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A Criterion for linear independence of infinite
products

Jaroslav Hančl,∗ Ondřej Kolouch† and Lukáš Novotný†

Abstract

Using an idea of Erdős the paper establishes a criterion for the linear
independence of infinite products which consist of rational numbers. A
criterion for irrationality is obtained as a consequence.

1 Introduction

Following Erdős [1] we prove

Theorem 1.1. Let K be a non-negative integer and let {an}∞n=1 be a non-
decreasing sequence of positive integers such that

1 < lim inf
n→∞

a
1

(K+2)n

n < lim sup
n→∞

a
1

(K+2)n

n <∞.

Then the numbers 1,
∏∞

n=1(1 + 1
an+1 ),

∏∞
n=1(1 + 1

nan+1 ), · · · , and
∏∞

n=1(1 +
1

nKan+1
) are linearly independent over the rational numbers.

As a consequence of this theorem we obtain a criterion for infinite products
to be irrational.

Key Words: Linear independence, infinite product, irrationality.
2010 Mathematics Subject Classification: 11J72.
Received: October, 2013.
Revised: December, 2013.
Accepted: December, 2013.
∗This work was supported by the European Regional Development Fund in the

IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070) and by grants no.
P201/12/2351 and MSM 6198898701.
†The authors were supported by grants 01798/2011/RRC and 02508/2013/RRC of the

Moravian-Silesian region and by SGS08/PřF/2014.
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Theorem 1.2. Let {an}∞n=1 be a non-decreasing sequence of positive integers
such that

1 < lim inf
n→∞

a
1
2n
n < lim sup

n→∞
a

1
2n
n <∞.

Then the number
∏∞

n=1(1 + 1
an

) is irrational.

The authors do not know if the number
∏∞

n=1(1 + 1
22nan+1

) is irrational

for all sequences {an}∞n=1 of positive integers although we know from another
theorem of Erdős [1] that the number

∑∞
n=1

1
22nan

is irrational for every se-

quence {an}∞n=1 of positive integers. Hančl and Kolouch [4] proved that if

limn→∞ a
1
2n
n = ∞ and an ∈ Z+ then the number

∏∞
n=1(1 + 1

an
) is irrational,

but we do not know if it is transcendental.
It is not difficult to prove that

∏∞
n=1(1 + 1

22n
) = 4

3 , but we do not know

if the number
∏∞

n=1(1 + 1
(22n+1)an

) is irrational for all sequences {an}∞n=1 of

positive integers. Erdős [2] asked if the number
∑∞

n=1
1

(22n+1)an
is irrational

for all sequences {an}∞n=1 of positive integers.
A simple calculation shows that

∏∞
n=2(1− 1

n2 ) = 1
2 . On the other side the

authors are not able to decide if the number
∏∞

n=1(1 + 1
n2 ) is irrational. In

fact we are not able to prove that the number
∏∞

n=1(1 + 1
nk

) is irrational for
any k ∈ Z+, k 6= 1. This is analogous to the problem of the irrationality of
the function ζ(k) =

∑∞
n=1

1
nk

=
∏∞

n=1(1 + 1
pkn−1

) for k ∈ Z+, k 6= 1 where

{pn}∞n=1 is the increasing sequence of all primes. We know that for even k the
number ζ(k) is transcendental and that ζ(3) is an irrational number. But we
do not know if the number

∏∞
n=1(1 + 1

pkn
) is irrational for any k ∈ Z+, k 6= 1.

We also do not know if the numbers
∏∞

n=1(1+ 1
n! ) and

∏∞
n=1(1+ nπ(n)

n! ) are
Q-linearly independent where π(n) denotes the number of primes less than or
equal to n. Moreover, we do not know if the number

∏∞
n=1(1+ 1

n! ) is irrational.
There exists a nice book by Nishioka [6] which contains a review of results

concerning the linear and algebraic independence of infinite products and se-
ries which use the strong tools of Mahler’s method. Several general results
concerning the linear independence of infinite series can be found in [3]. For
other results in this theory see [5], for instance.

Our main theorem is Theorem 2.1 concerning Q-linear independence. Its
proof falls into two parts, the second part separated into two main cases, is
based on the location of specific gap and makes use of some suitable tricks.
As a consequence of Theorem 2.1 we obtain a criterion for irrationality in
Theorem 2.2. Šustek [7] used similar method of Erdős to prove the irrationality
measures.

We denote by Z, Z+, N, and Q the set of all integers, positive integers,
nonnegative integers, and rational numbers, respectively. The functions [x],
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and log2 x are the greatest integer less than or equal to x, and the loga-
rithm to the base 2 of the number x, respectively. Notation loga

2 log2 x means
(log2(log2 x))a.

2 Main results

Our first theorem is a basic result which deals with the Q-linear independence
of infinite products of rational numbers.

Theorem 2.1. Let K be a positive integer and let ε be a positive real number.
Assume that {ai,n}∞n=1 and {bi,n}∞n=1 (i = 1, . . . ,K) are sequences of positive
integers such that {a1,n}∞n=1 is non-decreasing,

lim inf
n→∞

a
1

(K+1)n

1,n < lim sup
n→∞

a
1

(K+1)n

1,n <∞ (1)

and

lim
n→∞

ai,nbj,n
bi,naj,n

= 0, for all j, i ∈ {1, . . . ,K}, i > j. (2)

Suppose that for every sufficiently large number n

bi,n < a

1

log
1+ε
2 log2 a1,n

1,n , i = 1, . . . ,K, (3)

a1,n ≥ n1+ε, (4)

and

ai,na
− 1

log
1+ε
2 log2 a1,n

1,n < a1,n < ai,na

1

log
1+ε
2 log2 a1,n

1,n , i = 2, . . . ,K. (5)

Then the products
∏∞

n=1

(
1+

b1,n
a1,n

)
,. . . , and

∏∞
n=1

(
1+

bK,n
aK,n

)
, and the number 1

are Q-linearly independent.

Corollary 2.1. Let K be a positive integer. Assume that {ai,n}∞n=1 and
{bi,n}∞n=1 (i = 1, . . . ,K) are sequences of positive integers such that {a1,n}∞n=1

is non-decreasing, {bi,n}∞n=1 (i = 1, . . . ,K) is bounded,

lim inf
n→∞

1

n
log2 a1,n ≥ 1

and

lim inf
n→∞

a
1

(K+1)n

1,n < lim sup
n→∞

a
1

(K+1)n

1,n <∞.
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Suppose that for every i ∈ {2, . . . ,K}

lim
n→∞

ai,n
ai−1,n

= 0

and

−1 < lim inf
n→∞

log2
2 n

n
log2

(a1,n
ai,n

)
≤ lim sup

n→∞

log2
2 n

n
log2

(a1,n
ai,n

)
< 1.

Then the products
∏∞

n=1(1 +
b1,n
a1,n

),. . . , and
∏∞

n=1(1 +
bK,n
aK,n

), and the number

1 are Q-linearly independent.

Our second theorem is a consequence of the previous theorem and deals
with the irrationality of infinite products over the rational numbers

Theorem 2.2. Let ε be a positive real number. Suppose that {an}∞n=1 and
{bn}∞n=1 are two sequences of positive integers with {an}∞n=1 non-decreasing

and such that lim infn→∞ a
1
2n
n < lim supn→∞ a

1
2n
n < ∞. Assume that an ≥

n1+ε and bn ≤ a
log

−(1+ε)
2 log2 an

n hold for every large n. Then the product∏∞
n=1(1 + bn

an
) is an irrational number.

Corollary 2.2. Assume that {an}∞n=1 and {bn}∞n=1 are two sequences of pos-
itive integers such that {an}∞n=1 is non-decreasing, lim infn→∞

1
n log2 an > 1,

{bn}∞n=1 is bounded and lim infn→∞ a
1
2n
n < lim supn→∞ a

1
2n
n < ∞. Then the

product
∏∞

n=1(1 + bn
an

) is irrational.

Remark 2.1. From the simple calculation we obtain that
∏∞

n=1(1+ 1
22n

) = 4
3 .

Hence the strict inequality between lim inf and lim sup in all Theorems 1.1, 1.2,
2.1, 2.2 and Corollaries 2.1, 2.2 cannot be omited. It also shows implicitely
that straightforward application of Liouville principle does not work.

3 Proofs

Theorem 1.1 is an immediate consequence of Theorem 2.1 when we set K :=
K + 1, aj,n := nK+1−jan + 1, bj,n := 1 for all j ∈ {1, 2, 3, . . . ,K + 1} and
n ∈ Z+. The number ε can be arbitrary because the sequence {a1,n}∞n=1

converges to infinity as a composition of two exponential functions.
Theorem 1.2 is an immediate consequence of Theorem 1.1 when we set K := 0
and an := an − 1 for all n ∈ Z+.
Theorem 2.2 is an immediate consequence of Theorem 2.1 when we set K := 1.
Corollary 2.1 is an immediate consequence of Theorem 2.1 when we set ε := 1

2 .
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Conditions (1)-(4) are fulfilled immediately. We only verify condition (5).
From lim infn→∞

1
n log2 a1,n ≥ 1 we obtain that for all sufficiently large n we

have a1,n > 2
n
2 . This and the fact that the function x

1

log
1+ 1

2
2 log2 x is increasing

for a large x imply that

a

1

log
1+ 1

2
2 log2 a1,n

1,n > 2

n
2

1

log
1+ 1

2
2 (n

2
) > 2

2n

log22 n . (6)

Now for all i ∈ {2, . . . ,K} and large n we have

−1 < lim inf
n→∞

log2
2 n

n
log2

(a1,n
ai,n

)
≤ lim sup

n→∞

log2
2 n

n
log2

(a1,n
ai,n

)
< 1.

Therefore

2
− 2n

log22 n ai,n < a1,n < ai,n2
2n

log22 n .

From this and (6) we obtain (5).
Corollary 2.2 is an immediate consequence of Theorem 2.2 when we suppose
in addition that {bn}∞n=1 is bounded,

Proof. (of Theorem 2.1) Set

E = lim inf
n→∞

a
1

(K+1)n

1,n and F = lim sup
n→∞

a
1

(K+1)n

1,n .

Assume that there is a K-tuple of integers A1, A2, . . . , AK (not all equal to
zero), p ∈ Z and q ∈ Z+ such that

p

q
=

K∑
j=1

Aj

∞∏
n=1

(
1 +

bj,n
aj,n

)
=

R∑
j=1

Aj

∞∏
n=1

(
1 +

bj,n
aj,n

)
,

where R is the largest index such that AR 6= 0. Let N ∈ Z+. Then we have

p

q
−

R∑
j=1

Aj

N−1∏
n=1

(
1 +

bj,n
aj,n

)
=

R∑
j=1

Aj

∞∏
n=1

(
1 +

bj,n
aj,n

)
−

R∑
j=1

Aj

N−1∏
n=1

(
1 +

bj,n
aj,n

)
.

So the number

α(N) = q

( R∏
j=1

N−1∏
n=1

aj,n

)∣∣∣p
q
−

R∑
j=1

Aj

N−1∏
n=1

(
1 +

bj,n
aj,n

)∣∣∣ =

q

( R∏
j=1

N−1∏
n=1

aj,n

)∣∣∣∣ R∑
j=1

Aj

(N−1∏
n=1

(
1 +

bj,n
aj,n

))( ∞∏
n=N

(
1 +

bj,n
aj,n

)
− 1

)∣∣∣∣ (7)
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is an integer. To prove our theorem it is enough to prove that there exists
N0 ∈ Z+ \ {1} such that 0 < α(N0) < 1. Let us assume that N is sufficiently
large. Set

D = max
j∈{1,2,...,K}

|Aj |
∞∏

n=1

(
1 +

bj,n
aj,n

)
.

From this, the facts that N is sufficiently large and
∏∞

n=1

(
1+

bj,n
aj,n

)
<∞ for all

j = 1, . . . ,K we obtain that D is positive real number and
∏∞

n=N

(
1+

bj,n
aj,n

)
<

2
∑∞

n=N
bj,n
aj,n

holds for every j = 1, . . . ,K.

1. Now we prove that α(N) > 0 for all large N . From (7) and the fact

that
∏∞

n=N

(
1 +

bj,n
aj,n

)
< 2

∑∞
n=N

bj,n
aj,n

holds for every j = 1, . . . ,K we obtain

that

α(N)
(
q

R∏
j=1

N−1∏
n=1

aj,n

)−1
=

∣∣∣∣ R∑
j=1

Aj

(N−1∏
n=1

(
1 +

bj,n
aj,n

))( ∞∏
n=N

(
1 +

bj,n
aj,n

)
− 1

)∣∣∣∣ ≥
|AR|

(N−1∏
n=1

(
1 +

bR,n

aR,n

))( ∞∏
n=N

(
1 +

bR,n

aR,n

)
− 1

)
−

R−1∑
j=1

|Aj |
(N−1∏

n=1

(
1 +

bj,n
aj,n

))( ∞∏
n=N

(
1 +

bj,n
aj,n

)
− 1

)
>

( ∞∏
n=N

(
1 +

bR,n

aR,n

)
− 1

)
−D

R−1∑
j=1

( ∞∏
n=N

(
1 +

bj,n
aj,n

)
− 1

)
>

1

2

∞∑
n=N

bR,n

aR,n
− 2D

R−1∑
j=1

∞∑
n=N

bj,n
aj,n

=

∞∑
n=N

bR,n

aR,n

(1

2
− 2D

R−1∑
j=1

bj,naR,n

aj,nbR,n

)
.

This and (2) imply that α(N) > 0 for all large N .
2. Now we prove that α(N) < 1 for infinitely many large N . To prove this

we will estimate the product
∏R

j=1

∏N−1
n=1 aj,n. From the definition of F we

obtain that
a1,n < (2F )(K+1)n (8)
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for all sufficiently large n. Inequality (5) implies that

R∏
j=1

N−1∏
n=1

aj,n ≤ D1

R∏
j=1

N−1∏
n=1

a1,na

1

log
1+ε
2 log2 a1,n

1,n

where D1 is a suitable constant which does not depend on N . Recall that
the notation loga

2 log2 x means (log2(log2 x))a. This, (8) and the fact that the

function x(log2 log2 x)−(1+ε)

is increasing for all sufficiently large x yield

R∏
j=1

N−1∏
n=1

aj,n ≤ D1

R∏
j=1

N−1∏
n=1

a1,na

1

log
1+ε
2 log2 a1,n

1,n ≤

D2

(N−1∏
n=1

a1,n

)K(N−1∏
n=1

2
D3
n1+ε (K+1)n

)
=

D2

(N−1∏
n=1

a1,n

)K(
2D3

∑N−1
n=1

1

n1+ε (K+1)n) ≤ 2N
−(1+ ε

2
)(K+1)N

(N−1∏
n=1

a1,n

)K

, (9)

where D2, and D3 are positive real constants which do not depend on N .
From (3) and (5) we obtain that∣∣∣∣ R∑

j=1

Aj

(N−1∏
n=1

(
1 +

bj,n
aj,n

))( ∞∏
n=N

(
1 +

bj,n
aj,n

)
− 1

)∣∣∣∣ ≤
D

R∑
j=1

( ∞∏
n=N

(
1+

bj,n
aj,n

)
−1

)
≤ 2D

R∑
j=1

∞∑
n=N

bj,n
aj,n

≤ 2DK

∞∑
n=N

a

2

log
1+ε
2 log2 a1,n

−1

1,n ≤

∞∑
n=N

a

1

log
1+ ε

2
2 log2 a1,n

−1

1,n .

From this, (7) and (9) we obtain for all sufficiently large N

α(N) = q

( R∏
j=1

N−1∏
n=1

aj,n

)∣∣∣∣ R∑
j=1

Aj

(N−1∏
n=1

(
1 +

bj,n
aj,n

))( ∞∏
n=N

(
1 +

bj,n
aj,n

)
− 1

)∣∣∣∣ ≤
q2N

−(1+ ε
2
)(K+1)N

(N−1∏
n=1

a1,n

)K ∞∑
n=N

a
log

−(1+ ε
2
)

2 log2 a1,n−1
1,n . (10)

Let Tn = a
1

(K+1)n

1,n . Now the proof falls into two cases.



A CRITERION FOR LINEAR INDEPENDENCE OF INFINITE PRODUCTS 114

2a. First assume that for every sufficiently large n

a1,n ≥ 2n. (11)

Then (11) and the fact that the function xlog
−(1+ ε

2
)

2 log2 x−1 is decreasing for
sufficiently large x imply

∞∑
n=N

a
log

−(1+ ε
2
)

2 log2 a1,n−1
1,n =

∑
N≤n≤log2 a1,N

a
log

−(1+ ε
2
)

2 log2 a1,n−1
1,n +

∑
n>log2 a1,N

a
log

−(1+ ε
2
)

2 log2 a1,n−1
1,n ≤

a
log

−(1+ ε
2
)

2 log2 a1,N−1
1,N log2 a1,N +

∑
n>log2 a1,N

a
log

−(1+ ε
2
)

2 log2 a1,n−1
1,n ≤

a
log

−(1+ ε
2
)

2 log2 a1,N−1
1,N log2 a1,N +

∑
n>log2 a1,N

2n(log
−(1+ ε

2
)

2 n−1) ≤

a
log

−(1+ ε
2
)

2 log2 a1,N−1
1,N log2 a1,N +

∑
n>log2 a1,N

2n(log
−(1+ ε

2
)

2 log2 a1,N−1) ≤

a
log

−(1+ ε
2
)

2 log2 a1,N−1
1,N log2 a1,N + a

log
−(1+ ε

3
)

2 log2 a1,N−1
1,N ≤

a
log

−(1+ ε
4
)

2 log2 a1,N−1
1,N . (12)

for sufficiently large N .
For a sufficiently small positive real number δ, from (5) it follows that there

exists a positive integer t0 which is sufficiently large such that for every n ≥ t0
we have max(1, E − δ) < Tn < F + δ. This implies that for every n ≥ t0

max(1, (E − δ))(K+1)n < a1,n < (F + δ)(K+1)n . (13)

Let t1 be the least positive integer greater than (K + 1)t0+1 such that the
inequality max(1, E − δ) < Tt1 < E + δ holds. Then

max(1, (E − δ))(K+1)t1 < a1,t1 < (E + δ)(K+1)t1 . (14)

Let t2 be the least positive integer greater than t1 such that

F − δ < Tt2 < F + δ (15)
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and let t3 be the least positive integer greater than t1 such that t1 < t3 ≤ t2
and

Tt3 >

(
1 +

1

t
1+ ε

6
3

)
max

t1≤j<t3
(Tj , F − 2δ). (16)

Such a number t3 must exist since otherwise using (15) we obtain

F − δ < Tt2 ≤
(

1 +
1

t
1+ ε

6
2

)
max

t1≤j<t2
(Tj , F − 2δ) ≤

(
1 +

1

t
1+ ε

6
2

)(
1 +

1

(t2 − 1)1+
ε
6

)
max

t1≤j<t2−1
(Tj , F − 2δ) < . . .

<

t2∏
j=t1

(
1 +

1

j1+
ε
6

)
(F − 2δ),

a contradiction for a sufficiently large t0. From (8),(13), (14) and (16) we
obtain

a1,t3 = T
(K+1)t3

t3 >

(
1 +

1

t
1+ ε

6
3

)(K+1)t3 (
max

t1≤j<t3
(Tj , F − 2δ)

)(K+1)t3 ≥

(
1 +

1

t
1+ ε

6
3

)(K+1)t3

max
t1≤j<t3

(Tj , F − 2δ)K((K+1)t3−1+(K+1)t3−2+···+1) ≥

(
1 +

1

t
1+ ε

6
3

)(K+1)t3( t3−1∏
j=t1+1

a1,j

)K
(F − 2δ)K((K+1)t1+(K+1)t1−1+···+1) ≥

(
1 +

1

t
1+ ε

6
3

)(K+1)t3(t3−1∏
j=1

a1,j

)K t1∏
j=t0

(
(F − 2δ)(K+1)j

a1,j

)K
1

(
∏t0−1

j=1 a1,j)K
≥

(
1 +

1

t
1+ ε

6
3

)(K+1)t3(t3−1∏
j=1

a1,j

)K(F − 2δ

E + δ

)K(K+1)t1

×

t1−1∏
j=t0

((F − 2δ

F + δ

)(K+1)j
)K

D4∏t0−1
j=1 (2F )K(K+1)j

≥

(
1 +

1

t
1+ ε

6
3

)(K+1)t3(t3−1∏
j=1

a1,j

)K(t1−1∏
j=t0

(
(F − 2δ)2

(E + δ)(F + δ)
)(K+1)j

)K
×

(3F )−(K+1)t0+1

≥
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(
1 +

1

t
1+ ε

6
3

)(K+1)t3(t3−1∏
j=1

a1,j

)K
(3F )−t3 , (17)

where D4 is a positive real constant which does not depend on t0. Now from
(8), (10), (12), and (17) we obtain

α(t3) ≤ q2t
−(1+ ε

2
)

3 (K+1)t3
(t3−1∏

n=1

a1,n

)K ∞∑
n=t3

a
log

−(1+ ε
2
)

2 log2 a1,n−1
1,n ≤

q2t
−(1+ ε

2
)

3 (K+1)t3
(t3−1∏

n=1

a1,n

)K
a
log

−(1+ ε
4
)

2 log2 a1,t3
−1

1,t3
≤

q2t
−(1+ ε

2
)

3 (K+1)t3
(t3−1∏

n=1

a1,n

)K a
log

−(1+ ε
4
)

2 log2 a1,t3
1,t3(

1 + 1

t
1+ ε

6
3

)(K+1)t3 (∏t3−1
j=1 a1,j

)K
(3F )−t3

≤

2t
−(1+ ε

2
)

3 (K+1)t3 2t
−(1+ ε

5
)

3 (K+1)t3(
1 + 1

t
1+ ε

6
3

)(K+1)t3

(3F )−t3
=

2
t
−(1+ ε

2
)

3 (K+1)t3+t
−(1+ ε

5
)

3 (K+1)t3−log2

(
1+ 1

t
1+ ε

6
3

)
(K+1)t3+t3 log2(3F )

< 1

for a sufficiently large number t3.
2b. Now assume that there exist infinitely many n such that

a1,n < 2n. (18)

Then (4) and the fact that the function xlog
−(1+ ε

2
)

2 log2 x−1 is decreasing for
sufficiently large x imply

∞∑
n=N

a
log

−(1+ ε
2
)

2 log2 a1,n−1
1,n ≤

∑
N≤n≤ 5

√
a1,N

a
log

−(1+ ε
2
)

2 log2 a1,n−1
1,n +

∑
n> 5
√
a1,N

a
log

−(1+ ε
2
)

2 log2 a1,n−1
1,n ≤

a
log

−(1+ ε
2
)

2 log2 a1,N−1
1,N

5
√
a1,N +

∑
n> 5
√
a1,N

a
log

−(1+ ε
2
)

2 log2 a1,n−1
1,n ≤
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a
log

−(1+ ε
2
)

2 log2 a1,N−1
1,N

5
√
a1,N +

∑
n> 5
√
a1,N

n(1+ε)(log
−(1+ ε

2
)

2 log2 n1+ε−1) ≤

a
log

−(1+ ε
2
)

2 log2 a1,N−1
1,N

5
√
a1,N + a

− ε
10

1,N ≤

a−A1,N , (19)

for sufficiently large N , where A = 1
20 min(1, ε). Now, set B = 1

2 (1 + F ) =
1
2 (E+F ). From this and (1) we obtain that there is a sufficiently large k such
that

a1,k > B(K+1)k . (20)

Let k0 be the greatest positive integer less than k such that (18) holds. Let
k1 be the least positive integer such that

Tk1
>

(
1 +

1

k
1+ ε

6
1

)
max

k0≤j<k1

Tj , (21)

and k0 < k1 ≤ k. As in the previous case such a k1 must exist since otherwise

1 < B ≤ Tk ≤
(

1 +
1

k1+
ε
6

)
max

k0≤j<k
Tj <(

1 +
1

k1+
ε
6

)(
1 +

1

(k − 1)1+
ε
6

)
max

k0≤j<k−1
Tj < · · · <

<

k∏
j=k0+1

(
1 +

1

j1+
ε
6

)
Tk0

,

a contradiction for a sufficiently large number k0. From (21) and the fact that
the sequence {a1,n}∞n=1 is non-decreasing we obtain

a1,k1 = T
(K+1)k1

k1
>

(
1 +

1

k
1+ ε

6
1

)(K+1)k1

( max
k0≤j<k1

Tj)
(K+1)k1 ≥

(
1 +

1

k
1+ ε

6
1

)(K+1)k1

( max
k0≤j<k1

Tj)
K((K+1)k1−1+(K+1)k1−2+···+1) ≥

(
1 +

1

k
1+ ε

6
1

)(K+1)k1(k1−1∏
j=1

a1,j

)K( k0∏
j=1

a1,j

)−K
≥

(
1 +

1

k
1+ ε

6
1

)(K+1)k1(k1−1∏
j=1

a1,j

)K

2−Kk2
0 . (22)
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The definition of k1 implies that for every N (k0 < N < k1)

TN ≤
(

1 +
1

N1+ ε
6

)
max

k0≤j<N
Tj .

Thus

TN ≤
( N∏

j=k0+1

(
1 +

1

j1+
ε
6

))
Tk0

<

( ∞∏
j=k0

(
1 +

1

j1+
ε
6

))
Tk0

= C = C(k0), (23)

where C is a constant which depends on k0 and C tends to 1 as k0 tends to
infinity. From (23) we obtain that for every N = k0, . . . , k1 − 1

a1,N ≤ C(K+1)N .

This yields(k1−1∏
j=1

a1,j

)K

=

( k0∏
j=1

a1,j

)K(k1−1∏
j=k0

a1,j

)K

≤ 2Kk2
0C(K+1)k1 . (24)

Inequalities (12) and (19), and the definition of k1 and k imply

∞∑
n=k1

a
log

−(1+ ε
2
)

2 log2 a1,n−1
1,n =

k−1∑
n=k1

a
log

−(1+ ε
2
)

2 log2 a1,n−1
1,n +

∞∑
n=k

a
log

−(1+ ε
2
)

2 log2 a1,n−1
1,n ≤

a
log

−(1+ ε
4
)

2 log2 a1,k1
−1

1,k1
+ a−A1,k . (25)

Now from (7), (8), (10), (20), (22), (24), and (25) we obtain

α(k1) ≤ q2k
−(1+ ε

2
)

1 (K+1)k1
(k1−1∏

n=1

a1,n

)K ∞∑
n=k1

a
log

−(1+ ε
2
)

2 log2 a1,n−1
1,n ≤

2k
−(1+ ε

3
)

1 (K+1)k1
(k1−1∏

n=1

a1,n

)K(
a
log

−(1+ ε
4
)

2 log2 a1,k1
−1

1,k1
+ a−A1,k

)
=

(
∏k1−1

n=1 a1,n)K2k
−(1+ ε

3
)

1 (K+1)k1a
log

−(1+ ε
4
)

2 log2 a1,k1

1,k1

a1,k1

+

(
∏k1−1

n=1 a1,n)K2k
−(1+ ε

3
)

1 (K+1)k1

aA1,k
≤
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(
∏k1−1

n=1 a1,n)K2k
−(1+ ε

3
)

1 (K+1)k1a
log

−(1+ ε
4
)

2 log2 a1,k1

1,k1(
1 + 1

k
1+ ε

6
1

)(K+1)k1
(
∏k1−1

j=1 a1,j)K2−Kk2
0

+

2Kk2
0C(K+1)k1 2k

−(1+ ε
3
)

1 (K+1)k1

BA(K+1)k
≤

2k
−(1+ ε

3
)

1 (K+1)k1 2k
−(1+ ε

5
)

1 (K+1)k1(
1 + 1

k
1+ ε

6
1

)(K+1)k1
2−Kk2

0

+
2Kk2

0C(K+1)k1 2k
−(1+ ε

3
)

1 (K+1)k1

BA(K+1)k
< 1,

a contradiction for a sufficiently large k0.
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