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A new class of generalized contraction using
P-functions in ordered metric spaces

Sana Hadj Amor, Erdal Karapınar and Poom Kumam∗

Abstract

In this paper, we introduced and studied a new class of mappings in
ordered metric spaces that is inspired from the concept of a P-function
introduced in Chaipunya et. al. [10]. With our new class, we fur-
nish fixed point theorems for continuous, noncontinuous, monotonic,
and nonmonotonic mappings in various kinds of the ordering structures.

1 Introduction and Preliminaries

Fixed point theory, one of the cornerstone tools in nonlinear functional analy-
sis, has an extensive possible applications in many positive research fields.
Banach contraction mapping principle, also known as Banach fixed point
theorem, is one of the initial and fundamental results in the metric fixed
point theory. This celebrated result of Banach have been generalized and
extended by changing the properties of the mappings in various abstract
spaces. Here, we mention only a few of them which are related with our
work, [2, 3, 4, 5, 6, 7, 8, 9, 16, 17, 19, 20, 21, 22].

One of the remarkable generalization of Banach fixed point theorem was
given in 1997 by Alber and Guerre-Delabriere [1] by introducing the notion
of weak contraction in the context of Hilbert space. Rhoades [18] considered
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such contractions in the setting of complete metric spaces. We state Rhoades’s
result in the following:

A mapping f : X → X, where (X, d) is a metric space, is said to be weakly
contractive if

d(fx, fy) ≤ d(x, y)− ϕ(d(x, y)) (1)

for all x, y ∈ X and ϕ : [0,+∞)→ [0,+∞) is a function satisfying:

(i) ϕ is continuous and nondecreasing;

(ii) ϕ(t) = 0 if and only if t = 0;

(iii) limt→+∞ ϕ(t) = +∞.

It is clear that the contraction condition (1) reduces to an ordinary contraction
when ϕ(t) := kt, where 0 ≤ k < 1.

Theorem 1.1 ([18]). Let (X, d) be a complete metric space and f be a weakly
contractive mapping. Then f has a unique fixed point x∗ in X.

In 2009, Harjani and Sadarangani [12] considered the result of Rhoades
[18] in the setting of partially ordered metric spaces. For the familiarity of the
readers, we recollect the necessary notions and definitions to set up partially
ordered metric space. A relation v is a partial ordering on a set X if it is
reflexive, antisymmetric and transitive. Here, we write b w a instead of a v b
to emphasize some particular cases. Any pair a, b ∈ X is said to be comparable
if a w b or a v b. If a set X has a partial ordering v, we say that it is a partially
ordered set (w.r.t. v) and denote it by (X,v). A partially ordered set (X,v)
is said to be a totally ordered set if any two elements in X are comparable.
Additionally, (X,v) is said to be a sequentially ordered set if each element of a
convergent sequence in X is comparable with its limit. Furthermore, if (X, d)
is a metric space and (X,v) is a partially ordered (totally ordered, sequentially
ordered) set, we say that X is a partially ordered (totally ordered, sequentially
ordered, respectively) metric space, and will be denoted by (X,v, d).

Now, we recall the result proved in [12] :

Theorem 1.2 ([12]). Let (X,v, d) be a complete partially ordered metric space
and let f : X → X be a continuous and nondecreasing mapping such that

d(fx, fy) ≤ d(x, y)− ϕ(d(x, y))

for x v y, where ϕ : [0,+∞)→ [0,+∞) is a function satisfying:

(i) ϕ is continuous and nondecreasing;

(ii) ϕ(t) = 0 if and only if t = 0;
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(iii) limt→+∞ ϕ(t) = +∞.

If there exists x0 ∈ X such that x0 v fx0, then f has a fixed point.

Notice that Harjini and Sadarangani [12] also proved fixed point theo-
rems for noncontinuous mappings, nonincreasing mappings and even for non-
monotonic mappings.

Recently, Chaipunya et al. [10] has introduced and studied the notion of a
P-function. They actually investigated a new class of generalized contraction
using such P-functions, which turns out to cover the above-mentioned results
and to open a new direction of auxiliary functions used in generalizing the
concept of a contraction. Let us recall now the notions and results stated in
[10].

Definition 1.3 ([10]). Let (X,v, d) be a partially ordered metric space. A
function % : X ×X → R is called a P-function w.r.t. v in X if it satisfies the
following conditions:

(i) %(x, y) ≥ 0 for every comparable x, y ∈ X;

(ii) for any sequences {xn}+∞n=1, {yn}
+∞
n=1 in X such that xn and yn are com-

parable at each n ∈ N, if limn→+∞ xn = x and limn→+∞ yn = y, then
limn→+∞ %(xn, yn) = %(x, y);

(iii) for any sequences {xn}+∞n=1, {yn}
+∞
n=1 in X such that xn and yn are compa-

rable at each n ∈ N, if limn→+∞ %(xn, yn) = 0 then limn→+∞ d(xn, yn) =
0.

If, in addition, the following condition is also satisfied:

(A) for any sequences {xn}+∞n=1, {yn}
+∞
n=1 in X such that xn and yn are com-

parable at each n ∈ N, if the limit limn→+∞ d(xn, yn) exists, then the
limit limn→+∞ %(xn, yn) also exists,

then % is said to be a P-function of type (A) w.r.t. v in X.

Example 1.4 ([10]). Let (X,v, d) be a partially ordered metric space. Sup-
pose that the function ϕ : [0,+∞) → [0,+∞) is defined as in Theorem 1.2.
Then, ϕ ◦ d is a P-function of type (A) w.r.t. v in X.

Proposition 1.5 ([10]). Let (X,v, d) be a partially ordered metric space and
% : X × X → R be a P-function w.r.t. v in X. If x, y ∈ X are comparable
and %(x, y) = 0, then x = y.

Corollary 1.6 ([10]). Let (X,v, d) be a totally ordered metric space and
% : X ×X → R be a P-function w.r.t. v in X. If x, y ∈ X and %(x, y) = 0,
then x = y.
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Example 1.7 ([10]). Let X = R. Define d, % : X × X → R with d(x, y) =
|x − y| and %(x, y) = 1 + |x − y|. If X is endowed with a usual ordering ≤,
then (X,≤, d) is a totally ordered metric space with % as a P-function of type
(A) w.r.t. ≤ in X. Note that %(x, y) 6= 0 for all x, y ∈ X, even when x = y.

This example shows that the converses of Proposition 1.5 and Corollary
1.6 are not generally true.

Definition 1.8 ([10]). Let (X,v, d) be a partially ordered metric space, a
mapping f : X → X is called a P-contraction with respect to v if there exists
a P-function % : X ×X → R with respect to v in X such that

d(fx, fy) ≤ d(x, y)− %(x, y) (2)

for any comparable x, y ∈ X. Naturally, if there exists a P-function of type (A)
with respect tov in X such that the inequality (2) holds for any comparable
x, y ∈ X, then f is said to be a P-contraction of type (A) with respect to v.

Remark 1.9. From Example 1.4, it follows that in partially ordered metric
spaces, a weak contraction is also a P-contraction of type (A).

On the other hand, recall that a self-mapping f on a metric space (X, d)
is said to be a Chatterjea contraction (defined by Chatterjea in [11]) if there
is a constant k ∈ [0, 12 ) such that

d(fx, fy) ≤ k[d(x, fy) + d(y, fx)]

for all x, y ∈ X.
The goal of this manuscript is to use the concept of a P-function to settle

a generalization of a Chatterjea contraction in ordered metric spaces.

2 Generalized Chatterjea contraction using P-functions

In this section, we introduce the concept of a P-C-contraction (P-Chatterjea-
contraction). Throughout the paper, we assume that R represents the set of
all real numbers while N represents the set of all positive integers.

Definition 2.1. Let (X,v, d) be a partially ordered metric space, a mapping
f : X → X is called a P-C-contraction with respect to v if there exists a
P-function % : X × X → R with respect to v in X such that the following
inequality holds for each comparable x, y ∈ X:

d(fx, fy) ≤ d(x, fy) + d(y, fx)

2
−Q(x, y), (3)
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where
Q(x, y) = max{%(x, fy), %(y, fx)} (4)

Naturally, if there exists a P-function of type (A) with respect to v in X such
that the inequality (3) holds for any comparable x, y ∈ X, then f is said to
be a P-C-contraction of type (A) with respect to v.

2.1 Fixed point theorems for monotonic mappings

Theorem 2.2. Let (X,v, d) be a complete partially ordered metric space and
f : X → X be a continuous and nondecreasing P-C-contraction of type (A)
w.r.t. v. If there exists x0 ∈ X with x0 v fx0, then {fnx0}+∞n=1 converges to
a fixed point of f in X.

Proof. Choose x0 ∈ X such that x0 v fx0. If fx0 = x0, then the proof is
finished. Suppose that fx0 6= x0. We define a sequence {xn}+∞n=1 such that
xn = fnx0. Since x0 v fx0 and f is nondecreasing w.r.t. v, we obtain

x0 v x1 v x2 v · · · v xn v xn+1 v · · · .

Assume that %(xn, xn+1) 6= 0 for all n ∈ N, otherwise we can find n0 ∈ N
with xn0

= xn0+1, that is xn0
= fxn0

and there is nothing to prove. Hence,
we consider only in the case of which 0 < %(xn, xn+1) for all n ∈ N.

Since xn v xn+1 for all n ∈ N, we have

d(xn, xn+1) = d(fxn−1, fxn) (5)

≤ d(xn−1, fxn) + d(fxn−1, xn)

2
−Q(xn−1, xn)

=
d(xn−1, xn+1)

2
−Q(xn−1, xn)

≤ d(xn−1, xn) + d(xn, xn+1)

2
−Q(xn−1, xn),

where
Q(xn−1, xn) = max{%(xn−1, xn+1), %(xn, xn)}

for all n ∈ N. Since %(x, y) ≥ 0 for every comparable x, y ∈ X then
Q(xn−1, xn) ≥ 0. Therefore (5) becomes

d(xn, xn+1) ≤ d(xn−1, xn+1)

2

≤ d(xn−1, xn) + d(xn, xn+1)

2
.

(6)
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Thus
d(xn, xn+1) ≤ d(xn−1, xn)

for all n ∈ N. Therefore, we have {d(xn, xn+1)}+∞n=1 nonincreasing. Since
{d(xn, xn+1)}+∞n=1 is bounded, there exists l ≥ 0 such that

lim
n→+∞

d(xn, xn+1) = l. (7)

Letting n→ +∞ in (6) we have

l ≤ lim
n→+∞

d(xn−1, xn+1)

2
≤ l + l

2

or, equivalently,
lim

n→+∞
d(xn−1, xn+1) = 2l. (8)

Thus, there exists q ≥ 0 such that limn→+∞ %(xn−1, xn+1) = q and then

lim
n→+∞

Q(xn−1, xn) ≥ q. (9)

Again, making n→ +∞ in (5) and using (7), (8) and (9) we obtain

l ≤ 1

2
2l − q

Assume that l > 0. Then q = 0, which implies that 2l = 0, a contradiction.
Therefore, we have

lim
n→+∞

d(xn, xn+1) = 0. (10)

Now we show that {xn}+∞n=1 is a Cauchy sequence in X. Assume the con-
trary. Then, there exists ε0 > 0 for which we can construct two subsequences
{xmk

}+∞k=1 and {xnk
}+∞k=1 of {xn}+∞n=1 such that nk is minimal in the sense that

nk > mk > k and d(xmk
, xnk

) ≥ ε0. Therefore, d(xmk
, xnk−1) < ε0. Observe

that

ε0 ≤ d(xmk
, xnk

)

≤ d(xmk
, xmk−1) + d(xmk−1, xnk

)

≤ d(xmk
, xmk−1) + d(xmk−1, xnk−1) + d(xnk−1, xnk

)

≤ 2d(xmk
, xmk−1) + d(xmk

, xnk−1) + d(xnk−1, xnk
)

< 2d(xmk
, xmk−1) + ε0 + d(xnk−1, xnk

).

Letting k → +∞ and using (10), we get

lim
k→+∞

d(xmk
, xnk

) = lim
k→+∞

d(xmk−1, xnk
) = lim

k→+∞
d(xmk

, xnk−1) = ε0. (11)
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Furthermore, we deduce that the limit limk→+∞ %(xmk−1, xnk
) and

limk→+∞ %(xmk
, xnk−1) also exist. Now, by the P-C-contractivity, we have

d(xmk
, xnk

) = d(fxmk−1, fxnk−1)

≤ d(xmk−1, xnk
) + d(xnk−1, xmk

)

2
−Q(xmk−1, xnk−1)

=
d(xmk−1, xnk

) + d(xnk−1, xmk
)

2
−max{%(xmk−1, xnk

), %(xnk−1, xmk
)}.

From (10) and (11), we may find that

0 ≤ − lim
k→+∞

max{%(xmk−1, xnk
), %(xnk−1, xmk

)},

which further implies that

lim
k→+∞

%(xmk−1, xnk
) = 0.

This ends up with a contradiction. So, {xn}+∞n=1 is a Cauchy sequence. Since
X is complete, there exists x∗ such that xn = fnx0 → x∗ as n → +∞.
Finally the continuity of f and ffnx0 = fn+1x0 → x∗ imply that fx∗ = x∗.
Therefore, x∗ is a fixed point of f .

Next, we drop the continuity of f in the Theorem 2.2, and find out that we
can still guarantee a fixed point if we strengthen the condition of a partially
ordered set to a sequentially ordered set.

Theorem 2.3. Let (X,v, d) be a complete sequentially ordered metric space
and f : X → X be a nondecreasing P-C-contraction of type (A) w.r.t. v. If
there exists x0 ∈ X with x0 v fx0, then {fnx0}+∞n=1 converges to a fixed point
of f in X.

Proof. If we take xn = fnx0 in the proof of Theorem 2.2, then we conclude
that {xn}+∞n=1 converges to a point x∗ in X.

Next, we prove that x∗ is a fixed point of f in X. Indeed, suppose that x∗

is not a fixed point of f , i.e., d(x∗, fx∗) 6= 0. Since x∗ is comparable with xn
for all n ∈ N, we have

d(xn+1, fx
∗) = d(fxn, fx

∗)

≤ d(xn, fx
∗) + d(x∗, fxn)

2
−Q(xn, x

∗)

=
d(xn, fx

∗) + d(x∗, xn+1)

2
−max{%(xn, fx

∗), %(x∗, xn+1)}

≤ d(xn, fx
∗) + d(x∗, xn+1)

2
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for all n ∈ N. Letting n→ +∞ we obtain

d(x∗, fx∗) ≤ d(x∗, fx∗)

2

and this is a contradiction unless d(x∗, fx∗) = 0, or, equivalently, x∗ is a fixed
point of f.

We give a sufficient condition for the uniqueness of the fixed point in the
next Theorem.

Theorem 2.4. Let (X,v, d) be a complete partially ordered metric space and
f : X → X be a continuous and nondecreasing P-C-contraction of type (A)
w.r.t. v. Suppose that for each x, y ∈ X, there exists w ∈ X which is
comparable to both x and y. If there exists x0 ∈ X with x0 v fx0, then
{fnx0}+∞n=1 converges to a unique fixed point of f in X.

Proof. By the Theorem 2.2, we conclude that f has a fixed point. Next, we
show that the fixed point of f is unique. Assume that u and v be two distinct
fixed points of f , i.e., d(u, v) 6= 0. Here, we divide our proof into two cases:

Case 1. If u is comparable to v then fnu is comparable to fnv for all
n ∈ N and

d(u, v) = d(fnu, fnv)

≤ d(fn−1u, fnv) + d(fn−1v, fnu)

2
−Q(fn−1u, fn−1v)

=
d(u, v) + d(v, u)

2
−Q(u, v)

= d(u, v)−max{%(u, v), %(v, u)}
≤ d(u, v)− %(u, v).

Since %(u, v) ≥ 0 then %(u, v) = 0, and by definition, u = v.
Case 2. If u is not comparable to v then there exist w comparable to u and

v. Monotonicity of f implies that fnw is comparable to fnu = u and fnv = v
for all n ∈ N. Therefore, we have

d(u, fnw) ≤ d(u, fnw) + d(fn−1w, u)

2
−Q(u, fn−1w)

=
d(u, fnw) + d(fn−1w, u)

2
−max{%(u, fnw), %(fn−1w, u)}

≤ d(u, fnw) + d(fn−1w, u)

2
− %(fn−1w, u). (12)
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From the above inequality we get

d(u, fnw) ≤ d(u, fn−1w)

If we define a sequence sn = d(u, fnw) and tn = %(fnw, u), we may obtain
from (12) that {sn}+∞n=1 is nonincreasing and there exists l, q ≥ 0 such that
limn→+∞ sn = l and limn→+∞ tn = q.

Assume that l > 0. Then by the P-C-contractivity of f , we have

l ≤ l − q.

This implies that q = 0 and so, this is a contradiction. Hence, limn→+∞ sn = 0.
In the same way, we can also show that limn→+∞ d(v, fnw) = 0. That is,
{fnw}+∞n=1 converges to both u and v. Since the limit of a convergent sequence
in a metric space is unique, we conclude that u = v. Hence, this yields the
uniqueness of the fixed point.

Theorem 2.5. Let (X,v, d) be a complete sequentially ordered metric space
and f : X → X be a nondecreasing P-C-contraction of type (A) w.r.t. v.
Suppose that for each x, y ∈ X, there exists w ∈ X which is comparable to
both x and y. If there exists x0 ∈ X with x0 v fx0, then {fnx0}+∞n=1 converges
to a unique fixed point of f in X.

Proof. If we take xn = fnx0, then we conclude, by Theorem 2.3, that {xn}+∞n=1

converges to a fixed point of f in X. The rest of the proof is similar to the
proof of Theorem 2.4.

Remark 2.6. Notice that if (X,v, d) is a totally ordered set, any two elements
in X are comparable and we obtain uniqueness of the fixed point.

2.2 Fixed point theorems for nonmonotonic mappings

In this section, we drop the monotonicity conditions of f and finds out that
we still can apply our results to confirm the existence and uniqueness of fixed
point of f .

Theorem 2.7. Let (X,v, d) be a complete partially ordered metric space and
f : X → X be a continuous P-C-contraction of type (A) w.r.t. v such that the
comparability of x, y ∈ X implies the comparability of fx, fy ∈ fX. If there
exists x0 ∈ X such that x0 and fx0 are comparable, then {fnx0}+∞n=1 converges
to a fixed point of f in X.

Proof. Choose x0 ∈ X such that x0 and fx0 are comparable. If fx0 = x0,
then the proof is finished. Suppose that fx0 6= x0. We define a sequence
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{xn}+∞n=1 such that xn = fnx0. Since x0 and fx0 are comparable, we have xn
and xn+1 comparable for all n ∈ N. Now, the rest of the proof is similar to
the proof of Theorem 2.2.

Further results can be proved using the same plots of the earlier theorems
in this paper, so we are omitting them.

Theorem 2.8. Let (X,v, d) be a complete sequentially ordered metric space
and f : X → X be a P-C-contraction of type (A) w.r.t. v such that the
comparability of x, y ∈ X implies the comparability of fx, fy ∈ fX. If there
exists x0 ∈ X such that x0 and fx0 are comparable, then {fnx0}+∞n=1 converges
to a fixed point of f in X.

Theorem 2.9. Let (X,v, d) be a complete partially ordered metric space and
f : X → X be a continuous P-C-contraction of type (A) w.r.t. v such that the
comparability of x, y ∈ X implies the comparability of fx, fy ∈ fX. Suppose
that each x, y ∈ X, there exists w ∈ X which is comparable to both x and y.
If there exists x0 ∈ X such that x0 and fx0 are comparable, then {fnx0}+∞n=1

converges to a unique fixed point of f in X.

Theorem 2.10. Let (X,v, d) be a complete sequentially ordered metric space
and f : X → X be a P-C-contraction of type (A) w.r.t. v such that the
comparability of x, y ∈ X implies the comparability of fx, fy ∈ fX. Suppose
that each x, y ∈ X, there exists w ∈ X which is comparable to both x and y.
If there exists x0 ∈ X such that x0 and fx0 are comparable, then {fnx0}+∞n=1

converges to a unique fixed point of f in X.

3 Example

Example 3.1. Let X = {(0, 1), (1, 0), (1, 1)} ⊂ R2 and suppose that we write
x = (x1, x2) and y = (y1, y2) for x, y ∈ X.
Define d, % : X ×X → R by

d(x, y) =

{
0 if x = y,
2 max{x1 + y1, x2 + y2} otherwise,

and

%(x, y) =

{
0 if x = y,
max{x1, x2 + y2} otherwise.

Let v be an ordering in X given by R = {(x, x);x ∈ X} ∪ {((0, 1), (1, 1))}.
Then, (X,v, d) is a partially ordered metric space with % as a P-function of
type (A) w.r.t. v in X.
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Now, let T be the operator T : X → X defined by T (0, 1) = (0, 1), T (1, 1) =
(0, 1) and T (1, 0) = (1, 0). Obviously, T is a continuous and nondecreasing
mapping w.r.t. v since (0, 1) ≤ (1, 1) and T (0, 1) = (0, 1) v T (1, 1) = (0, 1).

Let x, y ∈ X be comparable w.r.t v. Consider the following four cases.
• Case 1 : x = y = (0, 1). We get that

d(T (0, 1), T (0, 1)) = d((0, 1), T (0, 1)) = %((0, 1), T (0, 1)) = 0.

• Case 2 : x = y = (1, 0). We observe that

d(T (1, 0), T (1, 0)) = d((1, 0), T (1, 0)) = %((1, 0), T (1, 0)) = 0.

• Case 3 : x = y = (1, 1). We derive that

d(T (1, 1), T (1, 1)) = 0, d((1, 1), T (1, 1)) = 4, %((1, 1), T (1, 1)) = 2.

• Case 4 : x = (0, 1) and y = (1, 1). We find that

d(T (0, 1), T (1, 1)) = 0, d((0, 1), T (1, 1)) = 0, d((1, 1), T (0, 1)) = 4,

and
%((0, 1), T (1, 1)) = 0, %((1, 1), T (0, 1)) = 2.

Therefore, the inequality (3) is satisfied for every comparable x, y ∈ X. So, T
is a continuous and nondecreasing P-C-contraction of type (A) w.r.t. v. As
(0, 1) v T (0, 1), Theorem 2.2 shows that T has a fixed point in X (in this case
(0, 1) and (1, 0) are two fixed points of T ).
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