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Hop Domination in Graphs-II

C. Natarajan and S.K. Ayyaswamy

Abstract

Let G = (V,E) be a graph. A set S ⊂ V (G) is a hop domina-

ting set of G if for every v ∈ V − S, there exists u ∈ S such that

d(u, v) = 2. The minimum cardinality of a hop dominating set of G is

called a hop domination number of G and is denoted by γh(G). In this

paper we characterize the family of trees and unicyclic graphs for which

γh(G) = γt(G) and γh(G) = γc(G) where γt(G) and γc(G) are the total

domination and connected domination numbers of G respectively. We

then present the strong equality of hop domination and hop indepen-

dent domination numbers for trees. Hop domination numbers of shadow

graph and mycielskian graph of graph are also discussed.

1 Introduction

Domination in graphs is one of the fastest growing areas in Graph theory.

Many authors contribute several interesting domination parameters to nurture

the growth of this research area. An excellent treatment of several topics in

domination can be found in two books [4, 5] written by Haynes et al. The

following are some basic definitions and results to discuss further.

Key Words: Hop domination number, total domination number, connected domination

number
2010 Mathematics Subject Classification: Primary 05C69; Secondary 05C75.
Received: November, 2013.

Revised: November, 2013.

Accepted: November, 2013.

187



HOP DOMINATION IN GRAPHS-II 188

By an ntc graph G we mean a non trivial connected graphG = (V,E) where

V is the set of vertices and E is the set of edges of G. The distance between

two vertices u and v of a graph G is the length of the shortest path joining u

and v in G and is denoted by d(u, v). A graph G is said to be unicyclic if it

has exactly one cycle. A double star is a tree obtained by joining the centers

of two stars K1,r and K1,s. We denote a double star of order r + s + 2 by

D(r, s). A set D ⊂ V is a dominating set of G if every vertex v ∈ V −D is

adjacent to some vertex in D. A dominating set D is said to be minimal if no

subset of D is a dominating set of G. The minimum cardinality of a minimal

dominating set of G is called the domination number of G and is denoted by

γ(G). The upper domination number Γ(G), is the maximum cardinality of a

minimal dominating set of G. A set D ⊂ V is a total dominating set of G if

every vertex v ∈ V is dominated by at least one vertex in D. The minimum

cardinality of such a set is called the total domination number of G and is

denoted by γt(G). A dominating set D is a connected dominating set of G if

the subgraph < D > induced by D, is connected. The minimum cardinality of

a connected dominating set of G is called the connected domination number of

G which we denote by γc(G). S.K. Ayyaswamy et al. [1] have recently defined

a new domination parameter called hop domination number of a graph. The

definition is as follows: A set S ⊂ V of a graph G is a hop dominating set(hd-

set, in short) of G if for every v ∈ V − S, there exists u ∈ S such that

d(u, v) = 2. The minimum cardinality of a hd-set of G is called the hop

domination number and is denoted by γh(G). We present the hop domination

number of a few well known graphs in the following proposition.

Proposition 1. ([1])

(i) For a complete graph Kn, γh(Kn) = n.

(ii)For a complete bipartite graph Km,n, γh(Km,n) = 2.

(iii) For a path Pn on n vertices γh(Pn) =


2r, if n=6r;

2r + 1, if n=6r+1;

2r + 2, if n=6r+s ; 2 ≤ s ≤ 5.

(iv) For a cycle Cn of length n, γh(Cn) =


2r, if n=6r;

2r + 1, if n=6r+1;

2r + 2, if n=6r+s; 2 ≤ s ≤ 5.

(v) γh(Wn)=3 where Wn is a wheel with n− 1 spokes.
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(vi) γh(P ) = 2 where P denotes the Petersen graph.

Proposition 2. [1] For every traingle-free graph G without isolated vertices,

γh(G) ≤ γt(G).

2 Main Results

It is in the usual practice to study the relation between the new domination

parameter and the existing one. Likewise we study the equality of hop domina-

tion number and other domination parameters such as connected domination

number and total domination number.

2.1 Characterization of graphs with γh = γt

We now construct a family of T trees having γh = γt in the following.

We define a family T of trees T that can be obtained form the disjoint union

of k ≥ 1 double stars. Let C be the set of central vertices of the double stars.

Add k − 1 edges between the vertices of V − C so that the resulting graph is

a tree.

Figure 1: Tree T in T

Theorem 3. For any tree T , γh(T ) = γt(T ) if and only if T ∈ T.

Proof. Assume that γh(T ) = γt(T ).

Let D be a total dominating set. By Proposition 2 D is a hop dominating

set as well. Choose a vertex a1 which is support vertex of leaves only. This

is possible since T is a tree. If a1 ∈ Pl ⊂ D where Pl =< a1, b1, ..., xl > is

a path, then l = 2. Suppose l ≥ 3. Then c1 hop dominates a1 and all those

vertices hop dominated by a1. Therefore, D − {a1} is a hop dominating set
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and so γh(T ) ≤ |D| − 1 < γt(T ), a contradiction. Thus Pl =< a1, b1 >. Let

a2 ∈ D be such that d(a2, b1) is minimum. As D is a hop dominating set also,

we have d(a2, b1) = 2 or 3. We claim that d(a2, b1) = 3. Suppose b1va2 is a

path in T . Then there exists b2 ∈ N(a2) ∩D, as D is a total dominating set.

u
u
u

u
u

u u
u

u
u

u u
�
��a1 b1 v a2 b2 wm−1 wm

Figure 2:

If b2 is a support vertex of leaves only, then D − {a1, b2} ∪ {v} is a hop

dominating set since v hop dominates b2 and all those vertices hop dominated

by a1 and b2. This implies that γh(T ) < γt(T ), a contradiction. If b2 is not a

support of leaves only, let Pm =< b2 = w1, w2, ..., wm >⊂ D be a path, then

wm−1 is in D whereas wm−1 is not needed to hop dominate any vertex of T

and hence D − {a1, wm−1} ∪ {v} is a hop dominating set and consequently

γh(T ) < γt(T ), a contradiction. Thus d(b1, a2) = 3. Now, let a2 ∈ Ps ⊂ D

where Ps =< a2 = u1, u2, ..., us >, s ≥ 3, then as proved earlier we can show

that D − {a2} is a hop dominating set which leads to a contradiction to our

assumption that γh(T ) = γt(T ). Proceeding like this, we get D = ∪{ai, bi}
and d(bi, ai+1) = 3. This shows that T ∈ T.

We define a family of unicyclic graphs T∗ as follows:

T∗ = {T ∪ e : T ∈ T, e is an edge joining any two leaves or a leaf and an

internal vertex which is not a support vertex in T}.

Theorem 4. Let G be a unicyclic graph with the unique cycle C. Then

γh(G) = γt(G) if and only if G is C4 or G ∈ T∗.

Proof. Let γh(G) = γt(G).

If G is just a cycle C, then γh(C) = γt(C) if and only if G = C4. So we assume
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that G is not a mere cycle. Then G has at least one pendant vertex. Let D

be a total dominating set of G and let P =< a0, a1, ..., am > be a longest

path in G. If a1 ∈ Pl ⊂ D, then as discussed in Theorem 3, l = 2. That is,

Pl =< a1, b1 >⊂ D and (N(b1)− {a1}) ∩D = ∅ and (N(a1)− {b1}) ∩D = ∅.
Let a2, b2 ∈ D be such that a2 is nearest to b1. Then d(b1, a2) ≤ 3. We claim

that d(b1, a2) = 3. Suppose d(b1, a2) = 2 and consider the path b1va2 in D.

Case 1: There is a path P = {b2 = w1, w2, ..., wm} from b2 such that b2 ∈ C,

a2 6∈ P and P ∩ C = {b2} only where C is the unique cycle in G. Then as

discussed in Theorem 3, wm−1 ∈ D whereas wm−1 is not in any hd-set so

that D − {a1, wm−1} ∪ {v} is hd-set which contradicts our assumption that

γh(G) = γt(G).

Case 2: Let b2 ∈ C and there is no path from b2. If the cycle C does not

contain a2, then clearly D − {a1, a2} ∪ {v} is a hd-set. So, assume that C

contains a2 and b2. Let C be < b2, a2, w1, w2, ..., wm−1, wm = b2 >. We shall

assume that deg(wi) = 2 for all i = 1, 2, ...,m; otherwise as discussed in Case

1 we can arrive at a contradiction. If wm−2 ∈ D, then wm−2 hop dominates

b2 and a2 hop dominates the neighbours of b2. So D − {a1, b2} ∪ {v} is a

hd-set of G. If wm−1 ∈ D, then wm−1 hop dominates a2 and v hop dominates

all neighbours of a2. So D − {a1, a2} ∪ {v} is a hd-set. If wm−3 ∈ D, then

wm−3 hop dominates wm−1 and v hop dominates b2. So D − {a1, b2} ∪ {v} is

a hd-set. All these cases imply γh(G) < γt(G). Thus d(b1, a2) = 3. If a2b2c2

is a path in D, then D − {a2} is a hd-set since a2 is hop dominated by c2

and all neighbours of a2 are hop dominated by b2. Thus a2 ∈ Pl ⊂ D implies

l = 2, that is, neither the neighbours of a2 nor the neighbours of b2 other

than a2 and b2 are in D. Proceeding like this we get D = ∪{ai, bi} such that

ai, bi forms K2 and d(bi+1, ai) = 3. Again, as D = ∪{ai, bi}, the vertices ais

and bis are the only supports of leaves in G. This together with the fact that

d(bi, ai+1) = 3 implies G ∈ T∗.

2.2 Characterization of a family of graphs for which γh(G) = γc(G)

Theorem 5. Let T be a tree of order n > 3. Then γh(T ) = γc(T ) if and only

if T is a double star.

Proof. Assume that γh(T ) = γc(T ).

Let l denote the number of leaves in T . We first show that every internal
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vertex of T is a support vertex.

Suppose T has internal vertices which are support vertices. Choose one

such vertex, say v such that N(v) contains a support vertex u. Since T has

no cycle, there exists w ∈ N(v) such that d(u,w) = 2. Then v hop dominates

all the leaves at u and w hop dominates u. Therefore we can choose a hop

dominating set of T not containing u and its leaves so that γh(G) ≤ n− l−1 <

γc(G), a contradiction. Hence every internal vertex in T is a support vertex.

We next prove that T has exactly two support vertices. Suppose T has

more than two support vertices. Let P : v1, v2, · · · vn. Thenv1 and vi are leaves

and all other vis are support vertices in T .

Clearly, v2 is hop dominated by v4 and the leaves of v2 including v1 are

hop dominated by v3. Hence we can find a hop dominating set S with S ≤
n− l − 1 < n− l = γc

We construct a family G of unicyclic graphs as follows:

Operation U1: Join any two non-adjacent vertices of a double star D(r, s)

where r, s ≥ 2.

Operation U2: If r = 1, then we have a double star (K1,1,K1,s). In this

case we join any two non-adjacent vertices except v and u1.

s s s
s
s
ssu1 u v

v1

v2

vs

Figure 3:
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Theorem 6. Let G be a unicyclic graph. Then γh(G) = γc(G) if and only if

G ∈ G.

Proof. Assume that γh(G) = γc(G). Let C be the cycle in G of length m and

let X denote the set of all vertices of degree 2 in C. Let t denote the number

of trees in G of diameter ≥ 2 from a vertex in C and l be the number of leaves

in G.

We first show that m ≤ 4.

Case 1: m = 6r1 + s1; r1 > 0 and 0 ≤ s1 ≤ 5.

Case 1.1: Let m = 6r1.

If u = u1u2...ux is a longest path of length ≥ 2 in G − C from u ∈ C,

then we can find a hop dominating set S not containing ux−1 and ux.

As m ≥ 4, this S can be chosen such that it does not contain any leaves

of G. Also we know that γh(C) = 2r1. Therefore, we have γh(G) ≤
2r1 + n−m− t− l.
i.e., ≤ 2r1 + n− 6r1 − t− l < n− l − 2 ≤ γc(G).

Case 1.2: Let m = 6r1 + 1.

In this case we have γh(G) ≤ 2r1 + 1 + n−m− t− l.
i.e., ≤ n− l − (4r1 + 2) < n− l − 2 ≤ γc(G).

Case 1.3: Let m = 6r1 + a; 2 ≤ a ≤ 5.

Then γh(G) ≤ 2r1 + 2 + n−m− l − t.
i.e., ≤ n− l − (4r1 + t+ a− 2) < n− l − 2 ≤ γc(G).

Case 2: Let m = 5.

Then γh(G) ≤ 2 + γh(G− C) < 3 + γc(G− C) = γc(G), a contradiction.

Therefore, if γh(G) = γc(G), then m ≤ 4.

Case 3: Let m = 3.

Case 3.1: Let m = 3 and |X| = 1.

Let u, v ∈ C −X and w ∈ X.

We claim that u and v can be supports of leaves only.

If not, let there be a longest path u = u1u2...uy; y ≥ 3. Then we can

find a hop dominating set not containing uy−1 and uy. But the unique

γc-set of G contains all uis and v and so γc(G) > γh(G), a contradiction.

Therefore, the γh-set of G will consist of u and one of the leaves of u or
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v and one of the leaves of v. This implies γh(G) = 2. As {u, v} is the

γc-set of G, we have γh(G) = γc(G).

Case 3.2: Let m = 3 and |X| = 2.

Let u ∈ V (C)−X and v, w ∈ X.

Claim: u is a support of a tree in G− C with diameter 2.

Suppose u supports a tree in G−C with diameter ¿ 2. Let u = u1u2...ut

be the longest path in G. Then we can form a hop dominating set

not containing ut−1 and ut; but the unique γc-set of G contains u =

u1u2...ut−1. Thus γh(G) < γc(G), a contradiction.

We next observe that u cannot be a support of leaves alone, since, in

that case γc(G) = 1 as {u} is the γc-set of G whereas a γh-set of G

contains two vertices, namely u and one of its leaves.

Case 3.3: Let m = 3 and |X| = 0.

This case is not possible, since γh(G) < 3 + r whereas γc(G) = 3 + r,

where r is the number of internal vertices in G− C.

Case 4: Let m = 4.

We claim that 2 ≤ |X| ≤ 4.

Suppose |X| = 0.

If G has r number of internal vertices other than V (C), then γh(G) ≤ 2 + r

whereas γc(G) = 4 + r, a contradiction.

Similarly, we can show that |X| 6= 1.

The graph G for |X| = 2 is G1.

The graph G for |X| = 3 is G2.

The graph G for |X| = 4 is C4.

The converse is trivial.
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2.3 Strong equality of hop domination and hop independent dom-

ination numbers

In [6], Haynes et al. obtained strong equality of domination number and other

domination parameters for trees. Similarly we have the following strong equal-

ity of hop domination and hop independent domination numbers for trees.

Definition 7. For a graph G, we say that γh(G) strongly equals γhi(G), if

γh(G) = γhi(G) and every γh-set of G is a γhi-set of G. The strong equality

of these two sets is denoted by γh(G) ≡ γhi(G).

Proposition 8. Let T be a tree of diameter≤ 5. Then γh(T ) ≡ γhi(T ).

Proof. Let P be a longest path in T of length d. Then d ≤ 5. Case 1 Let
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d = 5. Then P has the vertices v1, v2, v3, v4, v5 and v6. Clearly {v3, v4} is the

only γh-set of P which is also a γhi-set of P .

Case 2 Let d = 4. Then P =< v1, v2, v3, v4, v5 >. Clearly {v3, v4} is the only

γh-set of T which is also an h-independent set of T .

Remark: The converse of the above proposition is not true. For example,

consider the following tree T .

u
u

u u u u u u u u
u
u
u

uv1

v2

v3 v4 v5 v6 v7 v8 v9 v10 v11

v13

v14

v12

Figure 6: T

For this tree T γh(T ) ≡ γhi(T ) since {v4, v5, v10, v12} is the only set which is

hop dominating as well as hop indepedent dominating set. But diam(T ) > 5.

Proposition 9. Let P be a path with n ≥ 4 vertices. Then γh(P ) ≡ γhi(P )

if and only if n ≡ 0, 4, 5(mod 6).

Proof. Let V (P ) = {v1, v2, · · · , vn}. Then every γh-set S of T contains

the pairs of vertices v3, v4; v9, v10; · · · , in general v6t−3, v6t−2. Suppose n =

6t + 3. Then v6t+2 can be hop dominated by v6t. But v6t−2 is already

in the set S which is of distance 2 from v6t. Therefore the γh-set S =

{v3, v4, v9, v10, · · · , v6t−3, v6t−2, v6t} will not be h-independent. This is the

case for n = 6t + 1 and n = 6t + 2. Therefore, n = 6t + 4 and n = 6t + 5 is

same as writing n ≡ 0, 4, 5 (mod 6).
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Definition 10. A caterpillar T is full footed (FFC) if every internal vertex

is a support vertex of at least one leaf. We say that a central path in a FFC

is of order n if FFC has n number of internal vertices.

Theorem 11. An FFC T of order n has the property γh(T ) ≡ γhi(T ) if and

only if n = 4t.

Proof. Let {v1, v2, · · · , vn} be the set of internal vertices of T . If n = 4t, then

the only γh-set is {v2, v3, v6, v10, · · · , v4t−2, v4t−1} where v4t−1 is needed to hop

dominate the leaves of v4t. Therefore γh(T ) ≡ γhi(T ). If n 6= 4t, for instance

n = 4t − 1, then the set S = {v2, v3, v6, v7, · · · , v4t−6, v4t−5, v4t−3, v4t−2} is a

γh-set of T with dG(v4t−5, v4t−3) = 2 and so S is not a γhi-set of T implying

γh(T ) is not strongly equal to γhi(T ). Similarly, if n = 4t+1, then we can find

a γh-set containing the leaves v4t−1 and v4t−3 which are of distance 2. Other

cases n = 4t+ 2 and n = 4t+ 3 can be argued similarly.

2.4 Hop domination number of shadow graph and mycielskian

graph of a graph

Theorem 12. For any graph G, γh(Sh(G)) = γh(G).

Proof. Let D be a hop dominating set of G. Let v
′

be the twin of a vertex v ∈
G. If v ∈ D, then d(v, v

′
) = 2 and hence v hop dominates v

′
. Otherwise, let

u ∈ D hop dominates v. Then there exists w ∈ G such that w ∈ N(u)∩N(v).

Now, w ∈ N(v) implies w and v
′

are adjacent. This together with d(u,w) = 1

implies v
′

is hop dominated by u. This proves that γh(Sh(G)) = γh(G).

Corollary 13. For any graph G, γh(µ(G)) = γh(G).

Proof. Let D be a hop dominating set of G. As µ(G) = Sh(G)∪{c} where c is

a vertex adjacent to all the twins of v ∈ V (G), any vertex in D hop dominates

c. Thus γh(µ(G)) = γh(G).

3 Open Problems

We conclude this study on hop domination with the following open problems

which lead to further research in this topic.
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1. Characterize the family of graphs for which

(i) γh(G) = γhi(G)

(ii) Γh(G) = βh(G)

(iii) γh(G) = γc(G) (other than trees and unicyclic graphs)

(iv) γh(G) = γt(G) (other than trees and unicyclic graphs)

2. Determine complexity of these problems mentioned in 1.

3. Characterize connected graphs G with γh(G) = n− 1.
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