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Common fixed point theorems for generalized
contraction involving rational expressions in

complex valued metric spaces

Hemant Kumar Nashine and Brian Fisher

Abstract

The purpose of this paper is to study common fixed points in complex
valued metric spaces and obtain sufficient conditions for the existence
of common fixed points of a pair of mappings satisfying generalized
contraction involving rational expressions.

1 Introduction

The Banach contraction principle [4] is a very popular tool in solving existence
problems in many branches of mathematical analysis. This famous theorem
can be stated as follows.

Theorem 1.1. [4]. Let (X, d) be a complete metric space and T be a mapping
of X into itself satisfying:

d(Tx, Ty) ≤ kd(x, y), ∀x, y ∈ X, (1)

where k is a constant in (0, 1). Then, T has a unique fixed point x∗ ∈ X.
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There are in the literature a great number of generalizations of the Banach
contraction principle (see [1, 2] and others). Some generalizations of the notion
of a metric space have been proposed by some authors, such as, rectangular
metric spaces, semi metric spaces, pseudo metric spaces, probabilistic metric
spaces, fuzzy metric spaces, quasi metric spaces, quasi semi metric spaces,
D-metric spaces, and cone metric spaces (see [5]- [10]).

Recently, Azam et al. [3] introduced the notion of complex valued metric
spaces and established some fixed point results for mappings satisfying a ratio-
nal inequality. In a continuation of Azam et al. [3], in this paper, we prove a
common fixed point theorem for a pair of mappings satisfying a more general
contraction involving rational expression in complex valued metric spaces.

2 Preliminaries

First of all, we introduce some notations and definitions that will be used later.

2.1 Notations and Definitions

The following definition was introduced by Azam et al. in [3].
Let C be the set of complex numbers and z1, z2 ∈ C. Define a partial order

- on C as follows:

z1 - z2 if and only if Re(z1) ≤ Re(z2), Im(z1) ≤ Im(z2).

It follows that z1 - z2 if one of the following conditions is satisfied:
(i) Re(z1) = Re(z2), Im(z1) < Im(z2),
(ii) Re(z1) < Re(z2), Im(z1) = Im(z2),
(iii) Re(z1) < Re(z2), Im(z1) < Im(z2),
(iv) Re(z1) = Re(z2), Im(z1) = Im(z2).
In particular, we will write z1 � z2 if z1 6= z2 and one of (i), (ii), and (iii)

is satisfied and we will write z1 ≺ z2 if only (iii) is satisfied. Note that

0 - z1 � z2 ⇒ |z1| < |z2|,

z1 � z2, z2 ≺ z3 ⇒ z1 ≺ z3.

Definition 2.1. Let X be a nonempty set. Suppose that the mapping d :
X ×X → C, satisfies:

1. 0 - d(x, y), for all x, y ∈ X and d(x, y) = 0 if and only if x = y;
2. d(x, y) = d(y, x) for all x, y ∈ X;
3. d(x, y) - d(x, z) + d(z, y), for all x, y, z ∈ X.
Then d is called a complex valued metric on X, and (X, d) is called a

complex valued metric space.
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A point x ∈ X is called an interior point of a set A ⊆ X whenever there
exists 0 ≺ r ∈ C such that

B(x, r) = {y ∈ X : d(x, y) ≺ r} ⊆ A.

A point x ∈ X is called a limit point of A whenever for every 0 ≺ r ∈ C,

B(x, r) ∩ (A\X) 6= ∅.

A is called open whenever each element of A is an interior point of A. A
subset B ⊆ X is called closed whenever each limit point of B belongs to B.
The family

F = {B(x, r) : x ∈ X, 0 ≺ r}.

is a sub-basis for a Hausdorff topology τ on X.
Let {xn} be a sequence in X and x ∈ X. If for every c ∈ C, with 0 ≺ c

there exists n0 ∈ N such that for all n > n0, d(xn, x) ≺ c, then {xn} is said
to be convergent, {xn} converges to x and x is the limit point of {xn}. We
denote this by limn xn = x, or xn → x, as n → ∞. If for every c ∈ C with
0 ≺ c there exists n0 ∈ N such that for all n > n0, d(xn, xn+m) ≺ c, then {xn}
is called a Cauchy sequence in (X, d). If every Cauchy sequence is convergent
in (X, d), then (X, d) is called a complete complex valued metric space.

Lemma 2.2. [3]. Let (X, d) be a complex valued metric space and let {xn}
be a sequence in X. Then {xn} converges to x if and only if |d(xn, x)| → 0 as
n→∞.

Lemma 2.3. [3]. Let (X, d) be a complex valued metric space and let {xn} be a
sequence in X. Then {xn} is a Cauchy sequence if and only if |d(xn, xn+m)| →
0 as n→∞.

3 Common fixed point results in complete complex val-
ued metric space

Theorem 3.1. Let (X, d) be a complete complex valued metric space and let
the mappings S, T : X → X satisfy:

d(Sx, Ty) - αd(x, y) +
β[1 + d(x, Sx)]d(y, Ty)

1 + d(x, y)

+γ[d(x, Sx) + d(y, Ty)] + δ[d(x, Ty) + d(y, Sx)]

for all x, y ∈ X, where α, β, γ, δ are nonnegative reals with α+β+2γ+2δ < 1.
Then S and T have a unique common fixed point.
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Proof. Let x0 be an arbitrary point in X and define

x2k+1 = Sx2k, x2k+2 = Tx2k+1, k = 0, 1, 2, · · · .

Then,

d(x2k+1, x2k+2)

= d(Sx2k, Tx2k+1)

- αd(x2k, x2k+1) +
β[1 + d(x2k, Sx2k)]d(x2k+1, Tx2k+1)

1 + d(x2k, x2k+1)

+γ[d(x2k, Sx2k) + d(x2k+1, Tx2k+1)] + δ[d(x2k, Tx2k+1) + d(x2k+1, Sx2k)]

- αd(x2k, x2k+1) +
β[1 + d(x2k, x2k+1)]d(x2k+1, x2k+2)

1 + d(x2k, x2k+1)

+γ[d(x2k, x2k+1) + d(x2k+1, x2k+2)] + δ[d(x2k, x2k+2) + d(x2k+1, x2k+1)]

- αd(x2k, x2k+1) + βd(x2k+1, x2k+2) + γ[d(x2k, x2k+1) + d(x2k+1, x2k+2)]

+δ[d(x2k, x2k+1) + d(x2k+1, x2k+2)]

-
α+ γ + δ

1 − β − γ − δ
d(x2k, x2k+1).

Similarly,

d(x2k+2, x2k+3)

= d(Sx2k+1, Tx2k+2)

- α(x2k+2, x2k+1) +
β[1 + d(x2k+1, Sx2k+1)]d(x2k+2, Tx2k+2)

1 + d(x2k+1, x2k+2)

+γ[d(x2k+1, Sx2k+1) + d(x2k+2, Tx2k+2)]

+δ[d(x2k+1, Tx2k+2) + d(x2k+2, Sx2k+1)]

- αd(x2k+1, x2k+2) +
β[1 + d(x2k, x2k+2)]d(x2k+2, x2k+3)

1 + d(x2k, x2k+2)

+γ[d(x2k+1, x2k+2) + d(x2k+2, x2k+3)] + δ[d(x2k+1, x2k+3) + d(x2k+2, x2k+2)]

- αd(x2k+1, x2k+2) + βd(x2k+2, x2k+3) + γ[d(x2k+1, x2k+2) + d(x2k+2, x2k+3)]

+δ[d(x2k+1, x2k+2) + d(x2k+2, x2k+3)]

-
α+ γ + δ

1 − β − γ − δ
d(x2k+1, x2k+2).

Putting

h =
α+ γ + δ

1− β − γ − δ
,

we have

d(xn+1, xn+2) - hd(xn, xn+1) - · · · - hn+1d(x0, x1).
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Hence, for any m > n,

d(xn, xm) - d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xm−1, xm)

- [hn + hn+1 + · · ·+ hm−1]d(x0, x1)

-
hn

1− h
d(x0, x1)

and so

|d(xm, xn)| ≤ hn

1− h
|d(x0, x1)| → 0, as m, n→∞.

This implies that {xn} is a Cauchy sequence. Since X is complete, there exists
u ∈ X such that xn → u. It follows that u = Su, otherwise d(u, Su) = z > 0
and we would then have

z - d(u, x2k+2) + d(x2k+2, Su)

- d(u, x2k+2) + d(Tx2k+1, Su)

- d(u, x2k+2) + αd(x2k+1, u) +
β[1 + d(u, Su)]d(x2k+1, Tx2k+1)

1 + d(u, x2k+1)

+γ[d(u, Su) + d(x2k+1, Tx2k+1)]

+δ[d(u, Tx2k+1) + d(x2k+1, Su)]

- d(u, x2k+2) + αd(x2k+1, u) +
β[1 + d(u, Su)]d(x2k+1, x2k+2)

1 + d(u, x2k+1)

+γ[d(u, Su) + d(x2k+1, x2k+2)] + δ[d(u, x2k+2) + d(x2k+1, Su)].

This implies that

|z| ≤ |d(u, x2k+2)|+ α|d(x2k+1, u)|+ β|1 + z||d(x2k+1, x2k+2)|
|1 + d(u, x2k+1)|

+γ[|z|+ |d(x2k+1, x2k+2)|] + δ|d(u, x2k+2) + d(x2k+1, Su)|.

Letting n→∞, it follows that

|z| ≤ (γ + δ)|z| ≤ (α+ β + 2γ + 2δ)|z| < |z|,

a contradiction and so |z| = 0, that is, u = Su.
It follows similarly that u = Tu.
We now show that S and T have unique common fixed point. For this,

assume that u∗ in X is a second common fixed point of S and T . Then

d(u, u∗) = d(Su, Tu∗)

- αd(u, u∗) +
β[1 + d(u, Su)]d(u∗, Tu∗)

1 + d(u, u∗)
+ γ[d(u, Su) + d(u∗, Tu∗)]

+δ[d(u, Tu∗) + d(u∗, Su)]

- (α+ 2δ)d(u, u∗)
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and so d(u, u∗) = 0, since (α+ 2δ) < 1. This implies that u∗ = u, completing
the proof of the theorem.

Putting S = T , we have

Corollary 3.2. Let (X, d) be a complete complex valued metric space and let
the mappings T : X → X satisfy:

d(Tx, Ty) - αd(x, y) +
β[1 + d(x, Tx)]d(y, Ty)

1 + d(x, y)
+ γ[d(x, Tx) + d(y, Ty)]

+δ[d(x, Ty) + d(y, Sx)]

for all x, y ∈ X, where α, β, γ, δ are nonnegative reals with α+β+2γ+2δ < 1.
Then T has a unique fixed point.

Corollary 3.3. Let (X, d) be a complete complex valued metric space and let
the mappings T : X → X satisfy:

d(Tnx, Tny) - αd(x, y) +
β[1 + d(x, Tnx)]d(y, Tny)

1 + d(x, y)
+ γ[d(x, Tnx) + d(y, Tny)]

+δ[d(x, Tny) + d(y, Tnx)]

for all x, y ∈ X, where α, β, γ, δ are nonnegative reals with α+β+2γ+2δ < 1.
Then T has a unique fixed point.

Proof. By Corollary 3.2 there exists v ∈ X such that Tnv = v. Then

d(Tv, v) = d(TTnv, Tnv) = d(TnTv, Tnv)

- αd(Tv, v) +
β[1 + d(Tv, TnTv)]d(v, Tnv)

1 + d(Tv, v)

+γ[d(Tv, TnTv) + d(v, Tnv)] + δ[d(Tv, Tnv) + d(v, TnTv)]

- αd(Tv, v) +
β[1 + d(Tv, TTnv)]d(v, v)

1 + d(Tv, v)

+γd(Tv, TTnv) + δ[d(Tv, v) + d(v, TTnv)]

= (α+ 2δ)d(Tv, v)

and so d(Tv, v) = 0.
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