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Positive solutions for singular nonlocal
boundary value problems involving integral

conditions with derivative dependence

Baoqiang Yan, Donal O’Regan and Ravi P. Agarwal

Abstract

In this paper using a fixed point theory on a cone we present some
new results on the existence of multiple positive solutions for singular
nonlocal boundary value problems involving integral conditions with
derivative dependence.

1. Introduction.

In this paper we consider the existence of positive solutions of nonlinear
nonlocal boundary value problems (BVP) of the form

−x′′ = q(t)f(t, x(t), x′(t)), t ∈ (0, 1) (1.1)

with integral boundary conditions

x′(0) = 0, x(1) = α[x] =

∫ 1

0

x(s)dA(s) (1.2)

involving a Stieltjes integral, where A ∈ BV [0, 1].
Il’in and Moiseev first considered the existence of a solution to

x′′(t) = f(t, x(t), x′(t)), t ∈ (0, 1),
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x(0) = 0, x(1) =

m∑
i=1

αix(ηi)

(see [10, 11]). Using degree-theoretic arguments, Gupta et al obtained condi-
tions on the existence of solutions for the m-point boundary problem

x′′(t) = f(t, x(t), x′(t)) + e(t), t ∈ (0, 1),

x(0) = 0, x(1) =

m∑
i=1

αix(ηi)

(see [7, 8]). In [12] using a Leray-Schauder alternative Ma showed the existence
of at least one solution of

x′′(t) = f(t, x(t), x′(t)) + e(t), t ∈ (0, 1),

x′(0) = 0, x(1) =

m∑
i=1

αix(ηi).

In [22, 24], Webb and Infante considered

−x′′ = q(t)f(t, x(t)), t ∈ (0, 1) (1.3)

with boundary conditions

x′(0) = 0, x(1) = α[x] =

∫ 1

0

x(s)dA(s), (1.4)

where dA(s) has a signed measure, and established the existence of positive
solutions and multiple positive solutions for BVP (1.3)-(1.4) when f is contin-
uous and independent of x′.

The boundary condition in BVP (1.1)-(1.2) generalizes the boundary con-
ditions in [7-8, 10-13] and (1.1) generalizes the equations in [9,13-18,21-24]
(there f is independent of x′). One goal in this paper is to attempt to fill
a gap in the theory of singular nonlocal boundary value problems involving
integral conditions with derivative dependence.

Our paper is organized as follows. In Section 2, we present some lemmas
and preliminaries. In Section 3, two theorems are listed to show that x′ of
f(t, x, x′) can lead to BVP (1.1)-(1.2) having no positive solutions. In section
4, we discuss the existence of multiple positive solutions for BVP (1.1)-(1.2)
when f has no singularities. Section 5 presents the multiplicity of positive
solutions for BVP (1.1)-(1.2) when f is singular at x = 0 but not at x′ = 0. In
Section 6, we discuss the multiplicity of positive solutions for BVP (1.1)-(1.2)
when f is singular at x′ = 0 but not at x = 0. In Section 7, we consider the
case f is singular at x = 0 and x′ = 0.
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2. Preliminaries

Let R = (−∞,+∞), R+ = (0,+∞), R
+

= [0,+∞), R− = (−∞, 0) and we
list the following conditions for convenience.

(C1) A ∈ BV [0, 1] with
∫ 1

0
G(t, s)dA(t) ≥ 0 for a.e. s ∈ [0, 1], 0 ≤

∫ 1

0
dA(s)

and
∫ 1

0
|dA(t)| < 1, where

G(t, s) =

{
1− t, 0 ≤ s ≤ t ≤ 1
1− s, 0 ≤ t ≤ s ≤ 1,

(C2)

q ∈ C[0, 1], q(t) > 0 on (0, 1) and f ∈ C([0, 1]×R+ ×R−, R+
) with

0 < f(t, x, y) ≤ [h(x) + w(x)][r(|y|) + v(|y|)] on [0, 1]×R+ ×R−,
where w, v ∈ C(R+, R+) are nonincreasing or w ≡ 0, v ≡ 0 and

h, r ∈ C(R
+
, R

+
) are nondecreasing with

∫ 1

0

q(s)r(k0
1

1− s
)ds < +∞,

for all k0 > 0,

(C3)
there exists a constant a ∈ (0, 12 ) such that

lim
x→+∞

f(t, x, y)

x
= +∞,

uniformly for (t, y) ∈ [a, 1− a]× (−∞, 0).

Let p(t) = 1 − t, t ∈ [0, 1] and C1
p [0, 1] = {x : [0, 1] → R

∣∣ x is continu-
ous on [0, 1] and continuously differentiable on (0, 1) with sup

t∈(0,1)
p(t)|x′(t)| =

sup
t∈(0,1)

(1− t)|x′(t)| < +∞}. For x ∈ C1
p , define ‖x‖ = max{‖x‖1, ‖x‖2} where

‖x‖1 = max
t∈[0,1]

|x(t)|, ‖x‖2 = sup
t∈(0,1)

(1− t)|x′(t)|.

Lemma 2.1 C1
p is a Banach space. Also for any x ∈ C1

p , |x′(t)| ≤ ‖x‖
1− t

,

t ∈ (0, 1).
Let

P = {x ∈ C1
p |x(t) is concave and nonincreasing on

[0, 1] and x(0) ≥ ‖x‖2, α[x] ≥ 0}. (2.1)

It is easy to see that P is a cone in C1
p [0, 1].

We note the definition of the fixed point index i(A,Ω∩P, P ). Suppose that
Ω is a bounded open set in real Banach space E with θ ∈ Ω as its vectoreal zero,
P is a cone of E and A : Ω∩P → P is continuous and compact. Assume that
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r : E → P is a retraction mapping, i.e., r is continuous and r(x) = x for all
x ∈ P . Choose R > 0 big enough such that TR = {x ∈ E : ‖x‖ < R} ⊇ Ω∩P .
Then

i(A,Ω ∩ P, P ) := deg(I −A · r, TR ∩ r−1(Ω ∩ P ), θ),

where I : E → E is an identity operator and deg(I−A · r,TR ∩ r−1(Ω∩P), θ)
is the Leray-Schauder degree (see [6]). The following lemmas are needed in
Section 4-7.

Lemma 2.2(see[6]) Let Ω be a bounded open set in real Banach space E,
P be a cone of E, θ ∈ Ω and A : Ω ∩ P → P be continuous and compact.
Suppose

λAx 6= x,∀x ∈ ∂Ω ∩ P, λ ∈ (0, 1].

Then
i(A,Ω ∩ P, P ) = 1.

Lemma 2.3(see[6]) Let Ω be a bounded open set in real Banach space E,
P be a cone of E, θ ∈ Ω and A : Ω ∩ P → P be continuous and compact.
Suppose

Ax 6≤ x, ∀x ∈ ∂Ω ∩ P.

Then
i(A,Ω ∩ P, P ) = 0.

Remark: Ax 6≤ x⇐⇒ x−Ax 6∈ P .

Lemma 2.4 If x ∈ P (defined above in (2.1)), then ‖x‖ = ‖x‖1.

Proof. If x ∈ P , one has

‖x‖1 = max{|x(t)|t ∈ [0, 1]} = x(0) ≥ ‖x‖2.

Then
‖x‖ = max{‖x‖1, ‖x‖2} = ‖x‖1.

The proof is complete.

Lemma 2.5 Assume Φ ∈ C((0, 1), R+) with

∫ 1

0

Φ(t)dt < ∞ and

F (t) =

∫ 1

0

G(t, s)Φ(s)ds+c, where c ≥ 0 is a constant. Then F ∈ P .
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Proof. From the definition of F , we have{
F ′′(t) ≤ 0, t ∈ (0, 1),
F ′(0) = 0, F (1) = c ≥ 0,

which means that

F is nonincreasing and concave down on [0, 1] (2.2)

with F (1) = c ≥ 0. Now (2.2) implies that for t ∈ [0, 1], F (t) = F ((1− t)0 +
t · 1) ≥ (1− t)F (0) + tF (1) ≥ (1− t)F (0) = (1− t)‖F‖1, ∀t ∈ (0, 1) and

F (0) = max
t∈[0,1]

F (t) = ‖F‖1.

Then
‖F‖2 = sup

t∈(0,1)
|(1− t)F ′(t)|

= sup
t∈(0,1)

|(1− t)
∫ t

0

Φ(s)ds| ≤ sup
t∈(0,1)

|F (t)| = ‖F‖1 = F (0). (2.3)

Moreover, from (C1), one has

α[F ] = c

∫ 1

0

dA(s) +

∫ 1

0

F (s)dA(s)

= c

∫ 1

0

dA(s) +

∫ 1

0

Φ(τ)

∫ 1

0

G(s, τ)dA(s)dτ ≥ 0. (2.4)

Hence, (2.2), (2.3) and (2.4) guarantee that F ∈ P . The proof is complete.

For x ∈ P , define an operator by

(Bx)(t) = α[x] +

∫ 1

0

G(t, s)q(s)f(s, x(s) + γ1(s), x′(s) + γ2(s))ds, ∀t ∈ [0, 1],

(2.5)
where γ1 ∈ C[0, 1], γ2 ∈ C[0, 1] with mint∈[0,1] γ1(t) > 0 and maxt∈[0,1] γ2(t) <
0.

Lemma 2.6 Assume that (C1) and (C2) hold. Then B : P → P is continuous
and compact.
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Proof. First we show B : P → P is well defined. For x ∈ P , from (C1) and
(C2), we have

|(Bx)(t)| = |α[x] +

∫ 1

0

G(t, s)q(s)f(s, x(s) + γ(s), x′(s) + γ2(s))ds|

≤ ‖x‖
∫ 1

0

|dA(s)|+
∫ 1

0

(1− s)q(s)|f(s, x(s) + γ1(s), x′(s) + γ2(s))|ds

≤ ‖x‖
∫ 1

0

|dA(s)|+
∫ 1

0

(1− s)q(s)[h(x(s) + γ1(s))

+w(x(s) + γ1(s))][r(|x′(s) + γ2(s)|) + v(|x′(s) + γ2(s)|)]ds

≤ ‖x‖
∫ 1

0

|dA(s)|+
∫ 1

0

(1− s)q(s)[h(‖x‖+ ‖γ1‖) + w( min
s∈[0,1]

γ1(s))]

·[r(‖x‖+ ‖γ2‖
1− s

) + v( min
s∈[0,1]

|γ2(s)|)]ds < +∞, t ∈ [0, 1]

and

(1− t)|(Bx)′(t)| ≤ |(Bx)′(t)|

= |
∫ t

0

q(s)f(s, x(s) + γ1(s), x′(s) + γ2(s))ds|

≤
∫ 1

0

q(s)[h(‖x‖+ ‖γ1‖) + w( min
s∈[0,1]

γ1(s))]

·[r(‖x‖+ ‖γ2‖
1− s

) + v( min
s∈[0,1]

|γ2(s)|)]ds < +∞, t ∈ [0, 1].

Then B is well defined. For every x ∈ P , let Φ(t) = q(t)f(t, x(t)+γ1(t), x′(t)+

γ2(t)), c = α[x] and F (t) =
∫ 1

0
G(t, s)Φ(s)ds + c. It is easy to see that all

conditions of Lemma 2.5 hold, which implies that Bx ∈ P . As a result,
BP ⊆ P . Moreover, since

|(Bx)′(t1)− (Bx)′(t2)|

= |
∫ t2

t1

q(s)f(s, x(s) + γ1(s), x′(s) + γ2(s))ds|

≤
∫ t2

t1

q(s)[h(‖x‖+ ‖γ1‖) + w( min
s∈[0,1]

γ1(s))]

·[r(‖x‖+‖γ2‖1−s ) + v(mins∈[0,1] |γ2(s)|)]ds,

the Cauchy Principle guarantees that

lim
t→0+

(Bx)′(t) exists and lim
t→1−

(Bx)′(t) exists,

which means that Bx ∈ C1[0, 1].
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Next we show that B : P → P is continuous. Assume that {xm}∞m=1 ⊆ P
and x0 ∈ P with lim

m→+∞
xm = x0. Then, there exists an M > 0 such that

‖xm‖ < M for all m ∈ {1, 2, · · · } (Lemma 2.1 guarantees that |x′m(t)| ≤ M

1− t
,

∀t ∈ (0, 1)). Thus,{
lim

m→+∞
(xm(t) + γ1(t)) = x0(t) + γ1(t), t ∈ [0, 1],

lim
m→+∞

(x′m(t) + γ2(t)) = x′0(t) + γ2(t), t ∈ (0, 1)
(2.6)

and

|f(t, xm(t) + γ1(t), x′m(t) + γ2(t))|
≤ [h(xm(t) + γ1(t)) + w(xm(t) + γ1(t))][r(|x′m(t) + γ2(t)|) + v(|x′m(t) + γ2(t)|)]

≤ [h(M + ‖γ1‖) + w( min
t∈[0,1]

γ1(t))][r(
‖x‖+ ‖γ2‖

1− t ) + v( min
t∈[0,1]

|γ2(t)|)].

(2.7)
From (2.6) and (2.7), the Lebesgue Dominated Convergence Theorem guar-

antees that

‖Bxm −Bx0‖1

≤ |α[xm − x0]|+ max
t∈[0,1]

|
∫ 1

0

G(t, s)q(s)[f(s, xm(s) + γ1(s), x′m(s) + γ2(s))

−f(s, x0(s) + γ1(s), x′0(s) + γ2(s))]ds|

≤ ‖xn − x0‖
∫ 1

0

|dA(s)|+
∫ 1

0

(1− s)q(s)|f(s, xm(s) + γ2(s), x′m(s) + γ2(s))

−f(s, x0(s) + γ1(s), x′0(s) + γ2(s))|ds
→ 0, as m→ +∞

and

‖Bxm −Bx0‖2

= sup
t∈(0,1)

(1− t)| −
∫ t

0

q(s)[f(s, xm(s) + γ1(s), x′m(s) + γ2(s))

−f(s, x0(s) + γ1(s), x′0(s) + γ2(s))]ds|

≤
∫ 1

0

q(s)|f(s, xm(s) + γ1(s), x′m(s) + γ1(s))− f(s, x0(s) + γ1(s), x′0(s) + γ2(s))|ds

→ 0, as m→ +∞,

which imply that
lim

m→+∞
‖Bxm −Bx0‖ = 0.

Hence, B : P → P is continuous.
Finally we show for any bounded D ⊆ P , B(D) is relatively compact.

Since D is bounded, there exists an M > 0 such that ‖x‖ ≤ M for all x ∈ D
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(Lemma 2.1 guarantees that |x′(t)| ≤ M

1− t
, ∀t ∈ (0, 1) ). Thus, (C2) gives

‖Bx‖1 = max
t∈[0,1]

|α[x] +

∫ 1

0

G(t, s)q(s)f(s, x(s) + γ1(s), x′(s) + γ2(s))ds|

≤ ‖x‖
∫ 1

0

|dA(s)|+
∫ 1

0

(1− s)q(s)|f(s, x(s) + γ1(s), x′(s) + γ2(s))|ds

≤M
∫ 1

0

|dA(s)|+
∫ 1

0

(1− s)q(s)[h(x(s) + γ1(s)) + w(x(s) + γ1(s))]

·[r(|x′(s) + γ2(s)|) + v(|x′(s) + γ2(s)|)]ds

≤M
∫ 1

0

|dA(s)|+
∫ 1

0

(1− s)q(s)[h(M + ‖γ1‖) + w( min
s∈[0,1]

γ1(s))]

·[r(M + ‖γ2‖
1− s

) + v( min
s∈[0,1]

|γ2(s)|)]ds

and
sup
t∈(0,1)

|(Bx)′(t)|

= sup
t∈[0,1]

| −
∫ 1

0

q(s)f(s, x(s) + γ1(s), x′(s) + γ2(s))ds|

≤
∫ 1

0

q(s)|f(s, x(s) + γ1(s), x′(s) + γ2(s))|ds

≤
∫ 1

0

q(s)[h(x(s) + γ1(s)) + w(x(s) + γ1(s))]

·[r(|x′(s) + γ2(s)|) + v(|x′(s) + γ2(s)|)]ds

≤
∫ 1

0

q(s)[h(M + ‖γ1‖) + w( min
s∈[0,1]

γ1(s))]

·[r(M + ‖γ2‖
1− s

) + v( min
s∈[0,1]

|γ2(s)|)]ds.

Consequently,

the functions belonging to {(BD)(t)} are uniformly bounded on [0, 1] (2.8)

and

the functions belonging to {(BD)′(t)} are uniformly bounded on [0, 1] (2.9)

and so

functions belonging to {(Bx)(t), x ∈ D} are equicontinuous on [0, 1]. (2.10)
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Since

|(Bx)′(t1)− (Bx)′(t2)|

= |
∫ t2

t1

q(s)f(s, x(s) + γ1(s), x′(s) + γ1(s))ds|

≤ |
∫ t2

t1

q(s)[h(M + ‖γ1‖) + w( min
s∈[0,1]

γ1(s))][r(
M + ‖γ2‖

1− s
) + v( min

s∈[0,1]
|γ2(s)|)]ds,

for any ε > 0, there exists a δ > 0 such that

|(Bx)′(t1)− (Bx)′(t2)| < ε, ∀|t1 − t2| < δ, x ∈ D,

which means that

the functions from {(Bx)′(t), x ∈ D} are equicontinuous on (0, 1). (2.11)

Now {Bx, x ∈ D} ⊆ C1[0, 1], where C1[0, 1] = {y : [0, 1] → R : y(t)
is continuously differentible on [0, 1]} is a Banach space with norm ‖y‖0 =
max{maxt∈[0,1] |y(t)|,
maxt∈[0,1] |y′(t)|}.

From (2.8)-(2.11), the Arzela-Ascoli theorem guarantees that B(D) is rela-
tively compact in C1[0, 1]. Then, for any {xn} ⊆ D, there exists a y0 ∈ C1[0, 1]
and a subsequence {xni

} of {xn} such that

lim
ni→+∞

‖Bxni
− y0‖0 = 0.

Now since
‖Bxn1

− y0‖

= max{max{|(Bxni
)(t)−y0(t)|t ∈ [0, 1]}, sup{p(t)|(Bxni

)′(t)−y′0(t)|t ∈ (0, 1)}}

≤ max{max{|(Bxni)(t)− y0(t)|t ∈ [0, 1]},max{|(Bxni)
′(t)− y′0(t)|t ∈ [0, 1])}}

= ‖Bxni
− y0‖0,

we have
lim

ni→+∞
‖Bxni

− y0‖ = 0,

i.e., BD is relatively compact in C1
p .

Hence, B : P → P is continuous and compact.

Remark 1: We use the two functions γ1 ∈ C[0, 1], γ2 ∈ C[0, 1] with
mint∈[0,1] γ1(t) > 0 and maxt∈[0,1] γ2(t) < 0 to help us remove the singularity
of f(t, x, y) at x = 0 and y = 0. If f(t, x, y) is continuous at x = 0 and y = 0,
we would take γ1 ≡ 0, γ2 ≡ 0, t ∈ [0, 1].
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Remark 2: Suppose that x ∈ P satisfies x = Bx, i.e.,

x(t) = α[x] +

∫ 1

0

G(t, s)q(s)f(s, x(s) + γ1(s), x′(s) + γ2(s))ds, ∀t ∈ [0, 1].

Obviously, x(1) = α[x] and direct differentiating yields that

x′(t) = −
∫ t

0

q(s)f(s, x(s) + γ1(s), x′(s) + γ2(s))ds, t ∈ (0, 1),

which together with q(s)f(s, x(s) + γ1(s), x′(s) + γ2(s)) ∈ C[0, 1] means that

x′(0) = 0

and
x′′(t) = −q(t)f(t, x(t) + γ1(t), x′(t) + γ2(t)), t ∈ (0, 1).

Hence, x(t) satisfies

x′′(t) = −q(t)f(t, x(t) + γ1(t), x′(t) + γ2(t)), t ∈ (0, 1)

with

x′(0) = 0, x(1) =

∫ 1

0

x(s)dA(s).

Lemma 2.7 Assume that (C1), (C2) and (C3) hold. Then there exists R0 > 0
such that

i(B,ΩR ∩ P, P ) = 0, ∀R ≥ R0,

where ΩR = {x ∈ Cp|‖x‖ < R}.

Proof. Let N∗ = 2
a
∫ 1−a
a

(1−s)q(s)ds . From (C3), there exists R′ > 0 such that

f(t, x, y) ≥ N∗x, ∀x ≥ R′, y ∈ (−∞, 0), t ∈ [a, 1− a]. (2.12)

Let R0 = R′

a . For all R > R0, set

ΩR = {x ∈ Cp|‖x‖ < R}.

Now we show that
Bx 6≤ x, ∀x ∈ P ∩ ∂ΩR. (2.13)

In fact, suppose that there is a x0 ∈ P ∩ ∂ΩR with Bx0 ≤ x0. Lemma 2.4
implies that x0(t) ≥ (1− t)‖x0‖, ∀t ∈ (0, 1), and so x0(t) ≥ a‖x0‖ ≥ aR ≥ R′
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for all t ∈ [a, 1−a]. Thus, x0(t)+γ1(t) ≥ a‖x0‖ ≥ aR ≥ R′ for all t ∈ [a, 1−a]
also. Then, from (2.12), we have

f(t, x0(t) + γ1(t), x′0(t) + γ2(t)) ≥ N∗(x0(t) + γ1(t))

≥ N∗x0(t) ≥ N∗aR, ∀t ∈ [a, 1− a],

and so

x0(0) ≥ (Bx0)(0)

= α[x0] +

∫ 1

0

(1− s)q(s)f(s, x0(s) + γ1(s), x′0(s) + γ2(s))ds

≥
∫ 1−a

a

(1− s)q(s)f(s, x0(s) + γ1(s), x′0(s) + γ2(s))ds

≥
∫ 1−a

a

(1− s)q(s)N∗(x0(s) + γ1(s))ds

≥
∫ 1−a

a

(1− s)q(s)dsN∗aR

> R,

which implies that ‖x0‖ ≥ ‖x0‖1 > R, a contradiction to x0 ∈ P ∩ ∂Ω. Then,
(2.13) is true. From Lemma 2.3, it is easy to see that

i(B,P ∩ Ω, P ) = 0.

The proof is complete.

3. Nonexistence of positive solutions to BVP(1.1)-(1.2)

In this section, we notice that the presence of z in f(t, x, z) can lead to the
nonexistence of positive solutions to (1.1)-(1.2).

Theorem 3.1 Suppose that there is a β ∈ C((0, 1), (0,+∞)) and δ > 0 such
that

f(t, y, z) ≤ −β(t), ∀(t, y, z) ∈ (0, 1)× (0,+∞)× [−δ, 0). (3.1)

Then (1.1)-(1.2) has no positive solutions.

Proof. Suppose y0(t) is a positive solution to (1.1)-(1.2). Then

y′′0 (t) + q(t)f(t, y0(t), y′0(t)) = 0, t ∈ (0, 1)

y′0(0) = 0, y0(1) = α[y],
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which means that there is a t0 ∈ (0, 1) with y′0(t0) < 0, y0(t0) > 0 (oth-
erwise y′(t) ≥ 0 for all t ∈ (0, 1) which would contradict y(1) = α[y] ≤
maxt∈[0,1] y(t)

∫ 1

0
|dA(s)| < maxt∈[0,1] y(t)). Let t∗ = inf{t < t0|y′0(s) < 0 for

all s ∈ [t, t0]}. Clearly,

t∗ ≥ 0 and y′0(t∗) = 0, y′0(t) < 0 for all t ∈ (t∗, t0]. (3.2)

The continuity of y′0(t) implies that there is a γ > 0 such that 0 > y′0(t) > −δ
for all t ∈ (t∗, t∗+ γ]. Then (3.1) guarantees that f(t, y0(t), y′0(t)) ≤ −β(t) for
all t ∈ (t∗, t∗ + γ], which implies that

y′′0 (t) ≥ β(t) > 0, ∀t ∈ (t∗, t∗ + γ],

and so
y′0(t) > 0, ∀t ∈ (t∗, t∗ + γ],

which contradicts (3.2).
Consequently, (1.1)-(1.2) has no positive solutions.

Theorem 3.2 Suppose q ∈ C[0, 1] with q(t) > 0 for all t ∈ (0, 1) and here are
two functions h ∈ C((0,+∞), (0,+∞)), g ∈ C((−∞, 0), (0,+∞)) with

|f(t, y, z)| ≤ h(x)g(z), ∀(t, y, z) ∈ [0, 1]× (0,+∞)× (−∞, 0),

where

∫ 0

z

1

g(r)
dr = +∞ for all z < 0.

(3.3)

Then (1.1)-(1.2) has no positive solutions.

Proof. Suppose y0(t) is a positive solution to (1.1)-(1.2). Then

y′′0 (t) + q(t)f(t, y0(t), y′0(t)) = 0, t ∈ (0, 1)

y′0(0) = 0, y0(1) = α[y],

which means that there is a t0 ∈ (0, 1) with y′0(t0) < 0, y0(t0) > 0 (oth-
erwise y′(t) ≥ 0 for all t ∈ (0, 1) which would contradict y(1) = α[y] ≤
maxt∈[0,1] y(t)

∫ 1

0
|dA(s) < maxt∈[0,1] y(t)). Let t∗ = inf{t < t0|y′0(s) < 0 for

all s ∈ [t, t0]}. Clearly,

t∗ ≥ 0 and y′0(t∗) = 0, y′0(t) < 0 for all t ∈ (t∗, t0]. (3.4)

Then, from (3.3),

−y′′0 (t) = q(t)f(t, y0(t), y′0(t))
≤ q(t)h(y0(t))g(y′0(t)), t ∈ (t∗, t0],
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and so

− y′′0 (t)

g(y′0(t))
≤ q(t)h(y0(t)), t ∈ (t∗, t0].

Integration from t∗ to t0 yields

+∞ =

∫ 0

y′0(t0)

1

g(r)
dr ≤

∫ t0

t∗

q(s)h(y0(s))ds < +∞.

This is a contradiction.
Consequently, (1.1)-(1.2) has no positive solutions.

Example 3.1. Consider the boundary value problems

x′′ + (1− t)a[1− (|x′|)−a][xb + x−d] = 0, t ∈ (0, 1), (3.5)

x′(0) = 0, x(1) =

∫ 1

0

x(s)dA(s), (3.6)

where dA(t) = 1
8 sin 2πtdt, a > 0, b > 0, d > 0.

It is easy to see that f(t, x, z) = (1−t)a(1−(|z|)a)[xb+x−d] for all (t, x, z) ∈
[0, 1]×[0,+∞)×(−∞,+∞). Since limx→0+(xb+x−d) = limx→+∞(xb+x−d) =
+∞, there is a c0 > 0 such that xb + x−d ≥ c0 for all x ∈ (0,+∞). Then
f(t, x, z) ≤ (1− t)a(1−2a)c0 for all (t, x, z) ∈ (0, 1)× (0,+∞)× [− 1

2 , 0). Then
Theorem 3.1 guarantees that (3.5)-(3.6) has no positive solutions.

Example 3.2. Consider the boundary value problems

x′′ + (−x′)a[1 + xb] = 0, t ∈ (0, 1), (3.7)

x′(0) = 0, x(1) =

∫ 1

0

x(s)dA(s), (3.8)

where dA(s) = 1
8sds, a > 1, b > 1, µ > 0, t ∈ [0, 1].

Let h(x) = 1 + xb, g(y) = (−y)a. It is easy to see that

|f(t, x, y)| = [1 + xb](−y)a = h(x)g(y), ∀(t, x, y) ∈ [0, 1]× [0,+∞)× (−∞, 0]

and ∫ 0

z

1

g(y)
dy = +∞, ∀z < 0.

Theorem 3.2 implies that (3.7)-(3.8) has no positive solutions.
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4. Multiple positive solutions to BVP(1.1)-(1.2) without
singularities

In this section, f is continuous for (t, x, y) ∈ [0, 1] × [0,+∞) × (−∞, 0] and

c0 =

∫ 1

0

|dA(s)|.

Theorem 4.1 Suppose (C1) − (C3) hold with w(t) ≡ 0 and v(t) ≡ 0 for all
t ∈ [0,+∞) and

sup
c∈(0,+∞)

(1− c0)c

I−1(h(c)
∫ 1

0
q(s)ds)

> 1,

where I(z) =

∫ z

0

1

r(u)
du, z ∈ R+, I(+∞) = +∞.

(4.1)

Then (1.1) has at least two positive solutions x0,1, x0,2 ∈ C1[0, 1] ∩ C2(0, 1)
with x0,1(t) ≥ 0 and x0,2(t) > 0 on (0, 1).

Proof. From (4.1), choose an R1 > 0 with

R1(1− c0)

I−1(h(R1)
∫ 1

0
q(s)ds)

> 1. (4.2)

From (C3), choose an R2 > max{R1,
R′

a } (R′ is defined as in (2.12)).
For x ∈ P , define

(Tx)(t) = α[x] +

∫ 1

0

G(t, s)q(s)f(s, x(s), x′(s))ds, t ∈ [0, 1]. (4.3)

It is easy to see that Lemma 2.6 guarantees that the operator T in (4.3) is
continuous and compact from P to P (note here γ1(t) ≡ 0 and γ2(t) ≡ 0, for
t ∈ [0, 1]).

Let
Ω1 = {x ∈ C1

p |‖x‖ < R1}
and

Ω2 = {x ∈ C1
p |‖x‖ < R2}.

Then, we claim that

µTx 6= x, ∀µ ∈ (0, 1], x ∈ P ∩ ∂Ω1. (4.4)

Now we show that (4.4) is true. Suppose there exists an x0 ∈ P ∩ ∂Ω1 and
a µ0 ∈ (0, 1] such that x0 = µ0Tx0. Then{

x′′0(t) + µ0q(t)f(t, x0(t), x′0(t)) = 0, t ∈ (0, 1)
x′0(0) = 0, x0(1) = α[x0],

(4.5)
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which means that x0(t) ≥ 0 is on (0, 1) with x′0(0) = 0 and x′0(t) is nonin-
creasing on (0, 1). Without loss of generality, we assume that x′0(t) < 0 for all
t ∈ (0, 1) (obviously, (4.7) is true for x′0(t) = 0). From (4.5), we have

−x′′0(t) ≤ q(t)f(t, x0(t), x′0(t)) ≤ q(t)h(x0(t))r(−x′0(t)), ∀t ∈ (0, 1),

which means that

−x′′0(t)

r(−x′0(t))
≤ h(x0(t))q(t) ≤ h(R1)q(t), ∀t ∈ (0, 1). (4.6)

Integration from 0 to t yields

I(−x′0(t))− I(−x′0(0)) = I(−x′0(t)) ≤ h(R1)

∫ 1

0

q(s)ds,

and so

−x′0(t) ≤ I−1(h(R1)

∫ 1

0

q(s)ds),∀t ∈ (0, 1). (4.7)

Now integrate from 0 to 1 to obtain

R1(1− c0) ≤ x0(0)− x0(1) ≤ I−1(h(R1)

∫ 1

0

q(s)ds),

a contradiction to (4.2). Then, (4.4) is true. Lemma 2.1 implies that

i(T,Ω1 ∩ P, P ) = 1. (4.8)

From Lemma 2.7, we have

i(T, P ∩ Ω2, P ) = 0,

and so
i(T, P ∩ (Ω2 − Ω1), P ) = −1. (4.9)

As a result, there exist x1 ∈ P ∩Ω1 and x2 ∈ P ∩(Ω2−Ω1) such that x1 = Tx1
and x2 = Tx2.

Consequently, BVP(1.1)-(1-2) has at least two different nonnegative solu-
tions x1(t) and x2(t) with ‖x1‖ < R1 < ‖x2‖.

Example 4.1. Consider the boundary value problems

x′′ + µ[1 + |x′|a][1 + xb] = 0, t ∈ (0, 1) (4.10)
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x′(0) = 0, x(1) =

∫ 1

0

x(s)dA(s), (4.11)

with dA(t) = 1
8 sin 2πtdt, 0 < a < 1, b > 1 and µ > 0. If

µ < sup
c∈(0,+∞)

∫ (1−c0)c
0

1
1+sa ds

1 + cb
, (4.12)

then BVP(4.10)-(4.11) has at least two different positive solutions x0,1, x0,2 ∈
C1[0, 1] ∩ C2(0, 1).

It is easy to see that all conditions of Theorem 4.1 hold. Then, Theorem
4.1 guarantees that BVP(4.10)-(4.11) has at least two different positive solu-
tions x0,1, x0,2 ∈ C1[0, 1] ∩ C2(0, 1).

5. Multiple positive solutions to BVP(1.1)-(1.2) with
singularity at x = 0 but not at x′ = 0

In this section our nonlinearity f may be singular at x = 0 but not at x′ = 0

and c0 =

∫ 1

0

|dA(s)| .

Theorem 5.1 Suppose (C1) − (C3) hold with w ∈ C((0,+∞), (0,+∞)) ∩
Lloc[0,+∞) and v(t) ≡ 0 for all t ∈ [0,+∞) and

sup
c∈(0,+∞)

(1− c0)c

I−1(‖q‖0[ch(c) +
∫ c
0
w(s)ds])

> 1, where

I(z) =

∫ z

0

u

r(u)
du, z ∈ (0,+∞), I(+∞) = +∞, ‖q‖0 = max

t∈[0,1]
q(t).

(5.1)

Then (1.1) has at least two positive solutions x0,1, x0,2 ∈ C1[0, 1] ∩ C2(0, 1)
with x0,1(t) > 0 and x0,2(t) > 0 on (0, 1).

Proof. From (5.1) and the continuity of I−1 and h, choose an R1 > 0, and a

ε > 0 with ε <
R1

2
with

R1(1− c0)

I−1((R1 + ε)h(R1 + ε)‖q‖0 + ‖q‖0
∫ R1+ε

0
w(s)ds)

> 1. (5.2)

From (C3), choose a R2 > max{R1,
R′

a } (R′ is defined as in (2.12)).
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Let n0 ∈ {1, 2, · · · } be chosen so that
1

n0
< ε, and let N0 = {n0, n0+1, · · · }.

For each n ∈ N0, for x ∈ P , define

(Tnx)(t) = α[x] +

∫ 1

0

G(t, s)q(s)f(s, x(s) +
1

n
, x′(s))ds, t ∈ [0, 1]. (5.3)

Lemma 2.6 implies that Tn : P → P is continuous and compact (here
γ1(t) ≡ 1

n and γ2(t) ≡ 0, for t ∈ [0, 1]).
Let

Ω1 = {x ∈ C1
q |‖x‖ < R1}

and
Ω2 = {x ∈ C1

q |‖x‖ < R2}.

Then, for each n ∈ N0, we claim that

µTnx 6= x, ∀µ ∈ (0, 1], x ∈ P ∩ ∂Ω1. (5.4)

Now we show that (5.4) is true. Suppose there exists an x0 ∈ P ∩ ∂Ω1 and
a µ0 ∈ (0, 1] such that x0 = µ0Tnx0. Then{

x′′0(t) + µ0q(t)f(t, x0(t) +
1

n
, x′0(t)) = 0, t ∈ (0, 1)

x0(0) = 0, x0(1) = α[x0],
(5.5)

which means that x0(t) > 0 is on (0, 1) with x′0(0) = 0 and x′0(t) is nonin-
creasing on (0, 1). Without loss of generality, we assume that x′0(t) < 0 for all
t ∈ (0, 1) (obviously, (5.7) is true for x′0(t) = 0). From (5.5), we have

−x′′0(t) ≤ q(t)f(t, x0(t)+
1

n
, x′0(t)) ≤ q(t)[h(x0(t)+

1

n
)+w(x0(t)+

1

n
)]r(−x′0(t)),

∀t ∈ (0, 1),

which means that

−x′′0(t)

r(−x′0(t))
≤ [h(x0(t) +

1

n
) + w(x0(t) +

1

n
)]q(t), ∀t ∈ (0, 1)

and so

x′0(t)x′′0(t)

r(−x′0(t))
≤ [h(x0(t) +

1

n
) + w(x0(t) +

1

n
)](−x′0(t))q(t), ∀t ∈ (0, 1). (5.6)

Integration from 0 to t yields

I(−x′0(t))− I(−x′0(0)) = I(−x′0(t))
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≤ ‖q‖0h(x0(0) +
1

n
)(x0(0) +

1

n
) + ‖q‖0

∫ x0(0)+
1
n

α[x0]+
1
n

w(s)ds,

and so

−x′0(t) ≤ I−1(‖q‖0h(R1 + ε)(R1 + ε) + ‖q‖0
∫ R1+ε

0

w(s)ds),∀t ∈ (0, 1], (5.7)

Now integrate from 0 to 1 to obtain

R1(1−c0) ≤ x0(0)−x0(1) ≤ I−1(‖q‖0h(R1+ε)(R1+ε)+‖q‖0
∫ R1+ε

0

w(s)ds),

a contradiction to (5.2). Then, (5.4) is true.
From Lemma 2.2, for each n ∈ N0, we have

i(Tn, P ∩ Ω1, P ) = 1. (5.8)

Lemma 2.7 implies that

i(Tn, P ∩ Ω2, P ) = 0,

and so
i(Tn, P ∩ (Ω2 − Ω1), P ) = −1, n ∈ N0. (5.9)

As a result, for each n ∈ N0, there exist xn,1 ∈ P ∩Ω1 and xn,2 ∈ P ∩(Ω2−Ω1)
such that xn,1 = Tnxn,1 and xn,2 = Tnxn,2.

Now we consider {xn,1}n∈N0
and {xn,2}n∈N0

. Obviously, since {xn,1}n∈N0

is bounded, it is easy to see that

{xn,1(t)} is uniformly bounded on [0, 1] (5.10)

with max
t∈[0,1]

|xn,1(t)| ≤ R1, n ∈ N0.

Using xn,1 instead of x0 in (5.2), from (5.7), one has

−x′n,1(t) ≤ I−1(‖q‖0h(R1 + ε)(R1 + ε) + ‖q‖0
∫ R1+ε

0

w(s)ds),∀t ∈ (0, 1],

which yields that

{x′n,1(t)} is uniformly bounded on [0, 1] (5.11)

and so
{xn,1(t)} is equicontinous on [0, 1]. (5.12)
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Using xn,1 instead of x0 in (5.6), we have

x′n,1(t)x′′n,1(t)

r(−x′n,1(t))
≤ [h(xn,1(t) +

1

n
) + w(xn,1(t) +

1

n
)]q(t), ∀t ∈ (0, 1).

Integration from t1 to t2 yields

|I(−x′n,1(t1)))− I(−x′n,1(t2))| = |
∫ −xn,1(t2)

−xn,1(t1)

r

g(r)
dr|

≤ [h(R1 + ε)|xn,1(t1)− xn,1(t2)|+ |
∫ −xn,1(t2)+

1
n

−xn,1(t1)+
1
n

w(r) dr|]‖q‖0.

Since w ∈ Lloc[0,+∞), from (5.12), we have

{I(−x′n,1(t))} is equicontinous on [0, 1]. (5.13)

Since

|x′n,1(t1)− x′n,1(t2)| = |I−1(I(−x′n,1(t1)))− I−1(I(−x′n,1(t2)))|

and I−1 is uniformly continuous on [0, I(R1)], we have

{x′n,1(t)} is equicontinuous on [0, 1]. (5.14)

From (5.10), (5.11), (5.12) and (5.14), the Arzela-Ascoli Theorem guar-
antees the existence of a subsequence N = (nj) of N0 and a function x0,1 ∈
C1[0, 1] with lim

j→+∞
xnj ,1 → x0,1 with

x′0,1(0) = 0. (5.15)

From

lim
j→+∞

f(t, xnj ,1(t) +
1

nj
, x′nj ,1(t)) = f(t, x0,1(t), x′0,1(t)), ∀t ∈ (0, 1),

xnj ,1(t) = xnj ,1

(
1

2

)
+ x′nj ,1

(
1

2

)(
t− 1

2

)
+

∫ t

1
2

(s− t) q(s) f(s, xnj ,1(s) +
1

nj
, x′nj ,1(s)) ds

for t ∈ (0, 1) and

xnj ,1(1) =

∫ 1

0

xnj ,1(s)dA(s),
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the Lebesgue Dominated Convergence Theorem guarantees that

x0,1(t) = x0,1

(
1

2

)
+x′0,1

(
1

2

)(
t− 1

2

)
+

∫ t

1
2

(s−t) q(s) f(s, x0,1(s), x′0,1(s)) ds

(5.16)

x0,1(1) =

∫ 1

0

x0,1(s)dA(s) = α[x0,1]. (5.17)

Hence, from (5.15)-(5.17), x0,1(t) is a positive solution to BVP(1.1)-(1.2) with
‖x0,1‖ ≤ R1. Also (5.2) guarantees that ‖x0,1‖ < R1.

For the set {xn,2}n∈N0
⊆ (Ω2 − Ω1) ∩ P , from the same proof for the set

{xn,1}n∈N0
, we can obtain a convergent subsequence {xni,2} of {xn,2} with

lim
i→+∞

xni,2 = x0,2 ∈ C1. Moreover, x0,2 is a positive solution to equation (1.1)

with R1 < ‖x0,2‖ < R2.
Consequently, BVP(1.1)-(1.2) has at least two different positive solutions

x0,1(t) and x0,2(t) with ‖x0,1‖ < R1 < ‖x0,2‖.

Example 5.1. Consider the boundary value problems

x′′ + µ[1 + |x′|a][1 + xb + x−d] = 0, t ∈ (0, 1) (5.18)

x′(0) = 0, x(1) =

∫ 1

0

x(s)dA(s), (5.19)

with dA(t) =
1

8
sin 2πtdt, 0 < a < 1, b > 1, 0 < d < 1 and µ > 0. If

µ < sup
c∈(0,+∞)

∫ (1−c0)c
0

s
1+sa ds

c+ cb+1 + 1
1−dc

1−d , (5.20)

then BVP(5.18)-(5.19) has at least two different positive solutions x0,1, x0,2 ∈
C1[0, 1] ∩ C2(0, 1).

It is easy to see that all conditions of Theorem 5.1 hold. Then, Theorem
5.1 guarantees that BVP(5.18)-(5.19) has at least two different positive solu-
tions x0,1, x0,2 ∈ C1[0, 1] ∩ C2(0, 1).

6. Multiple positive solutions to BVP(1.1)-(1.2) with
singularity at x′ = 0 but not at x = 0

In this section our nonlinearity f may be singular at x′ = 0 but not x = 0 and

c0 =

∫ 1

0

|dA(s)|.
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Theorem 6.1 Suppose (C1) − (C3) hold with v ∈ C((0,+∞), (0,+∞)) and
w(t) ≡ 0 for all t ∈ [0,+∞) and

sup
c∈(0,+∞)

(1− c0)c

I−1(h(c)
∫ 1

0
q(s)ds)

> 1, where

I(z) =

∫ z

0

1

r(u) + v(u)
du, z ∈ (0,+∞), I(+∞) = +∞.

(6.1)

Then BVP(1.1)-(1.2) has at least two positive solutions x0,1, x0,2 ∈ C1[0, 1]∩
C2(0, 1) with x0,1(t) ≥ 0 and x0,2(t) > 0 on (0, 1).

Proof. From (6.1) and the continuity of I−1 and h, choose an R1 > 0, and a

ε > 0 with ε <
R1

2
with

R1(1− c0)

I−1(I(ε) + h(R1)
∫ 1

0
q(s)ds)

> 1.

From (C3), choose a R2 > max{R1,
R′

a } (R′ is defined as in (2.12)).

Let n0 ∈ {1, 2, · · · } be chosen so that
1

n0
< ε, and let N0 = {n0, n0+1, · · · }.

For each n ∈ N0, for x ∈ P , define

(Tnx)(t) = α[x] +

∫ 1

0

G(t, s)q(s)f(s, x(s), x′(s)− 1

n
)ds, t ∈ [0, 1].

Lemma 2.6 guarantees that for each n ∈ N0, Tn : P → P is continuous
and compact (here γ1(t) ≡ 0 and γ2(t) ≡ − 1

n , for t ∈ [0, 1]).
Let

Ω1 = {x ∈ C1
q |‖x‖ < R1}

and
Ω2 = {x ∈ C1

q |‖x‖ < R2}.

An argument similar to that in the proof of (5.4) shows that for each
n ∈ N0, we have that

µTnx 6= x, ∀µ ∈ (0, 1], x ∈ P ∩ ∂Ω1,

which together with Lemma 2.2 implies

i(Tn, P ∩ Ω1, P ) = 1, n ∈ N0.

Since Lemma 2.7 guarantees that

i(Tn, P ∩ Ω2, P ) = 0, n ∈ N0
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we have
i(Tn, P ∩ (Ω2 − Ω1), P ) = −1, n ∈ N0.

As a result, for each n ∈ N0, there exist xn,1 ∈ P ∩Ω1 and xn,2 ∈ P ∩(Ω2−Ω1)
such that xn,1 = Tnxn,1 and xn,2 = Tnxn,2.

An argument similar to that in the proof of (5.10)-(5.12) and (5.14) shows
that

{xn,1(t)}, {xn,2(t)} are uniformly bounded on [0, 1],

{x′n,1(t)}, {x′n,2(t)} are uniformly bounded on [0, 1],

{xn,1(t)}, {xn,2(t)} are equicontinous on [0, 1],

and
{−x′n,1(t)}, {x′n,2(t)} are equicontinuous on [0, 1],

which together with the Arzela-Ascoli Theorem guarantees the existence of a
subsequence {nj} of N0 and a function x0,1 ∈ C1[0, 1] with lim

j→+∞
xnj ,1 → x0,1

with
x′0,1(0) = 0

and the existence of a subsequence {nk} of N0 and a function x0,2 ∈ C1[0, 1]
with lim

k→+∞
xnk,2 → x0,2 with

x′0,2(0) = 0

An argument similar to that in the proof of (5.16)-(5-17) shows that x0,1(t) and
x0,2(t) are two different positive of BVP(1.1)-(1.2) with ‖x0,1‖ < R1 < ‖x0,2‖.

Example 6.1. Consider the boundary value problems

x′′ + µ[1 + |x′|a + |x′|−d][1 + xb] = 0, t ∈ (0, 1) (6.2)

x′(0) = 0, x(1) =

∫ 1

0

x(s)dA(s), (6.3)

with dA(t) =
1

8
sin 2πtdt, 0 < a < 1, b > 1, 0 < d and µ > 0. If

µ < sup
c∈(0,+∞)

∫ (1−c0)c
0

sd

sd+sa+d+1
ds

1 + cb
,

then BVP(6.2)-(6.3) has at least two different positive solutions x0,1, x0,2 ∈
C1[0, 1] ∩ C2(0, 1).
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It is easy to see that all conditions of Theorem 6.1 hold. Then, Theorem
6.1 guarantees that BVP(6.2)-(6.3) has at least two different positive solutions
x0,1, x0,2 ∈ C1[0, 1] ∩ C2(0, 1).

7. Multiple positive solutions to BVP(1.1)-(1.2) with
singularity at x = 0 and x′ = 0

In this section our nonlinearity f may be singular at x = 0 and x′ = 0 and

c0 =

∫ 1

0

|dA(s)|.

Theorem 7.1 Suppose (C1)− (C3) hold and

sup
c∈(0,+∞)

(1− c0)c

I−1(‖q‖0[ch(c) +
∫ c
0
w(s)ds])

> 1, where

I(z) =

∫ z

0

u

r(u) + v(u)
du, z ∈ (0,+∞), I(+∞) = +∞, ‖q‖0 = max

t∈[0,1]
q(t).

(7.1)
Then (1.1) has at least two positive solutions x0,1, x0,2 ∈ C1[0, 1] ∩ C2(0, 1)
with x0,1(t) ≥ 0 and x0,2(t) > 0 on (0, 1).

Proof. From (7.1) and the continuity of I−1, choose an R1 > 0, and a ε > 0

with ε <
R1

2
with

R1(1− c0)

I−1(I(ε) + (R1 + ε)h(R1 + ε)‖q‖0 + ‖q‖0
∫ R1+ε

0
w(s)ds)

> 1.

From (C3), choose a R2 > max{R1,
R′

a } (R′ is defined as in (2.12)).

Let n0 ∈ {1, 2, · · · } be chosen so that
2

n0
< ε, and let N0 = {n0, n0+1, · · · }.

For each n ∈ N0, for x ∈ P , define

(Tnx)(t) = α[x]+

∫ 1

0

G(t, s)q(s)f(s, x(s)+
1

n
(1−s)+

1

n
, x′(s)− 1

n
)ds, t ∈ [0, 1].

Lemma 2.6 guarantees that Tn : P → P is continuous and compact (here
γ1(t) = 1

n (1− t) + 1
n and γ2(t) ≡ − 1

n , for t ∈ [0, 1]).
Set

Ω1 = {x ∈ Cp|‖x‖ < R1}

and
Ω1 = {x ∈ Cp|‖x‖ < R2}.
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An argument argument to that in the proof in Theorem 6.1 yields two different
positive solutions x0,1(t) and x0,2(t) with x0,1 ∈ Ω1∩P and x0,2 ∈ (Ω2−Ω1)∩P .

Example 7.1. Consider the boundary value problems

x′′ + µ[1 + |x′|a + |x′|−e][1 + xb + x−d] = 0, t ∈ (0, 1) (7.2)

x′(0) = 0, x(1) =

∫ 1

0

x(s)dA(s), (7.3)

with dA(t) =
1

8
sin 2πtdt, 0 < a < 1, b > 1, 0 < d < 1, e > 0 and µ > 0. If

µ < sup
c∈(0,+∞)

∫ (1−c0)c
0

se+1

se+sa++1ds

c+ cb+1 + 1
1−dc

1−d ,

then BVP(7.2)-(7.3) has at least two different positive solutions x0,1, x0,2 ∈
C1[0, 1] ∩ C2(0, 1).

It is easy to see that all conditions of Theorem 7.1 hold. Now Theorem
7.1 guarantees that BVP(7.2)-(7.3) has at least two different positive solutions
x0,1, x0,2 ∈ C1[0, 1] ∩ C2(0, 1).
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