2
,

b2(x, y) =
x

7
sin

(
3x+ 1

2y + 1

)
, b3(x, y) =

x sin2(3xy2 + 1)

3
,

B1(x, y, z) =

{
0, if z ≤ 0

z
1+x+y2 if z > 0,

A1(x, y, z) =

{
z

2+| sin(3x+y2)| , if z ≤ 0
z

x+y2+3 if z > 0,

B2(x, y, z) =

{
0, if z ≤ 0

z
1+x2y+z if z > 0,

B3(x, y, z) =

{
0, if z ≤ 0
z| cos(x+2y)|

1+x2y if z > 0,

A2(x, y, z) =

{
z

1+x+y , if z ≤ 0
z

3+| cos(x2y)| if z > 0,
A3(x, y, z) =

{
z

x+y2+3 , if z ≤ 0
z| sin(3x3+y)|

1+x+y3 if z > 0.

It is easy to verify that all assumptions of Theorem 3.1 are satisfied. Thus it
follows from Theorem 3.1 that the system of functional equations (3) possesses
coincidence solutions in BB(S).
Clearly, the results in [3, 6, 9, 12, 15] are not applicable for the system of
functional equations (3), because

|u1(x, y)| = x2

1 + x+ y2
> 0, |p(x, y)| = x2

1 + x+ 3y
> 0, for all (x, y) ∈ S×D,

and

max{|p(x, y)|, |q(x, y)|} ≤ ‖x‖ does not holds for (x, y) = (4, 1).
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4 Existence and uniqueness of solutions in BC(S) and
B(S)

Now we shall discuss existence and uniqueness of solutions in BC(S) and
B(S).

Theorem 4.1. Let u, pi : S×D → R, ai : S×D → S and Ai : S×D×R→ R
for i = 1, 2, 3 be mappings and let ϕ ∈ Φ3 and ψ ∈ Φ4 be such that

(C1) u, v, pi and Ai are bounded for i = 1, 2, 3.

(C2) for each x0 ∈ S, u(x, y) → u(x0, y), v(x, y) → v(x0, y), pi(x, y) →
pi(x0, y), ai(x, y) → ai(x0, y), as x → x0 uniformly for y ∈ D for
i = 1, 2, 3.

(C3) max{|Ai(x, y, z) − Ai(x0, y, z)| : i = 1, 2, 3} ≤ ϕ(‖x − x0‖) for x, x0 ∈
S, y ∈ D, z ∈ R.

(C4) max{|Ai(x, y, z) − Ai(x, y, z0)| : i = 1, 2, 3} ≤ ψ(|z − z0|) for x ∈ S, y ∈
D, z, z0 ∈ R .

Then the functional equation (1) possesses a unique solution w ∈ BC(S) and
{Hnh}n≥1 converges to w for each h ∈ BC(S), where H is defined by

Hh(x) = opty∈D{u(x, y) + opt{v(x, y), pi(x, y) +Ai(x, y, h(ai(x, y))) : i = 1, 2, 3}},
x ∈ S. (39)

Proof. Let x0 ∈ S and h ∈ BC(S). It is clear that (C1) implies that Hh is
bounded. In view of (C2), ϕ ∈ Φ3 and ψ ∈ Φ4, we know that for a given ε > 0,
there exist δ1 > 0, δ2 > 0 and δ3 > 0 so that

ϕ(‖x− x0‖) <
ε

5
for x ∈ S with ‖x− x0‖ < δ1, (40)

ψ(δ1) <
ε

5
, (41)

|u(x, y)− u(x0, y)| <
ε

5
for (x, y) ∈ S ×D with ‖x− x0‖ < δ1, (42)

|v(x, y)− v(x0, y)| <
ε

5
for (x, y) ∈ S ×D with ‖x− x0‖ < δ1, (43)

max{|pi(x, y)− pi(x0, y)| : i = 1, 2, 3} < ε

5
for (x, y) ∈ S ×D with ‖x− x0‖ < δ1,

(44)

|h(x)− h(x0)| < δ1 for x ∈ S with ‖x− x0‖ < δ2, (45)

max{|ai(x, y)− ai(x0, y)| : i = 1, 2, 3} < δ2 for (x, y) ∈ S ×D with ‖x− x0‖ < δ3.

(46)
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On an account of (41), (45) and (46), we conclude that

ψ(sup
y∈D
{max{|h(ai(x, y))− h(ai(x0, y))| : i = 1, 2, 3}})

≤ ψ(δ1) <
ε

5
,with‖x− x0‖ < δ3. (47)

Set δ = min{δ1, δ3}. In view of (C3), (C4), (40) - (47), we deduce that for
x ∈ S with ‖x− x0‖ < δ,

|Hh(x)−Hh(x0)|

= opty∈D{u(x, y) + opt{v(x, y), pi(x, y) +Ai(x, y, h(ai(x, y))) : i = 1, 2, 3}}
−opty∈D{u(x0, y) + opt{v(x0, y), pi(x0, y) +Ai(x0, y, h(ai(x0, y))) : i = 1, 2, 3}}

≤ sup
y∈D
{|u(x, y)− u(x0, y)|+max{|v(x, y)− v(x0, y)|, |pi(x, y)− pi(x0, y)|

+ |Ai(x, y, h(a(x, y)))−Ai(x0, y, h(a(x0, y)))| : i = 1, 2, 3}}
≤ sup

y∈D
{|u(x, y)− u(x0, y)|+max{|v(x, y)− v(x0, y)|, {|pi(x, y)− pi(x0, y)|

: i = 1, 2, 3}+ {|Ai(x, y, h(a(x, y)))−Ai(x0, y, h(a(x, y)))|
+ |Ai(x0, y, h(a(x, y)))−Ai(x0, y, h(a(x0, y)))| : i = 1, 2, 3}}}

< ε,

which implies that Hh is continuous at x0. Thus H is a self mapping on
BC(S). Given ε > 0, x ∈ S and h, g ∈ BC(S). Suppose that opty∈D =
supy∈D, then there exist y, z ∈ D such that

Hh(x) < u(x, y) + opt{v(x, y), pi(x, y) +Ai(x, y, h(ai(x, y))) : i = 1, 2, 3}+ ε,

Hg(x) < u(x, z) + opt{v(x, z), pi(x, z) +Ai(x, z, g(ai(x, z))) : i = 1, 2, 3}+ ε,

Hh(x) ≥ u(x, z) + opt{v(x, z), pi(x, z) +Ai(x, z, h(ai(x, z))) : i = 1, 2, 3},
Hg(x) ≥ u(x, y) + opt{v(x, y), pi(x, y) +Ai(x, y, g(ai(x, y))) : i = 1, 2, 3}. (48)

Using (48) and (C4), we get

|Hh(x)−Hg(x)| < max{|Ai(x, y, h(ai(x, y)))−Ai(x, y, g(ai(x, y)))|,
|Ai(x, z, h(ai(x, z)))−Ai(x, z, g(ai(x, z)))| : i = 1, 2, 3}+ ε,

≤ ψ(max{|h(ai(x, y))− g(ai(x, y))|, |h(ai(x, z))− g(ai(x, z))|
: i = 1, 2, 3}) + ε,

≤ ψ(‖h− g‖1) + ε,

which gives
‖Hh−Hg‖1 ≤ ψ(‖h− g‖1) + ε. (49)

Similarly, we conclude that (49) holds for opty∈D = infy∈D. Now as ε → 0+

in (49), we obtain
‖Hh−Hg‖1 ≤ ψ(‖h− g‖1).
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Thus Lemma 2.1 ensures that h has a unique fixed point w ∈ BC(S) and
{Hnh}n≥1 converges to w for any h ∈ BC(S). Obviously, w is the unique
solution of the functional equation (1) in BC(S). This completes the proof.

It follows from the proof of Theorem 4.1 that the following result also
holds.

Theorem 4.2. Let u, pi : S ×D → R, ai : S ×D → S and Ai : S ×D×R→
R for i = 1, 2, 3 be mappings and let ψ be in Φ7 satisfying (C1) and (C4).
Then the functional equation (1) possesses a unique solution w ∈ BC(S) and
{Hnh}n≥1 converges to w for each h ∈ BC(S), where H is defined by (39).

Remark 4.3. 1. In case, u = 0 and p3 = A3 = 0, Theorem 4.2 reduces to
Theorem 3.2 of Pathak and Deepmala [17].

2. In case v = 0, p3 = A3 = 0, Theorem 4.2 reduces to Theorem 4.1 of Liu
et al. [12].

3. In case v = 0, p1 = p2 = p3 = 0, A1 = A2 = A3 and a1 = a2 = a3,
Theorem 4.2 reduces to a result which generalizes Theorem 2.1 of Bhakta
and Mitra [3].

4. If we replace v = 0, p1 = p2 = p3 = 0 and A1 = A2 = A3, then Theorem
4.1 reduces to Theorem 3.1 of Liu et al. [16].

5. If we replace opty∈D = supy∈D and u = p1 = p2 = A1 = 0, then Theorem
4.2 reduces to a result which generalizes Theorem 2.1 of Liu et al. [15].

6. If we put v = p1 = p2 = p3 = 0 and A1 = A2 = A3, then Theorem 4.2
reduces to Theorem 3.2 of Liu et al. [16] and Theorem 3.1 of Liu and
Kang [10].

7. Theorem 4.2 extends and improves the results of Bellman [1].

The example below shows that Theorem 4.2 generalizes and unifies the
results of [1, 3, 10, 12, 15, 16, 17].

Example 4.1. Let X = Y = R, S = [1,∞), D = R+ = [0,∞), ϕ(t) = 2t and
ψ(t) = t

3 , then Theorem 4.2 ensures that the functional equation

f(x) = opty∈D

{
1 +

1

x+ 2y2
+ opt

{
1 +

x

1 + x+ y2
,

x2

x+ y2
+

1

1 + x2 + y2

+
1

3
sin(f(2x2y)),

(x+ y)

1 + 3(x+ y)
+

1

x2 + y
+

1

3 + 3|f(sin(2x+ 3y))|
,

x3

x+ y4
+

1

1 + x2 + 2y2
+

f(5 + sin(7x− 3y))

3 + 3[f(5 + sin(7x− 3y))]2

}}
, ∀x ∈ S.

(50)
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possesses a unique solution in B(S).

Since, here we have

u(x, y) = 1 +
1

x+ 2y2
, v(x, y) = 1 +

x

1 + x+ y2
, p1(x, y) =

x2

x+ y2
,

p2(x, y) =
(x+ y)

1 + 3(x+ y)
, p3(x, y) =

x3

x+ y4
, A1(x, y, z) =

1

1 + x2 + y2
+

1

3
sin z,

A2(x, y, z) =
1

x2 + y
+

1

3 + 3|z|
, A3(x, y, z) =

1

1 + x2 + 2y2
+

z

3 + 3z2

and
|Ai(x, y, z)−Ai(x0, y, z)| ≤ 2|x− x0|, for i = 1, 2, 3

|Ai(x, y, z)−Ai(x, y, z0)| ≤ 1

3
|z − z0|, for i = 1, 2, 3

all conditions of Theorem 4.2 are satisfied. Hence, (50) has a solution in B(S).

However, the corresponding results in [1, 3, 10, 12, 15, 16, 17] are not applicable
for the functional equation (50), because

|u(x, y)| = 1+
1

x+ 2y2
> 0, |v(x, y)| = 1+

x

1 + x+ y2
> 0, for all (x, y) ∈ S×D.

5 Existence and uniqueness of solutions in BB(S)

Here we shall discuss properties of solutions in BB(S).

Theorem 5.1. Let u, v, r, ti, p, qi : S × D → R and s, c, ai : S × D → S for
i = 1, 2, 3, and satisfy the following conditions

(B1) u, v and ti are bounded on B(0, k)×D for k ≥ 1 and i = 1, 2, 3,

(B2) max {‖c(x, y)‖, ‖s(x, y)‖, ‖ai(x, y)‖ : i = 1, 2, 3} ≤ ‖x‖ for (x, y) ∈
S ×D,

(B3) there exists a constant α such that
sup(x,y)∈S×D {|r(x, y)|+ max{|p(x, y)|, |qi(x, y)| : i = 1, 2, 3}} ≤ α < 1,

then the functional equation (2) possesses a unique solution w ∈ BB(S) and
the sequences {fn}n≥0 and {wn}n≥0 generated by Algorithm 1 and Algorithm
2, respectively, converge to f and have the error bounds:

dk(fn+1, w) ≤ e−(1−α)Σn
i=0αidk(f0, w), ∀n ≥ 0, k ∈ N, (51)
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and

dk(wn+1, w) ≤ αn+1

1− α
dk(w1, w0), ∀n ≥ 0, k ∈ N. (52)

Proof. Define a mapping H : BB(S) −→ BB(S) by

Hh(x) = opty∈D{u(x, y) + r(x, y)h(c(x, y))

+ opt{v(x, y), p(x, y)h(s(x, y)), ti(x, y) + qi(x, y)h(ai(x, y)) : i = 1, 2, 3}}.
(53)

It follows from (B1) and (B2) that for each k ≥ 1 and h ∈ BB(S), there exists
β(k) > 0 and η(k, h) > 0 such that

sup
(x,y)∈B(0,k)×D

{|u(x, y)|, |v(x, y)|, |ti(x, y)| : i = 1, 2, 3} ≤ β(k) (54)

sup
(x,y)∈B(0,k)×D

{|h(c(x, y))|, |h(s(x, y))|, |h(ai(x, y))| : i = 1, 2, 3} ≤ η(k, h). (55)

By virtue of (B3), (54) and (55), for x ∈ B(0, k), we have
|Hh(x)| ≤ supy∈D{|u(x, y)|+ |r(x, y)| |h(c(x, y))|+max{|v(x, y)|, |p(x, y)|

|h(s(x, y))|, |ti(x, y)|+ |qi(x, y)| |h(ai(x, y))| : i = 1, 2, 3}},
≤ 2β(k) + η(k, h).

This means that H is a self mapping on BB(S).
Let ε > 0, x ∈ B(0, k), h, g ∈ BB(S) and k ≥ 1. Suppose that,
opty∈D = supy∈D. Then ∃y, z ∈ D such that

Hh(x) < u(x, y) + r(x, y)h(c(x, y)) + opt{v(x, y), p(x, y)h(s(x, y)),

ti(x, y) + qi(x, y)h(ai(x, y)) : i = 1, 2, 3}+ ε,

Hg(x) < u(x, z) + r(x, z)g(c(x, z)) + opt{v(x, z), p(x, z)g(s(x, z)),

ti(x, z) + qi(x, z)g(ai(x, z)) : i = 1, 2, 3}+ ε,

Hh(x) ≥ u(x, z) + r(x, z)h(c(x, z)) + opt{v(x, z), p(x, z)h(s(x, z)),

ti(x, z) + qi(x, z)h(ai(x, z)) : i = 1, 2, 3},
Hg(x) ≥ u(x, y) + r(x, y)g(c(x, y)) + opt{v(x, y), p(x, y)g(s(x, y)),

ti(x, y) + qi(x, y)g(ai(x, y)) : i = 1, 2, 3}. (56)

Using (56), we find
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Hh(x)−Hg(x)

< r(x, y)(h(c(x, y))− g(c(x, y)))
+opt{v(x, y), p(x, y)h(s(x, y)), ti(x, y) + qi(x, y)h(ai(x, y)) : i = 1, 2, 3}.
−opt{v(x, y), p(x, y)g(s(x, y)), ti(x, y) + qi(x, y)g(ai(x, y)) : i = 1, 2, 3}+ ε,

≤ |r(x, y)| |(h(c(x, y))− g(c(x, y)))|+max{|p(x, y)||h(s(x, y))− g(s(x, y))|,
|qi(x, y)| |h(ai(x, y))− g(ai(x, y))| : i = 1, 2, 3}+ ε,

≤ [ |r(x, y)|+max{|p(x, y)|, |qi(x, y)| : i = 1, 2, 3}]max{|(h(c(x, y))− g(c(x, y)))|,
|h(s(x, y))− g(s(x, y))|, |h(ai(x, y))− g(ai(x, y))| : i = 1, 2, 3}+ ε,

≤ α max{|(h(c(x, y))− g(c(x, y)))|, |h(s(x, z))− g(s(x, z))|,
|h(ai(x, y))− g(ai(x, y))| : i = 1, 2, 3}+ ε

and
Hh(x)−Hg(x)

> r(x, z)(h(c(x, z))− g(c(x, z)))

+opt{v(x, z), p(x, z)h(s(x, z)), ti(x, z) + qi(x, z)h(ai(x, z)) : i = 1, 2, 3}.
−opt{v(x, z), p(x, z)g(s(x, z)), ti(x, z) + qi(x, z)g(ai(x, z)) : i = 1, 2, 3} − ε,

≥ −|r(x, z)| |(h(c(x, z))− g(c(x, z)))−max{|p(x, z)||h(s(x, z))− g(s(x, z))|,
|qi(x, z)| |h(ai(x, z))− g(ai(x, z))| : i = 1, 2, 3} − ε,

≥ [ −|r(x, z)| −max{|p(x, z)|, |qi(x, z)| : i = 1, 2, 3}]
max{|(h(c(x, z))− g(c(x, z)))|, |h(s(x, z))− g(s(x, z))|,
|h(ai(x, z))− g(ai(x, z))| : i = 1, 2, 3} − ε,

≥ −α max{|(h(c(x, z))− g(c(x, z)))|, |h(s(x, z))− g(s(x, z))|,
|h(ai(x, z))− g(ai(x, z))| : i = 1, 2, 3} − ε,

which imply that

|Hh(x)−Hg(x)| ≤ αdk(h, g) + ε, ∀h, g ∈ BB(S). (57)

In a similar way, we can show that (57) holds for opty∈D = infy∈D . As ε −→ 0+

in (57), we get

dk(Hh,Hg) ≤ α dk(h, g), ∀ h, g ∈ BB(S). (58)

Let w0 ∈ BB(S). It follows from Algorithm 2 that

wn+1 = Hwn(x), ∀n ≥ 0, x ∈ S.

By a similar argument as in [Theorem 3.3, [8]], we can prove that the functional
equation (2) possesses a unique solution w ∈ BB(S) and have error estimates
(51) and (52). This completes the proof of the theorem.
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Remark 5.2. 1. In case u = r = 0 and p = 0, Theorem 5.1 reduces to
Theorem 4.1 of Pathak and Deepmala [17].

2. If we put t1 = t2 = t3 = q2 = q3 = 0 in Theorem 5.1, then we get
Theorem 4.1 of Liu et al. [16].

3. In case r = v = p = t3 = q3 = 0, 5.1 reduces to Theorem 4.2 of Liu et
al. [12].

4. If v = p = t3 = q3 = 0, then 5.1 reduces to Theorem 3.3 of Liu et al.
[13].

5. If u = r = t1 = t2 = t3 = q3 = 0, then 5.1 reduces to Theorem 3.3 of
Jiang et al. [8].

6. If we replace opty∈D = infy∈D, opt = max and u = r = t1 = t2 = t3 =
q1 = q2 = q3 = 0, then 5.1 reduces to Theorem 3.4 of Bhakta and Mitra
[3].

7. Theorem 5.1 extends and improves the results of Bellman [1].

The following example demonstrates that Theorem 5.1 generalizes substan-
tially the results obtained in [1, 3, 8, 12, 13, 16, 17].

Example 5.1. Let X = Y = R and S = D = R+. Consider the following
functional equation:

f(x) = opty∈D

{
1 +

x4

1 + x2 + y2
+

cos(x+ y2)

3 + xy
f

(
x3

1 + x2y

)
+

opty∈D

{
1 +

1

3 + x2 + y3
,

xy2

4 + xy2
f

(
x2 sin(x2y)

1 + xy

)
, (1 + sin(x2 + 3y))+

sin(x+ 2y)

4 + x2 + y3
f

(
2x

4 + x+ y

)
,

1

1 + xy2
+

1

4 + x+ y3
f

(
x2

1 + x+ y

)
,

x

x+ y2
+

x3y3

4 + x3y3
f

(
x2 sin2(x+ 2y)

1 + x+ y2

)}}
, ∀x ∈ S.

(59)

Clearly, for all (x, y) ∈ S ×D,

max

{
x3

1 + x2y
,
x2| sin(x2y)|

1 + xy
,

2x

4 + x+ y
,

x2

1 + x+ y
,

x2| sin2(x+ 2y)|
1 + x+ y2

}
≤ x
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and

sup
(x,y)∈S×D

{
| cos(x+ y2)|

3 + xy
+ max

{
xy2

4 + xy2
,
| sin(x+ 2y)|
4 + x2 + y3

,
1

4 + x+ y3
,

x3y3

4 + x3y3
,

}}
< 1.

It follows from Theorem 5.1 that the functional equation (59) possesses a
unique solution in BB(S). However, the results given in [1, 3, 8, 12, 13, 16, 17]
are not applicable for the functional equation (59), because

|u(x, y)| =
(

1 +
x4

1 + x2 + y2

)
> 0, |v(x, y)| =

(
1 +

1

3 + x2 + y3

)
> 0

and
|t1(x, y)| = 1 + | sin(x2 + 3y)| > 0, ∀ (x, y) ∈ S ×D.

Theorem 5.3. Let u, v, r, ti, p, qi : S ×D → R and s, c, ai : S ×D −→ S for
i = 1, 2, 3, and let (ϕ,ψ) be in (Φ6) satisfying the following conditions:

(B4) supy∈D{|u(x, y)|+max{|v(x, y)|, |ti(x, y)| : i = 1, 2, 3}} ≤ ψ(‖x‖), ∀x ∈
S.

(B5) max{‖c(x, y)‖, ‖s(x, y)‖, ‖ai(x, y)‖ : i = 1, 2, 3} ≤ ϕ(‖x‖), ∀(x, y) ∈
S ×D.

(B6) supy∈D{|r(x, y)|+ max{|p(x, y)|, |qi(x, y)| : i = 1, 2, 3}} ≤ 1, ∀x ∈ S.

Then the functional equation (2) possesses a solution w ∈ BB(S) which sat-
isfies the following properties:

(B7)The sequence {wn}n≥0 defined by
w0(x) = opty∈D {u(x, y) + max{v(x, y), ti(x, y) : i = 1, 2, 3}} ,∀x ∈ S
wn(x) = opty∈D{u(x, y) + r(x, y)wn−1(c(x, y))

+ opt{v(x, y), p(x, y)wn−1(s(x, y)),
ti(x, y) + qi(x, y)wn−1(ai(x, y)) : i = 1, 2, 3}},

∀x ∈ S, n ≥ 1 converges to w.

(B8) limn→∞ w(xn) = 0 for any x0 ∈ S,
{yn}n≥1 ⊂ D and xn ∈ {c(xn−1, yn), s(xn−1, yn), ai(xn−1, yn) : i =
1, 2, 3},∀n ∈ N .

(B9) w is unique with respect to condition (B8).
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Proof. Since (ϕ,ψ) is in (Φ6), it is easy to verify that

ϕ(t) < t for t < 0. (60)

We assert that the mapping H defined in (53) is non-expansive on BB(S). For
this, in view of (60) and (B5), we have
max{‖c(x, y)‖, ‖s(x, y)‖, ‖ai(x, y)‖ : i = 1, 2, 3} ≤ ϕ(‖x‖) < k, for (x, y) ∈
B(0, k)×D,
which implies that ∃ a constant θ(k, h) > 0 such that

max{|h(c(x, y))|, |h(s(x, y))|, |h(ai(x, y))| : i = 1, 2, 3}
≤ θ(k, h), for(x, y) ∈ B(0, k)×D. (61)

By virtue of (B4), (B6), (53), Lemma 2.2 and Lemma 2.3, we deduce that
|Hh(x)| ≤ supy∈D{|u(x, y)|+ |r(x, y)||h(c(x, y))|+max |{|v(x, y)|,

|p(x, y)||h(s(x, y))|, |ti(x, y)|+ |qi(x, y)| |h(ai(x, y))| : i = 1, 2, 3}}
≤ supy∈D{|u(x, y)|+max{|v(x, y)|, |ti(x, y)| : i = 1, 2, 3}+ {|r(x, y)|

+max{|p(x, y)|, |qi(x, y)| : i = 1, 2, 3}}
max{|h(c(x, y))|, |h(s(x, y))|, |h(ai(x, y))| : i = 1, 2, 3}}

≤ ψ(k) + θ(k, h) for x ∈ B(0, k).

Thus H is a self mapping on BB(S).
Now as in the proof of Theorem 5.1, we can immediately conclude that h, g ∈
BB(S) and for all k ≥ 1,

dk(Hh,Hg) ≤ dk(h, g),

which yields that

d(Hh,Hg) =

∞∑
k=1

1

2k
dk(Hh,Hg)

1 + dk(Hh,Hg)
≤
∞∑
k=1

1

2k
dk(h, g)

1 + dk(h, g)
= d(h, g)

for h, g ∈ BB(S). Thus H is nonexpansive.
Now we assert that for each n ≥ 0,

|wn(x)| ≤
n∑
j=0

ψ(ϕj(‖x‖)), x ∈ S. (62)

For this, by (B4) we have
|w0(x)| ≤ supy∈D{|u(x, y)|+ max{|v(x, y)|, |ti(x, y)| : i = 1, 2, 3}}

≤ ψ(‖x‖), x ∈ S
i.e., (62) is true for n = 0. Suppose that (62) holds for some n ≥ 0, then
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from (B4)- (B6) we find

|wn+1(x)| = |opty∈D{u(x, y) + r(x, y)wn(c(x, y)) + opt{v(x, y), p(x, y)

wn(s(x, y)), ti(x, y) + qi(x, y)wn(ai(x, y)) : i = 1, 2, 3}}|
≤ sup

y∈D
{|u(x, y)|+ |r(x, y)| |wn(c(x, y))|+ max{|v(x, y)|, |p(x, y)|

|wn(s(x, y))|, |ti(x, y)|+ |qi(x, y)||wn(ai(x, y))| : i = 1, 2, 3}}
≤ sup

y∈D
{|u(x, y)|+ max{|v(x, y)|, |ti(x, y)| : i = 1, 2, 3}

+[ |r(x, y)|+ max{|p(x, y)|, |qi(x, y)| : i = 1, 2, 3}]
max{|wn(c(x, y))|, |wn(s(x, y))|, |wn(ai(x, y))| : i = 1, 2, 3}}

≤ ψ(‖x‖) +
n∑
j=0

ψ(ϕj+1(‖x‖))

≤
n+1∑
j=0

ψ(ϕj(‖x‖)),

Hence (62) holds for all n ≥ 0.
Next we claim that {wn}n≥0 is a cauchy sequence in BB(S). Given k ≥ 1 and

x0 ∈ B(0, k), let ε > 0, n,m ∈ N . Suppose that opty∈D = supy∈D. Then we
select y, z ∈ D such that

wn(x0) < u(x0, y) + r(x0, y)wn−1(c(x0, y)) + opt{v(x0, y), p(x0, y)wn−1

(s(x0, y)), ti(x0, y) + qi(x0, y)wn−1(ai(x0, y)) : i = 1, 2, 3}+ ε

2
wn+m(x0) < u(x0, z) + r(x0, z)wn+m−1(c(x0, z)) + opt{v(x0, z), p(x0, z)

wn+m−1(s(x0, z)), ti(x0, z) + qi(x0, z)wn+m−1(ai(x0, z))

: i = 1, 2, 3}+ ε

2
wn(x0) ≥ u(x0, z) + r(x0, z)wn−1(c(x0, z)) + opt{v(x0, z), p(x0, z)

wn−1(s(x0, z)), ti(x0, z) + qi(x0, z)wn−1(ai(x0, z)) : i = 1, 2, 3},
wn+m(x0) ≥ u(x0, y) + r(x0, y)wn+m−1(c(x0, y)) + opt{v(x0, y), p(x0, y)

wn+m−1(s(x0, y)), ti(x0, y) + qi(x0, y)wn+m−1(ai(x0, y)) : i = 1, 2, 3}.
(63)

Now in view of (63), (B6) and Lemma 2.2, it immediately follows that

|wn+m(x0)− wn(x0)| ≤ |wn+m−1(x1)− wn−1(x1)|+ ε/2, (64)

for some y1 ∈ {y, z} and x1 ∈ {c(x0, y1), s(x0, y1), ai(x0, y1) : i = 1, 2, 3}.
Similarly, we conclude that the inequality (64) holds for
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opty∈D = infy∈D. Proceeding in this way, we select yj ∈ D and xj ∈
{c(xj−1, yj), s(xj−1, yj), ai(xj−1, yj) : i = 1, 2, 3} for j = 2, 3, ..., n such that

|wn+m−1(x1)− wn−1(x1)| < |wn+m−2(x2)− wn−2(x2)|+ 2−2ε

|wn+m−2(x2)− wn−2(x2)| < |wn+m−3(x3)− wn−3(x3)|+ 2−3ε

· · · · · · · · ·
|wm+1(xn−1)− w1(xn−1)| < |wm(xn)− w0(xn)|+ 2−nε. (65)

It follows from (B5), (60), (62), (64) and (65) that
|wn+m(x0)− wn(x0)| < |wm(xn)− w0(xn)|+

∑n
i=1 2−iε

< |wm(xn)|+ |w0(xn)|+ ε
≤

∑m
i=0 ψ(ϕi(‖xn‖)) + ψ(‖xn‖) + ε

≤
∑m
i=0 ψ(ϕi+n(‖x0‖)) + ψ(ϕn(‖x0‖)) + ε

≤
∑∞
j=n−1 ψ(ϕj(k)) + ε,

which implies that

dk(wn+m, wn) ≤
∞∑

j=n−1

ψ(ϕj(k)) + ε. (66)

Letting ε→ 0+ in the above inequality, we obtain
dk(wn+m, wn) ≤

∑∞
j=n−1 ψ(ϕj(k)), which confirms that {wn}n≥0 is a

cauchy sequence in (BB(S), d) since
∑∞
i=0 ψ(ϕn(t)) < ∞, for each t > 0.

Next, suppose {wn}n≥0 converges to some w ∈ BB(S). Since H is nonexpan-
sive, it follows that

d(w,Hw) ≤ d(w,Hwn) + d(Hwn, Hw)
≤ d(w,wn+1) + d(wn, w)
→ 0 as n→∞

i.e., Hw = w. Thus the functional equation (2) possesses a solution w.
Now we shall show that (B8) holds.
Let ε > 0, x0 ∈ S, {yn}n≥1 ⊂ D and xn ∈ {c(xn−1, yn), s(xn−1, yn), ai(xn−1, yn) :
i = 1, 2, 3} for n ≥ 1. Put k = [‖x0‖] + 1. Then there exists a positive integer
m such that

dk(w,wn) +

∞∑
j=n

ψ(ϕj(k)) < ε, for n > m. (67)

By (62), (B5) and (67), we infer that for n > m,
|w(xn)| ≤ |w(xn)− wn(xn)|+ |wn(xn)|

≤ dk(w,wn) +
∑∞
j=0 ψ(ϕj(‖xn‖))

≤ dk(w,wn) +
∑∞
j=n ψ(ϕj(k))

≤ ε,
which means that limn→∞ w(xn) = 0.



Existence and uniqueness of solutions for certain functional equations and
system of functional equations arising in dynamic programming 23

Finally, we shall show that (B9) holds. Suppose that the functional equation
(2) possesses another solution h ∈ BB(S), which satisfies condition (B8). Let
ε > 0 and x0 ∈ S. If opty∈D = supy∈D, then there exists y, z ∈ S such that

w(x0) < u(x0, y) + r(x0, y)w(c(x0, y)) + opt{v(x0, y), p(x0, y)w(s(x0, y)),

ti(x0, y) + qi(x0, y)w(ai(x0, y)) : i = 1, 2, 3}+
ε

2
,

h(x0) < u(x0, z) + r(x0, z)h(c(x0, z)) + opt{v(x0, z), p(x0, z)h(s(x0, z)),

ti(x0, z) + qi(x0, z)h(ai(x0, z)) : i = 1, 2, 3}+
ε

2
,

w(x0) ≥ u(x0, z) + r(x0, z)w(c(x0, z)) + opt{v(x0, z), p(x0, z)w(s(x0, z)),

ti(x0, z) + qi(x0, z)w(ai(x0, z)) : i = 1, 2, 3},
h(x0) ≥ u(x0, y) + r(x0, y)h(c(x0, y)) + opt{v(x0, y), p(x0, y)h(s(x0, y)),

ti(x0, y) + qi(x0, y)h(ai(x0, y)) : i = 1, 2, 3}. (68)

Using Lemma (2.2), (B6) and (68), we find

|w(x0)− h(x0)| ≤ |w(x1)− h(x1)|+ ε
2 . (69)

for some y1 ∈ {y, z} and x1 ∈ {c(x0, y1), s(x0, y1), ai(x0, y1) : i = 1, 2, 3}.
Similarly, we conclude that (69) holds for opty∈D = infy∈D. Proceeding in
this way, we select yj ∈ D and xj ∈ {c(xj−1, yj), s(xj−1, yj), ai(xj−1, yj) : i =
1, 2, 3} for j = 2, 3, ..., n satisfying

|w(x1)− h(x1)| < |w(x2)− h(x2)|+ 2−2ε

|w(x2)− h(x2)| < |w(x3)− h(x3)|+ 2−3ε

· · · · · · · · ·
|w(xn−1)− h(xn−1)| < |w(xn)− h(xn)|+ 2−nε. (70)

Combining (69) and (70), we obtain

|w(x0)− h(x0)| < |w(xn)− h(xn)|+
∑n
j=1 2−jε < |w(xn)− h(xn)|+ ε.

Letting n→∞ in the above inequalities, by (B8) we get

|w(x0)− h(x0)| ≤ ε.

As ε → 0+ in the above inequality, it follows that w(x0) = h(x0). This
completes the proof.

Remark 5.4. 1. In case u = r = 0 and p = 0, Theorem 5.3 reduces to
Theorem 4.3 of Pathak and Deepmala [17].
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2. In case t1 = t2 = t3 = q2 = q3 = 0, Theorem 5.3 reduces to Theorem 4.2
of Liu et al. [16].

3. If r = v = p = t3 = q3 = 0, then Theorem 5.3 reduces to Theorem 4.3 of
Liu et al. [12].

4. If we replace opty∈D = supy∈D, p = q1 = 1, u = r = q2 = q3 = t2 = t3 =
0, then Theorem 5.3 reduces to Theorem 2.2 of Liu et al. [15].

5. If v = p = t3 = q3 = 0, then Theorem 5.3 reduces to Theorem 3.4 of Liu
et al. [13].

6. In case u = r = q3 = t1 = t2 = t3 = 0 and (ϕ,ψ) ∈ Φ8, Theorem 5.3
reduces to Theorem 3.4 of Jiang et al. [8].

7. If we replace opty∈D = infy∈D, p = q1 = 1 and u = r = t2 = t3 = q2 =
q3 = 0, then Theorem 5.3 reduces to Theorem 3.4 of Liu and Kang [10].

8. Theorem 5.3 extends and improve the results in Bellman [1].

9. If we replace u(x, y) = λu1(x, y), v(x, y) = (1−λ)v1(x, y), r = q1 = q2 =
q3 = (1 − λ), p = 0, a1 = a2 = a3 = a, ψ(t) = Mt and ϕ ∈ Φ9, for
(x, y) ∈ S × D, t ∈ R+, where λ ∈ [0, 1] and M is a positive constant,
then Theorem 5.3 reduces to Theorem 3.1 of Liu and Ume [11], which
in turn, generalizes the results in [4] and [3].

The example below demonstrates that Theorem 5.3 generalizes and unifies
the results in [1, 3, 4, 8, 10, 11, 12, 13, 15, 16, 17].

Example 5.2. Let X = Y = R, S = D = [1,∞), ψ(t) = 2t3, ϕ(t) = t
2 , ∀ t ∈

R+. Consider the following functional equation:

f(x) = opty∈D

{
x4

1 + x+ y
+

1

3 + x+ y2
f

(
x sin(2xy)

2 + y

)
+ opty∈D

{
x3

1 + | sin(3xy2 + 4)|
,

1

5
cos(x+ 3y2)f

(
x2

2 + x+ y

)
,

x4

1 + xy
+

1

4 + xy
f

(
x sin(2x+ 3y)

2 + y2

)
,

x4

1 + x+ y2
+

1

7 + | sin(3x+ y2)|

f

(
x

2 + y

)
,

x4

1 + x+ cos(x+ 2y2)
+

1

6
cos(3x+ y + 4)f

(
x

2 + sin(3x+ y)

)}}
.

(71)
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Note that

|u(x, y)| = x4

1+x+y ≤ x3 ≤ ψ(|x|),
|v(x, y)| = x3

1+| sin(3xy2+4)| ≤ x3 ≤ ψ(|x|),
|t1(x, y)| = x4

1+xy ≤ x3 ≤ ψ(|x|),
|t2(x, y)| = x4

1+x+y2 ≤ x3 ≤ ψ(|x|),
|t3(x, y)| = x4

1+x+| cos(x+2y2)| ≤ x3 ≤ ψ(|x|),

and hence

sup
y∈D
{|u(x, y)|+ max{|v(x, y)|, |ti(x, y)| : i = 1, 2, 3}} ≤ 2x3 = ψ(|x|), ∀x ∈ S.

Also, we have

max

{
x| sin(2xy)|

2 + y
,

x2

2 + x+ y
,
x| sin(2x+ 3y)|

2 + y2
,

x

2 + y
,

x

2 + | sin(3x+ y)|

}
≤ x

2
= ϕ(x),

sup
y∈D

{
1

3 + x+ y2
+ max

{
1

5
| cos(x+ 3y2)|, 1

4 + xy
,

1

7 + | sin(3x+ y2)|
,

1

6
| cos(3x+ y + 4)|

}}
≤ 1.

Thus it follows from Theorem 5.3 that the functional equation (71) possesses
a solution w ∈ BB(S). However the corresponding results in [1, 3, 4, 8, 10,
11, 12, 13, 15, 16, 17] are not applicable for the functional equation (71). For
this, we observe that ∀(x, y) ∈ S ×D

|v(x, y)| = x3

1 + | sin(3xy2 + 4)|
> 0, |r(x, y)| = 1

3 + x+ y2
> 0,

and

|t2(x, y)| = x4

1 + x+ y2
> 0, ∀(x, y) ∈ S ×D.

Also,

|u(x, y)| = x4

1 + x+ y
≤ M |x|,

does not holds for (x, y) = (M + 2, 1), where M is a positive constant.
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6 Significance

Dynamic programming has been applied to various type of problems in several
different fields. The key elements associated with dynamic programming are
stages, states, decisions, transformations, and returns. Dynamic programming
occurs in multistage decision processes, i.e., it is an approach based upon the
idea of imbedding any particular problem within a family of similar subprob-
lems. This allows us to replace a multidimensional maximization problem by
a corresponding problem of solving a system of recurrence relations involving
functions of much smaller dimensions [1].

Bellman [1] proposed that there should be a formulation of the prob-
lem which preserves dimensionality and saves the researchers from becoming
bogged down in the complexities of multidimensional analysis. Assume that
we have a quantity x which we divide into two nonnegative parts y and x− y,
obtaining from the first quantity y a return of g(y) and from the second a
return of h(x − y). If we wish to perform this division in such a way as to
maximize the total return fare then taking preservation of one-dimensionality
as a goal, Bellman [1] proceeded as follows: The maximum total return over
an N -stage process depends only upon N and the initial quantity x. Define
the function,
fN (x) = the maximum return obtained from an N -stage process starting with
an initial quantity x ≥ 0, for N = 1, 2, ....
Then we have

fN (x) = Max(0<y<x)[g(y) + h(x− y) + fN−1(a(y) + b(x− y))], N ≥ 2.

If N is large, it is reasonable to consider as an approximation to the N -
stage process, the infinite process defined by the requirement that the process
continues indefinitely. So, Bellman [1] suggested the following single equation
for the above situation

f(x) = Sup(0≤y≤x)[g(y) + h(x− y) + f(a(y) + b(x− y))].

This approach was first applied to engineering control theory and then to
other fields of applied mathematics, and later it became an important tool
in economic theory. Unfortunately, many of the mathematical models of the
universe, economic, physical, biological, or otherwise are large scale complex
problems, the fastest computers and machines still require an appreciable time
to determine the solution in this manner. Some of the difficulties in apply-
ing dynamic programming to real world problems are: inability of complete
information of the constraints, and the computational time and feasibility of
the solutions during the reduction of dimensionality of a complex problem of
multistage decision making process into several interrelated subproblems of
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less dimensionality. For details of computational and approximate dynamic
programming, see [18]. At the present time one of the crucial problems is to
know that for the functional equations such as discussed in this work (which
represent mathematical formulations of real world problems) solutions exist or
not. Thus we conclude that our results will be useful to validate the existence
of a unique solution, and of coincidence solutions.

Acknowledgement: This work is carried out under the project on Optimiza-
tion and Reliability Modelling of Indian Statistical Institute, India.
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