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On the metrical theory of a non-regular
continued fraction expansion

Dan Lascu, George Ĉırlig

Abstract

We introduced a new continued fraction expansions in our previous
paper. For these expansions, we show the Brodén-Borel-Lévy type for-
mula. Furthermore, we compute the transition probability function from
this and the symbolic dynamical system of the natural number with the
unilateral shift.

1 Introduction

The purpose of this paper is to study the stochastic behavior of some contin-
ued fraction expansions. Furthermore, measure theoretical dynamical systems
arising them are investigated. First we outline the historical framework of the
continued fractions. Then, in Section 1.2, we present the current framework.
In Sections 3 we give the basic metric properties of the non-regular continued
fraction expansions. The main results will be shown in Section 4.

1.1 Historical background

To this day the Gauss map, on which metrical theory of regular continued
fraction (RCF) is based, has fascinated researchers from various branches of
mathematics and science, with many applications in computer science, cos-
mology and chaos theory [4]. In the last century, mathematicians broke new
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ground in this area. Apart from the RCF expansion, very many other contin-
ued fraction expansions were studied.

One of the first and still one of the most important results in the metrical
theory of continued fractions is so-called Gauss-Kuzmin theorem. Write x ∈
[0, 1) as a regular continued fraction

x =
1

a1 +
1

a2 +
1

a3 +
.. .

:= [a1, a2, a3, . . .],

with an ∈ N+, where N+ = {1, 2, 3, . . .}.
The metrical theory of continued fractions started on 25th October 1800,

with a note by Gauss in his mathematical diary [3]. Gauss wrote that (in
modern notation)

lim
n→∞

λ (τn ≤ x) =
log(1 + x)

log 2
, x ∈ I := [0, 1].

Here λ is Lebesgue measure and the map τ : [0, 1) → [0, 1), the so-called
regular continued fraction (or Gauss) map, is defined by

τ(x) :=
1

x
−
⌊

1

x

⌋
, x 6= 0; τ(0) := 0, (1)

where b·c denotes the floor (or entire) function. Gauss’ proof (if any) has never
been found. A little more than 11 years later, in a letter dated 30 January
1812, Gauss asked Laplace to estimate the error

en(x) := λ
(
τ−n[0, x]

)
− log(1 + x)

log 2
, n ≥ 1, x ∈ I.

This has been called Gauss’ Problem. It received a first solution more than
a century later, when R.O. Kuzmin [8] showed in 1928 that en(x) = O(q

√
n)

as n → ∞, uniformly in x with some (unspecified) 0 < q < 1. One year
later, using a different method, Paul Lévy [11] improved Kuzmin’s result by
showing that |en(x)| ≤ qn, n ∈ N+, x ∈ I, with q = 3.5 − 2

√
2 = 0.67157....

The Gauss-Kuzmin-Lévy theorem is the first basic result in the rich metri-
cal theory of continued fractions. Generalizations of these problems for non-
regular continued fractions are also called as the Gauss-Kuzmin problem and
the Gauss-Kuzmin-Lévy problem [7, 10, 12, 13, 14].
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1.2 A non-regular continued fraction expansion

In this paper we consider another expansion of reals in the unit interval, dif-
ferent from the RCF expansion. In fact, one particular expansion discussed by
Adams and Davison in [1], which generalizes the expansion of Davison from
[5], has raised to a new type of continued fraction: the digits of the expansion
of any number in the unit interval are differences of consecutive non-positive
integer powers of an integer m ≥ 2.

In [7], Iosifescu and Sebe claimed that any x ∈ I := [0, 1) can be written
in the form

x =
m−a1(x)

1 +
m−a2(x)

1 +
m−a3(x)

1 +
. . .

:= [[a1(x), a2(x), a3(x), . . .]], (2)

where m ∈ N+, m ≥ 2 and an(x)’s are integers greater than or equal to −1.
For any m ∈ N+ with m ≥ 2, define on I the transformation τm by

τm(x) =

{
m

{
log x−1

log m

}
− 1, if x 6= 0

0, if x = 0,
(3)

where {·} stands for fractionary part. It is easy to see that τm maps the set
Ω of irrationals in I into itself. For any x ∈ (0, 1) put

an(x) = a1
(
τn−1m (x)

)
, n ∈ N+,

with τ0m(x) = x and

a1(x) =

{
blog x−1/ logmc, if x 6= 0
∞, if x = 0,

where b·c stands for integer part.
These statements have been proven in [9].

2 A brief overview of the metrical theory of regular con-
tinued fraction expansions

This section is a short presentation of the regular continued fraction expansion.
No proofs are given. They can be found mainly in [6].
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Denote by Ω the set of irrationals in the unit interval I. Writing τn for the
nth iteration of τ , where n ∈ N := {0, 1, 2, 3, . . .} with τ0 being the identity
map, the positive integers

an(ω) = a1(τn−1(ω)), n ∈ N+, (4)

are the (RCF) digits (also known as partial quotients or incomplete quotients)
of ω ∈ Ω. Here

a1(ω) = b1/ωc , (5)

and it follows from the definition of τ and a1 that

ω =
1

a1(ω) + τ(ω)
, . . . , τn(ω) =

1

an+1(ω) + τn+1(ω)
, . . . .

Hence

ω =
1

a1(ω) +
1

a2(ω) +
. . . +

1

an(ω) + τn(ω)

, n ∈ N+.

If we set

[x1] =
1

x1
, [x1, x2, . . . , xn] =

1

x1 + [x2, x3, . . . , xn]
, n ≥ 2,

for arbitrary indeterminates xi, 1 ≤ i ≤ n, then we can write

ω = [a1(ω), a2(ω), . . . , an(ω) + τn(ω)] , n ≥ 1,

and one has that, see, e.g., [6],

ω = lim
n→∞

[a1(ω), a2(ω), . . . , an(ω)], ω ∈ Ω.

This last equation will be also written as

ω = [a1(ω), a2(ω), . . .], ω ∈ Ω.

The rational numbers pn(ω)/qn(ω) = [a1(ω), a2(ω), . . . , an(ω)] are the RCF-
convergents of ω. Here we assume that g.c.d.(p(ω), q(ω)) = 1, n ∈ N. The
sequences (pn(ω))n∈N+

and (qn(ω))n∈N+
satisfy

q0(ω) := 1, qn+1(ω) = an+1qn(ω) + qn−1(ω), n ∈ N,
p0(ω) := 0, pn+1(ω) = an+1pn(ω) + pn−1(ω), n ∈ N.

Roughly speaking, the metrical theory of the RCF expansion is about proper-
ties of the sequence (an)n∈N+
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The probabilistic structure of the sequence (an)n∈N+ under λ was studied
in [6] and is described by the equations

λ (a1 = i) =
1

i(i+ 1)
, i ∈ N+, (6)

λ (an+1 = i|a1, . . . , an) =
sn + 1

(sn + i)(sn + i+ 1)
, i, n ∈ N+, (7)

where
sn = [an, . . . , a1] . (8)

These relations follow from the Brodén-Borel-Lévy formula:

λ (τn < x|a1, . . . , an) =
(sn + 1)x

snx+ 1
, x ∈ I, n ∈ N+. (9)

Let BI denote the σ-algebra of Borel subsets of I. Then the digits an, n ∈ N+,
are positive integer-valued random variables which are defined almost surely
on (I,BI) with respect to any probability measure µ on BI , which assigns
probability zero to the set I \ Ω of rationals in I. An example of such a
measure is Lebesgue measure λ, but a more important one in the present
context is Gauss’ measure γ, which is defined by

γ(A) =
1

log 2

∫
A

dx

1 + x
, A ∈ BI . (10)

We see that γ is τ -invariant, that is γ(A) = γ
(
τ−1(A)

)
, A ∈ BI . Hence, by

its very definition, the sequence (an)n∈N+
is strictly stationary on (I,BI , γ).

3 Another continued fraction expansions

At the concluding remarks in [7], it was stated that if define on Im := [0,m−1],
with m ∈ N, m ≥ 3 the transformation τm by

τm(x) :=

{
m

log x−1

log m −
⌊

log x−1

log m

⌋
− 1, if x 6= 0

0, if x = 0,
(11)

then any real number in Im can be written in the form

m−b1(x)

1 +
m−b2(x)

1 +
. . .

:= [[b1(x), b2(x), . . .]], (12)
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where bn = bn(x) are integers in Z≥−1 := {−1, 0, 1, 2, 3, . . .}, for any n ∈ N+,
with

b1(x) =

{
blog x−1/ logmc, if x 6= 0
∞, if x = 0,

(13)

and
bn(x) = b1(τn−1m (x)), n ∈ N+. (14)

Remark. Some particular cases of this type of continued fractions have
been studied before. For example, by setting q := 1/m and bn := n, the
right-hand side of (12) gives the well-known continued fraction of Rogers and
Ramanujan

q

1 +
q2

1 +
q3

1 +
. . .

.

Another example is the beautiful result due to Adams and Davison [1]. Let
bn = Fn, where Fn is the n-th Fibonacci number. Adams and Davison showed
that

m−F1

1 +
m−F2

1 +
m−F3

1 +
. . .

=
m− 1

m

∑
n≥1

m−bnφc (15)

where φ is the Golden Ratio. �
In [9], the first author presented some metric properties of this continued

fraction expansion.
Let Ωm be the set of all irrational numbers in Im. It is easy to check that

τn−1m (ω) =
m−bn(ω)

1 + τnm(ω)
, ω ∈ Ωm, n ∈ N+, (16)

hence

ω =
m−b1(ω)

1 +
m−b2(ω)

1 +
. . . +

m−bn(ω)

1 + τnm(ω)

, n ∈ N+. (17)

If we set

[[x1]] = m−x1 , [[x1, . . . , xn]] =
m−x1

1 + [[x2, . . . , xn]]
, n ≥ 2,
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for arbitrary indeterminates xi, 1 ≤ i ≤ n, then (17) can be written as

ω =

[[
b1(ω) +

log(1 + τm(ω))

logm

]]
=

[[
b1(ω), b2(ω) +

log(1 + τ2m(ω))

logm

]]
=

[[
b1(ω), . . . , bn−1(ω), bn(ω) +

log(1 + τnm(ω))

logm

]]
, (18)

where the last equation holds for n ≥ 3.
We will usually drop the dependence on ω in the notation. Define

ω0 := 0, ωn := [[b1(ω), b2(ω), . . . , bn(ω)]], n ∈ N+.

Clearly,

ωn =
pn
qn
, n ∈ N+,

where pn and qn, n ∈ N, n ≥ 2, are integer-valued functions sequences which
can be recursively defined on Ωm by

pn := mbnpn−1 +mbn−1pn−2, (19)

qn := mbnqn−1 +mbn−1qn−2, (20)

with p0 := 0, q0 := 1, p1 := 1 and q1 := mb1 . The number ωn is called the nth
convergent of ω.

By induction, it is easy to prove that

pnqn+1 − pn+1qn = (−1)n+1mb1+...+bn , n ∈ N+, (21)

and
m−b1

1 +
m−b2

1 +
. . . +

m−bn

1 + t

=
pn + tmbnpn−1
qn + tmbnqn−1

, n ∈ N+, t ≥ 0. (22)

It follows from (18) and (22) that

ω =
pn(ω) + τnm(ω)mbn(ω)pn−1(ω)

qn(ω) + τnm(ω)mbn(ω)qn−1(ω)
, ω ∈ Ωm, n ∈ N+. (23)

Hence, using (21) we have∣∣∣∣ω − pn(ω)

qn(ω)

∣∣∣∣ =
τnm(ω)mb1(ω)+...+bn(ω)

qn(ω)
(
qn(ω) + τnm(ω)mbn(ω)qn−1(ω)

) , (24)
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for any ω ∈ Ωm and n ∈ N+. Using a similar reasoning as in [7], we have∣∣∣∣ω − pn(ω)

qn(ω)

∣∣∣∣ ≤ 1

max(Fn,mb1(ω)+...+bn(ω))
,

for any ω ∈ Ωm and n ∈ N+.
It then appears that

ω = lim
n→∞

[[b1(ω), . . . , bn(ω)]], ω ∈ Ωm, (25)

which is the precise meaning of (12).
If i(n) = (i1, . . . , in), and in ∈ Z≥−1, n ∈ N+ then the fundamental interval

of rank n corresponding to this type of expansions is defined as

Im

(
i(n)
)

= {ω ∈ Ωm : bk(ω) = ik, 1 ≤ k ≤ n} , (26)

with the convention that Im
(
i(0)
)

= Ωm.

We will write Im(b1, . . . , bn) = Im
(
b(n)

)
, n ∈ N+.

By (23) we have

Im

(
b(n)

)
= Ωm ∩

(
u
(
b(n)

)
, v
(
b(n)

))
(27)

where

u
(
b(n)

)
:=


pn + (m− 1)mbnpn−1
qn + (m− 1)mbnqn−1

, if n is odd

pn
qn
, if n is even

(28)

and

v
(
b(n)

)
:=


pn
qn
, if n is odd

pn + (m− 1)mbnpn−1
qn + (m− 1)mbnqn−1

, if n is even.
(29)

Let BIm denote the σ-algebra of Borel subsets of Im. Define the measure
λm on (Im,BIm) by

λm(A) =
1

m− 1
· λ(A), A ∈ BIm (30)

where λ denotes the Lebesgue measure. Then λm is a probability measure
such that λm (Im \ Ωm) = 0.

It then follows from (28), (29) and (21) that

λm

(
Im

(
b(n)

))
=

mb1+...+bn

qn (qn + (m− 1)mbnqn−1)
. (31)
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4 Main theorems

In this section, we show our main theorems. For this purpose, we define the
random variables (sn)n∈N+ by

sn = m−bn
qn
qn−1

− 1, n ∈ N+, (32)

with s1 = 0. Note that (20) implies that

sn =
m−bn

1 + sn−1
, n ∈ N+, with s1 = 0. (33)

Hence

sn =
m−bn

1 +
m−bn−1

1 +
. . . +

m−b3

1 +m−b2

= [[bn, bn−1, . . . , b2,∞]], n ≥ 2. (34)

In the metrical theory of continued fractions, the Brodén-Borel-Lévy for-
mula is known as a nontrivial probabilistic property of the dynamical system
arising from regular continued fraction expansions on the unit interval [0, 1].
We give now the Brodén-Borel-Lévy type formula associated with the contin-
ued fraction expansions in (12).

Theorem 1 (Brodén-Borel-Lévy type formula). For any n ∈ N+ we have

λm (τnm < x|b1, . . . , bn) =
(sn +m)x

(m− 1)(sn + x+ 1)
, x ∈ Im, (35)

where sn is defined by (32) or (33).

The equation (35) is the Brodén-Borel-Lévy formula for these continued
fraction expansions and allows us to determine the probability structure of
(bn)n∈N+

under λm.

Proposition 2. For any i ∈ Z≥−1 and n ∈ N+ we have

λm(b1 = i) = m−(i+1) (36)

and
λm (bn+1 = i|b1, . . . , bn) = Pi(sn), (37)

where

P−1(sn) = 1− sn +m

(m− 1)(sn + 2)
(38)
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and for i ∈ N

Pi(sn) =
m−(i+1)(sn + 1)(sn +m)

(sn +m−i + 1)(sn +m−(i+1) + 1)
. (39)

Now, since

m−(i+1)(x+ 1)(x+m)

(x+m−i + 1)(x+m−(i+1) + 1)
=

1

m− 1

(
1

x+m−(i+1) + 1
− 1

x+m−i + 1

)
,

then ∑
i≥−1

Pi(x) = 1, for all x ∈ Im.

Thus, the function Pi(x) defines a transition probability function from (Im,BIm)
to (N,P(N)).

Corollary 3. The Proposition 2 shows that (sn)n∈N+
with s1 = 0 is a homoge-

neous Im-valued Markov chain on (Im,BIm , λm), with the following transition
mechanism: from state s ∈ Im \ Ωm, s ≥ 1 the only possible one-step transi-
tions are those to states m−i/(s+1), i ∈ Z≥−1, with corresponding probabilities
Pi(s), i ∈ Z≥−1.

At this point, we question whether the invariant measure of the transfor-
mation τm exists on BIm . Adler’s folklore theorem (see, e.g., [2]) clearly show
the existence of such a measure. Another interesting way to show that is the
following theorem.

Theorem 4. Let m ≥ 2 and let BIm denote the σ-algebra of Borel subsets of
Im. If τ is the Gauss measure and τm are the transformations from (11), then
there exists a τm-invariant measure on BIm such that τ and τm are conjugate
by the measure preserving map.

Remark. The explicit expression of the invariant measure of the transfor-
mation τm remains an open problem.

5 Proofs of the main theorems

In this section, we prove main theorems.
Proof of Theorem 1. Clearly, for any n ∈ N+

λm (τnm < x|b1, . . . , bn) =
λ ((τnm < x) ∩ I(b1, . . . , bn))

λm(I(b1, . . . , bn))
.
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From (21) and (27) we have

λm ((τnm < x) ∩ I(b1, . . . , bn)) =
1

m− 1

∣∣∣∣pnqn − pn + xmbnpn−1
qn + xmbnqn−1

∣∣∣∣
=

1

m− 1

xmb1+...+bn

qn (qn + xmbnqn−1)
.

Hence, using (31) and (32),

λm (τnm < x|b1, . . . , bn) =
1

m− 1

x
(
qn + (m− 1)mbnqn−1

)
qn + xmbnqn−1

=
(sn +m)x

(m− 1)(sn + x+ 1)

for any x ∈ Im and n ∈ N+. �
Proof of Proposition 2. From (26), we have

{ω ∈ Ωm : b1(ω) = i} = Ωm ∩
(

1

mi+1
,

1

mi

)
.

Thus

λm(b1 = i) =
1

m− 1

∣∣∣∣ 1

mi+1
− 1

mi

∣∣∣∣ = m−(i+1).

From (16), we have

τnm(ω) = [[bn+1, bn+2, . . .]], n ∈ N+, ω ∈ Ωm.

Then, for i = −1, using (35), we have

λm (bn+1 = i|b1, . . . , bn) = λm (τnm ∈ (1,m− 1] |b1, . . . , bn)

= λm (τnm < m− 1)− λm (τnm < 1)

= 1− sn +m

(m− 1)(sn + 2)
.
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For i ∈ N, we have

λm (bn+1 = i|b1, . . . , bn) = λm

(
τnm ∈

(
1

mi+1
,

1

mi

]
|b1, . . . , bn

)
= λm

(
τnm <

1

mi

)
− λm

(
τnm <

1

mi+1

)
=

(sn +m)m−i

(m− 1)(sn +m−i + 1)

− (sn +m)m−(i+1)

(m− 1)(sn +m−(i+1) + 1)

=
m−(i+1)(sn + 1)(sn +m)

(sn +m−i + 1)(sn +m−(i+1) + 1)
.

�
Proof of Theorem 4. Let Ω and Ωm denote the irrational numbers in I and

Im, respectively, and

N∞+ :=
{

(li)i∈N+
: li ∈ N+ for i ∈ N+

}
,

Z∞≥−1 :=
{

(li)i∈N+
: li ∈ Z≥−1 for i ∈ N+

}
.

By using the continued fraction expansions associated with τm, we obtain the
following set-theoretical bijections

Ω ∼= N∞+ and Ωm ∼= Z∞≥−1, (40)

such that

Ω 3 x 7→ (an(x))n∈N+
∈ N∞+ , (41)

Ωm 3 x 7→ (bn(x))n∈N+
∈ Z∞≥−1, (42)

with a1, a2, . . . defined by (4) and (5) and b1, b2, . . . defined by (13) and (14).
From these, we can define the bijective map θm from Ω to Ωm by

θm(x) := [[a1(x)− 2, a2(x)− 2, a3(x)− 2, . . .]], x ∈ Ω. (43)

In consequence, we obtain the set-theoretical conjugate map θm between τ
and τm, i.e.,

θm ◦ τ ◦ θ−1m = τm. (44)

By the definitions of Ω and Ωm, (44) holds on Im except for a set of Lebesgue
measure zero. Using θm, we construct the invariant measure of τm denoted by
γm as

γm = γ ◦ θ−1m . (45)
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Then
γm
(
τ−1m (E)

)
= γ

((
τ−1 ◦ θ−1m

)
(E)
)

= γm (E) , (46)

for each E ∈ BIm . �
Remark. Theorem 4 is proved by the construction of the conjugate map

θm from the following diagram of four dynamical systems with invariant mea-
sures:

(Ω, τ, γ)
θm
∼= (Ωm, τm, γm)

(N∞+ , τ̂ , γ̂) ∼= (Z∞≥−1, τ̂m, γ̂m)

	∼ = ∼ =

where m ≥ 2, and (N∞+ , τ̂ , γ̂) and (Z∞≥−1, τ̂m, γ̂m) are dynamical systems with
standard shift transformations τ̂ and τ̂m, and their invariant measures γ̂ and
γ̂m induced from (Ω, τ, γ), respectively. �
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[2] Boyarsky, A. and Góra, P., Laws of Chaos: Invariant Measures and
Dynamical Systems in One Dimension, Birkhäuser, Boston, 1997.

[3] Brezinski, C., History of Continued Fractions and Padé Approximants.
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